松辽盆地上白垩统嫩江组三四段沉积有机质及 多环芳烃化合物组成分布与古气候意义

曹新星^{1,2*},李艳^{1,2},王丽¹,尹琴³,宋之光¹,赵迪斐⁴ (1. 中国科学院 广州地球化学研究所 有机地球化学国家重点实验室, 广东 广州 510640; 2. 中国科学院大学, 北京 100049; 3. 中国石化 河南油田分公司 勘探开发研究院, 河南 郑州 450018; 4. 煤层气资源与成藏过程教育部重点实验室, 江苏 徐州 221008)

摘 要: 对松辽盆地上白垩统嫩江组嫩三段(K2n3)和嫩四段(K2n4)岩芯样品有机质组成丰度、多环芳烃化合 物组成分布等进行了分析。结果显示、嫩三段和嫩四段沉积岩有机碳含量(TOC)分别在 1.37%~2.52%和 0.12%~0.82%之间,可溶有机质族组成含量为沥青质 > 非烃 > 饱和烃 > 芳烃,沥青质、非烃、饱和烃和 芳烃占可溶有机质的比例分别为 21.1%~54.9%, 15.4%~27.8%, 12.7%~19.2%和 1.7%~11.0%。在嫩三段和嫩四 段沉积有机质中检出了多种高丰度的多环芳烃化合物,主要为萤蒽(Fla)、芘(Py)、苯并萤蒽(Bflas)、苯并 a 蔥(BaAn)、苯并 e 芘(BePy)、晕苯(Cor)、茚并芘(Inpy)、菲(P)、苯并[g, h, i]苝(BghiP)、䓛(Chry)、甲基菲(MP)、 惹烯(Ret)和苝(Pery)等;其中、菲、甲基菲、惹烯和䓛等化合物主要是来自原始有机质输入和成熟转化的产 物。多环芳烃化合物的相关比值及其在垂向上的变化表明, 嫩三段中的萤蔥、芘、苯并萤蔥、苯并 a 蔥、苯并 e 芘等多环芳烃化合物主要是生物质燃烧的产物; 茚并芘和苯并[g,h,i] 北等则主要形成于原始有机质的成熟转化。 嫩四段中的萤蔥、芘、苯并萤蔥、苯并 a 蔥和苯并 e 芘等多环芳烃化合物主要是生物质燃烧的产物、 茚并芘和苯 质的输入及转化有关。最后,嫩江组中的多环芳烃化合物,特别是生物质燃烧来源的多环芳烃环合物的相对丰度 在垂向上的变化可能表明嫩三段和嫩四段沉积时期古气候发生了由温湿气候向于旱气候的转变。 关键词: 多环芳烃化合物; 古气候环境; 白垩系嫩江组; 松辽盆地 中图分类号: P593 文献标识码: A 文章编号: 0379-1726(2015)06-0536-10

The distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Upper Cretaceous Nenjiang Formation of Songliao Basin and its paleoclimate significance

CAO Xin-xing^{1,2*}, LI Yan^{1,2}, WANG Li¹, YIN Oin³, SONG Zhi-guang¹ and ZHAO Di-fei⁴

Abstract: The core samples from the members 3 and 4 of Nenjiang Formation $(K_2n^3 \text{ and } K_2n^4)$ in the Songliao Basin have been analysed for organic matter abundance and the composition and distribution of polycyclic aromatic hydrocarbons (PAHs). The results show that the TOC content of sediments in K_2n^3 (member 3) and K_2n^4 (member 4) is in the range of 1.37% to 2.52% and 0.12% to 0.82%, respectively. The relative abundance of soluble organic matter fractions is in an order of aromatic hydrocarbons < aliphatic hydrocarbons < polar compounds < asphaltene, their relative percentage being in the range of 21.1% to 54.9% (asphaltene), 15.4% to 27.8% (polar compounds), 12.7% to 19.2% (aliphatic hydrocarbons) and 1.7% to 11.0% (aromatic hydrocarbons), respectively.

^{1.} State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 China:

^{2.} University of Chinese Academy of Sciences, Beijing 100049, China;

^{3.} Research Institute of Petroleum Exploration and Production, SINOPEC Henan Oilfield Branch Company, Zhengzhou 450018, China

^{4.} Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, the Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

收稿日期(Received): 2015-03-03; 改回日期(Revised): 2015-06-15; 接受日期(Accepted): 2015-07-06

基金项目: 国家自然科学基金团队项目(41321002)

作者简介:曹新星(1989-),女,博士研究生,油气地球化学专业。

^{*} 通讯作者(Corresponding author): CAO Xin-xing, E-mail: caoxinxing@gig.ac.cn, Tel: +86-20-85290186

A large number of PAH compounds are detected in the sediments, including fluoranthene (Fla), pyrene (Py), benzofluoranthene (Bflas), benzo[a]anthracene (BaAn), benzo[e]pyrene (BePy), coronene (Cor), indeno[1, 2, 3-cd]pyrene (Inpy), phenanthrene (P), benzo[ghi]perylene (BghiP), methylPhenanthrene (MP), chrysene (Chry), retene (Ret) and perylene (Pery). Among these PAH compounds, the P, MP, Chry and Ret are mainly derived from the original organic matter input and its diagenetic transformation. The ratios of PAH compounds suggest that the Fla, Py, Bflas, BaAn, and BePy in the sediments of K_2n^3 were largely originated from the combustion of biomass, and the Inpy and BghiP perhaps generated from the diagenetic transformation of original organic matter. While the Fla, Py, Bflas, BaAn and BePy in the K_2n^4 were mainly derived from the combustion of biomass, and the Inpy and BghiP in the K_2n^4 were mainly derived from the combustion of biomass, and the Inpy and BghiP in the K_2n^4 were mainly derived from the combustion of biomass, and the Inpy and BghiP in the K_2n^4 were originated from the mix sources (the combustion of biomass and the diagenesis process). The high abundance of Pery in the K_2n^4 was likely related to the specific terrigenous organic matter input. Finally, vertical variations in the relative abundance of these PAH compounds in the sediments of K_2n^3 and K_2n^4 suggest that the Songliao Basin may experience a climatic shift from relative warm-humid to arid during the sedimentation period of K_2n^3 and K_2n^4 .

Key words: polycyclic aromatic hydrocarbons; paleoclimate and paleoenvironment; Cretaceous Nenjiang Formation; Songliao basin

0 引 言

松辽盆地是世界上已发现的白垩纪时期最大的 陆相湖盆沉积体系,也是陆相白垩系地层和地质记 录最为完整的地区之一。前人对松辽盆地白垩系主 力烃源岩的有机质类型、孢粉化石组成、碳氧同位 素变化以及沉积环境变化等已有不少的研究^[1-5]。如 马安来等^[6]采用有机岩石学全岩分析技术,系统研 究了松辽盆地齐家-古龙地区白垩系嫩江组烃源岩 的有机质显微组分,认为嫩二段至嫩五段烃源岩有 机显微组分以陆源高等植物输入占绝对优势,贫惰 性组、富含镜质组以及相对发育壳质组。Song *et al.*^[7] 运用伽玛蜡烷指数、Pr/Ph 比值、重排甾烷/规则甾 烷比值等有机质生标参数讨论并提出松辽盆地在嫩 一段和嫩二段沉积时期存在水体盐度及氧化还原分 层和陆源有机质输入增多等特征。

芳烃化合物作为沉积有机质和原油的主要组分 之一,携带有大量有关沉积有机质来源及演化的地 球化学信息,但松辽盆地白垩系沉积层段中芳烃化 合物的研究还比较薄弱^[8]。多环芳烃系列化合物结 构稳定,相对于饱和烃其受各种次生变化(如热演 化、生物降解、氧化作用等)的影响较小,能够较好 地保存反映母质来源及有机质演化等方面的信息, 是判断有机质母质来源和沉积环境变化的有效指 标。本文拟通过对松辽盆地白垩系嫩三、四段检出 的较高丰度的多环芳烃化合物的分析,结合有机质 丰度、生标参数和松辽盆地沉积演化特征^[9],探讨嫩 三段和嫩四段沉积时期松辽盆地多环芳烃化合物可 能的成因来源及古气候环境演变。

1 地质背景和样品

上白垩统嫩江组嫩一段和嫩二段为湖盆扩张期 形成的深水湖相沉积、几乎覆盖整个松辽盆地、从 嫩三段沉积时期开始、湖面下降、三角洲相快速朝 湖盆中心延伸;至嫩四段和嫩五段湖泊及其沉积进 一步收缩^[9]。本文分析研究的上白垩统嫩江组三段 和嫩江组四段沉积层段样品取自于松辽盆地"松科 一井"(SK-1)北孔钻井岩芯。SK-1北孔(图 1)位于松 辽盆地齐家-古龙凹陷他拉哈向斜轴部、取芯贯穿上 白垩统嫩江组一段顶部到新近系泰康组的地层^[10]。 嫩三段沉积厚度106.5 m, 埋深1477.3~1583.8 m; 该 层段下部以黑色泥岩和灰色泥岩为主, 上部在灰色 泥岩中夹有粉砂岩。嫩四段厚度 204.7 m, 埋深 1272.6~1477.3 m; 下部主要为灰色粉砂质泥岩, 部 分样品为灰色、褐色、深灰色泥岩以及粉砂质泥岩、 泥岩粉砂岩交互薄层沉积;上部以灰色泥岩夹灰绿 色泥质粉砂岩为主,顶部样品为灰绿色泥质粉砂岩 (图 2)。

537

2 实验分析

岩芯样品粉碎至 100 目, 称取 50 g 左右的粉末 样品,用二氯甲烷+甲醇(体积比 9 1)混合溶剂索氏 抽提 72 h。总抽提物先用正己烷沉淀分离沥青质,除 去沥青质的可溶有机质用硅胶和氧化铝填充层析柱 进行族组分分离;分别用正己烷、正己烷 + 二氯甲

图 1 松科 1 井井位图 Fig.1 Map showing the structure of Songliao Basin and the location of "SK-1" drilling hole

烷(体积比 4 1)混合溶剂、二氯甲烷+甲醇(1 1)混 合溶剂淋洗填充柱,依次得到饱和烃、芳烃和非烃 组分。样品热解参数通过 Rock-Eval 6 Plus 型岩石热 解仪分析获得(表 1)。

气相色谱(GC)分析应用 Agilent 公司生产 7890A 型色谱仪, 配以氢火焰离子检测器(FID), 色谱分离 柱为 JW-DB-5型 30 m × 0.25 mm × 0.25 µm 硅熔毛 细柱; 进样口和检测器的温度分别为 290 ℃和 300 ℃, 采用无分流模式进样, 氮气为载气。饱和烃分析时 柱箱初始温度为 80 ℃, 保持 2 min 后以 20 ℃/min 的速率升至 130 ℃, 再以 3 ℃/min 的速率升温至终 温 290 ℃并保持 20 min; 芳烃分析时柱箱初始温度 为 80 ℃, 保持 2 min 后以 4 ℃/min 的速率升温至终 温 290 ℃并保持 20 min。

GC-MS 分析仪器为 Thermo GC Ultra Trace-DSQ

质谱仪,离子源为电子轰击源(70 eV),色谱分离 柱为HP-5型60m×0.25mm×0.25μm硅熔毛细柱。 样品采用无分流模式进样,氦气为载气,气化室温 度为 290 ℃,饱和烃和芳烃的升温程序分别与 GC 的升温程序保持一致,质谱扫描范围 50~650 u。

3 结果和讨论

3.1 有机质丰度及组成

嫩三段和嫩四段样品的热解参数如表 1 所示, 大多数样品 *t*_{max} 值小于 450 ℃,平均值为 443 ℃, 换算的 *R*。值在 0.71~1.05 之间波动,表明嫩三段和 嫩四段沉积属于成熟阶段。

松辽盆地嫩三段和嫩四段样品的总有机碳含量 相差较大, 嫩三段的 TOC 为 1.37%~2.52%, 而嫩四

图 2 嫩三段和嫩四段岩芯样品图 Fig.2 Photo images of the core samples from the third and fourth members of Nenjiang Formation (K₂n³ and K₂n⁴)

段的 TOC 均小于 1%。嫩三、四段岩石样品中可溶 有机质族组分组成中沥青质所占比重最高,整体上 呈沥青质 > 非烃 > 饱和烃 > 芳烃的顺序。其 中沥青质占可溶有机质的比例为 21.1%~54.9%,非 烃占 15.4%~27.8%,饱和烃占 12.7%~19.2%,芳烃占 1.7%~11.0%,且芳烃占可溶有机质的比例随深度的 增大而增加,显示沉积有机质处于常规的成熟演化 序列。

在图 3 所示的饱和烃总离子流色谱图上,正构 烷烃组成分布随深度变化明显。嫩三段样品饱和烃 正构烷烃呈单峰型分布,主峰碳数为 *n*C₁₆ 或 *n*C₁₅; 高碳数正构烷烃相对丰度很低,且随着碳数增加其 相对丰度逐渐降低。嫩四段样品正构烷烃呈单峰型 分布,主峰碳分别为 *n*C₁₅、*n*C₁₇ 或 *n*C₁₉;高碳数部 分相对丰度很低,仅在嫩四段下部有个别样品的高 碳数正构烷烃丰度略有增高,且呈现较弱的奇碳数 优势。从正构烷烃组成分布来看,嫩三段和嫩四段 主要以低碳数正构烷烃占优势,显示了藻类等低等 水生生物输入占优的特征^[11];嫩四段下部高碳数正 构烷烃丰度的增加指示陆源高等植物有机质输入有 一定程度的增加^[12]。另外,嫩三段和嫩四段样品高 碳数正构烷烃的分布均呈奇碳优势,CPI 比值均大于 1、平均值为 1.59,指示了一定的陆源有机质输入。

图 4 显示, TOC 与 Pr/Ph 比值在垂向上呈现相同 的变化趋势, 即从嫩三段底部到嫩四段顶部(从下至 上)呈逐渐降低的趋势。嫩三段样品具姥鲛烷优势, Pr/Ph 比值在 2.06~4.20 之间; 而嫩四段大多数样品 具姥鲛烷优势, Pr/Ph 比值在 0.95~2.35 之间变化。高 的姥植比(> 3)可能反映了嫩三段陆源有机质的输入, 而 Pr/Ph 比值在 0.8~2.5 之间, 不能单独用于指示古 沉积环境条件^[13]。嫩三段大多数样品的 Pr/Ph 比值 介于 2~3 之间, 仅有底部两个样品的 Pr/Ph 比值大于 3; 由于嫩三段样品岩性以黑色、灰色泥岩为主, 高 碳数正构烷烃(植物叶蜡)丰度较低, 因此高的姥植 比可能反映了嫩三段的沉积埋藏条件有利于姥鲛烷 的形成。而嫩四段的 Pr/Ph 比值在 0.95~2.35 之间变 化, 该层段以粉砂岩为主且 TOC 含量低, 可能反映 了具有较强水动力条件下的氧化沉积环境。

3.2 多环芳烃化合物组成分布特征

在松辽盆地嫩三段和嫩四段样品中检出了多种 较高丰度的 3~6 环芳烃化合物(如图 5), 主要包括菲

Table 1 Sampling information and pyrolysis parameters of the core samples from Nenjiang Formation										
层段	样品	深度 d(m)	<i>t</i> _{max} ()	TOC (%)	HI (烃/TOC)(mg/g)	OI (烃/TOC)(m/g)	Ro			
<u>4±</u> 1+	N885	1301.07	456	0.12	0	58	1.05			
	N917	1331.72	437	0.82	29	7	0.71			
	N964	1388.33	440	0.38	21	21	0.76			
9#X	N985	1408.32	443	0.35	6	0	0.81			
E7	N1004	1427.57	444	0.82	24	2	0.83			
FX	N1019	1447.82	444	0.36	14	31	0.83			
	N1026	1457.3	443	0.81	59	26	0.81			
	N1038	1467.85	439	0.78	32	21	0.74			
	N1064	1497.36	445	1.47	48	17	0.85			
嫩 三 段	N1111	1537.42	444	2.07	41	20	0.83			
	N1135	1563.62	441	1.37	77	0	0.78			
	N1145	1567.6	444	1.56	66	1	0.83			
	N1155	1582.97	443	2.52	62	13	0.81			

表1 嫩三段和嫩四段样品热解参数

Cao Xin-xing et al.: *Distribution of PAHs in Upper Cretaceous sediments of Songliao Basin and its paleoclimate significance* ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Geochimica Vol. 44 *No.* 6 *pp.* 536~545 *Nov.*, 2015 ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 4 CPI 指数与 TOC、Pr/Ph 在嫩三段和嫩四段垂向上的关系图

(P)、甲基菲(MP)、惹烯(Ret)、花(Pery)、萤葱(Fla)、 花(Py)、苯并 a 葱(BaAn)、 症(Chry)、苯并萤葱(Bflas)、 苯并 e 花(BePy)、苯并 a 花(BaPy)、 茚并花(InPy)、
苯并[g, h, j]花(BghiP)、晕苯(Cor)等, 其相对丰度在 垂向上变化很大。

嫩三段多环芳烃化合物中菲系列和惹烯的相对 丰度较高, 茚并芘、苯并[g, h, i]菲、晕苯等化合物 相对丰度很低, 仅在部分样品中检出; 菲化合物具 有一定的丰度且垂向上变化不大。嫩四段下部样品 中苝的相对丰度很高, 在离子色谱图上(m/z=252)具 有最高峰值(图 5b); 萤蔥、芘、茚并芘、苯并[g, h, i] 苝、晕苯等的相对丰度比嫩三段高而比嫩四段中上 部低。嫩四段中部的多环芳烃以菲和芘为主, 茚并 芘、苯并[g, h, i]苝、晕苯等化合物相对丰度较高; 嫩 四段上部以菲、萤蔥和苯并萤蔥等化合物占优, 茚 并芘、苯并[g, h, i]苝、晕苯等 5~6 环芳烃化合物也 有一定的相对丰度,而范也具有较高的相对丰度。

多环芳烃化合物相对丰度比值在垂向上也有较 大变化。如表 2 所示, Fla/(Py+Fla)比值在嫩三段均大 于 0.5, 嫩四段在 0.44~0.69 之间, 但个别样品中该 比值可低至 0.36。茚并芘和苯并[g, h, i]菲仅在嫩三 段个别样品中检出, 且 InPy/(BghiP+InPy)比值小于 0.2; 嫩四段所有样品中均检测到较高丰度的茚并芘 和 苯 并 [g, h, i] 苝, InPy/(BghiP+InPy) 比 值 为 0.23~0.33, 并具有自下而上逐渐升高的趋势。苯并 a 蒽和 盘在嫩四段所有样品中均有检出, 但仅在嫩三 段的两个样品中检出, 所有样品中 BaAn/(BaAn+ Chry)比值大于 0.35, 并在嫩四段具有自下而上先增 加后降低的趋势。

3.3 嫩三段和嫩四段多环芳烃化合物成因来源

萤蔥、芘、苯并 a 蔥、苯并萤蔥、苯并 e 芘、苯 并 a 芘、茚并芘、苯并[g, h, j] 苝、晕苯等多环芳烃化 合物多被认为是陆源生物质燃烧的产物, 但有机质 在沉积成岩改造过程中也可能产生这些化合物^[14]。

已有研究认为,当 Fla/(Py + Fla)比值大于 0.5 时, 指示 Fla 和 Py 是生物质(草本、木材)或者固体化石 燃料燃烧的产物, Fla/(Py + Fla)小于 0.4 时被认为是 有机质生烃演化形成的,而比值在 0.4~0.5 之间被认 为是混合来源^[15-17]。松辽盆地嫩三段 Fla/(Py + Fla) 比值均大于 0.5,处于生物质燃烧来源的比值范围内; 嫩四段绝大多数样品中的 Fla/(Py + Fla)比值大于 0.49,仅有 2 个样品该比值较小,为 0.44 和 0.36。因 此,总体上可以认为嫩三段和嫩四段样品中的萤蒽 和芘可能以生物质燃烧来源为主。

Yunker *et al.*^[14]用 BaAn/(BaAn + Chry)比值大于 0.35 指示苯并 a 菌为生物质燃烧的产物,并给出了 BaAn/(BaAn + Chry)与 Fla/(Py + Fla)的相关关系图。嫩 三段和嫩四段所有样品中 BaAn/(BaAn + Chry)比值均 大于 0.35,在 BaAn/(BaAn + Chry)和 Fla/(Py + Fla)的相 关图(图 6)上,所有样点都落在燃烧成因的区域内,因 此,样品中检测到的苯并 a 菌应主要为生物质燃烧产物。

表 2	多环芳烃化合物比值表	
-----	------------	--

rable 2 Ratios of polycyclic aromatic hydrocarbon compounds												
Datio	样品名称(嫩四段)							样品名称(嫩三段)				
Katio	N875	N885	N917	N964	N985	N1004	N1026	N1038	N1111	N1135	N1145	N1155
Fla/Py	1.26	1.32	1.11	0.96	0.80	0.55	0.98	1.10	1.14	1.37	2.24	1.00
Fla/(Py+Fla)	0.56	0.57	0.53	0.49	0.44	0.36	0.49	0.52	0.53	0.58	0.69	0.50
InPy/(BghiP+InPy)	0.32	0.33	0.31	0.31	0.29	0.33	0.23	0.23	0.00	0.00	0.18	0.00
BaAn/228	0.37	0.42	0.39	0.51	0.51	0.56	0.46	0.41	0.41	0.00	0.40	0.00

注: 其中 228 代表相对分子质量为 228 的多环芳烃化合物, 即 BaAn + Chry。

Fig.4 Profile variation of CPI, TOC and Pr/Ph ratio in the core samples of Nenjiang Formation

Geochimica Vol. 44 *No.* 6 *pp.* 536~545 *Nov.*, 2015 ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

另外, InPy/(BghiP + InPy)比值也常被用来指示 茚并芘和苯并[g, h, i] 范的成因来源, 当该比值大于 0.5 时指示其为生物质(草本、树木)燃烧的产物, 比 值小于 0.2 时指示为沉积有机质成岩转化的产物, 而当该比值介于 0.5~0.2 之间时指示为混合来源^[18]。 松辽盆地嫩三段样品中 InPy/(BghiP + InPy)比值小 于 0.2, 故应是有机质成岩转化成因的; 嫩四段的样 品中该比值都处于 0.5~0.2 之间,显示茚并芘和苯并 [g, h, i] 范应是混合成因的,即有机质成岩转化和生物质燃烧成因对其均有贡献。

苯并萤蔥和苯并 e 芘被认为是最具代表性的生物质燃烧的原始产物^[19]。不像其他燃烧产生的多环 芳烃化合物, 苯并萤蔥和苯并 e 芘具有很强的抗氧化 性, 在沉积后期也不易发生烷基化作用^[20-21], 故常被 用来作为指示森林大火或煤火的生物标志物^[19]。晕苯 是六环芳烃化合物, 曾有研究表明其为古植被高强度 燃烧的产物, 由生物质在高温燃烧过程中高度环化而 成^[22]。嫩三段和嫩四段中苯并萤蔥、苯并芘和晕苯都 具有一定丰度, 它们应该是生物质燃烧的产物。

尽管生物质的不完全燃烧可以产生菲、甲基菲、 ^菌等化合物^[23],但它们被认为主要来源于成岩作用 过程中沉积有机质的成熟转化。嫩三段和嫩四段样 品中菲、甲基菲、^亩总体在垂向上的相对丰度变化 不大,且与指示燃烧来源的多环芳烃化合物在垂向 上的组成分布没有相关性,因此这些化合物应主要 是有机质成岩转化的产物。

惹烯被认为是树脂中的松香酸在成岩过程中转 化的产物^[24],但也可能由高等植物燃烧产生^[25-26]。 图 5 显示,嫩四段上部萤蒽、芘、苯并萤蒽等燃烧 成因的多环芳烃化合物相对丰度比较高,而惹烯的 相对丰度很低;但嫩三段中惹烯相对丰度很高,而 指示燃烧来源的多环芳烃化合物相对丰度较嫩四段 低。因此,惹烯的丰度与燃烧成因的多环芳烃化合 物相关性不大。另一方面,嫩三段样品中惹烯化合 物的丰度远高于嫩四段,这可能与嫩三段地层中松 柏类植物花粉含量比嫩四段高,且随地层由老到新 (自下而上)花粉含量逐渐降低的变化趋势相一致^[27], 说明嫩三、四段中惹烯可能主要是高等植物中的树 脂类化合物成岩转化的产物。

543

菲化合物在早期被认为是陆源高等植物输入的 指征^[28],即是成岩过程中有机质转化形成的^[29]。近 期的研究显示,湿润气候条件下活跃的木质降解真 菌包含的菲醌类化合物具有与菲相似的分子结构, 因而被认为可能是菲的先质化合物^[30–31]。几乎所有 样品中均检出了菲,嫩四段样品中菲的丰度较嫩三 段高,特别是嫩四段下部菲的相对丰度很高; 菲的 相对丰度在垂向上的变化与高等植物来源的惹烯和 生物质燃烧来源的多环芳烃化合物的变化均不一致 (图 5),因而其可能与某种特殊陆源的输入有关。

综上所述, 嫩江组三、四段中检出的多环芳烃化 合物的成因来源可以概括为以下四个方面: 生物质燃 烧、有机质成岩转化、特定生物来源、生物质燃烧和 成岩转化混合来源。生物质燃烧成因的化合物主要有 萤蔥、芘、苯并萤蔥、苯并 a 蔥、苯并 e 芘、晕苯; 有 机质成岩转化生成的化合物有菲、甲基菲、 ^亩 以及嫩 三段中的茚并芘和苯并[g, h, i]苝; 特定生源母质来源 的化合物主要是菲和惹烯; 生物质燃烧和成岩转化混 合来源的有嫩四段中的茚并芘和苯并[g, h, i]苝。

3.4 多环芳烃化合物的古气候环境意义

前人通过对嫩江组孢粉组合的分析发现, 喜温 湿的植物孢粉数量在嫩江组顶部下降, 而代表干旱炎 热的孢粉含量逐渐上升^[32], 这表明草本植物在嫩江组 顶部呈逐渐增加的趋势, 而常绿阔叶植物、灌木和松 柏类植物相应减少^[27], 因而认为在嫩江组顶部沉积时 期, 松辽盆地发生了由温湿气候向干热气候的转变。

嫩三段中苯并萤菌、苯并 a 菌等生物质燃烧产 生的多环芳烃化合物相对丰度较低、且只有个别样 品中检测到生物质不完全燃烧产生的六环芳烃化合物 晕苯,表明高强度生物质燃烧发生的频率比较低^[18]; 高等植物树脂类有机质来源的惹烯和菲、甲基菲等 成岩转化产生的多环芳烃化合物相对丰度较高、指 示嫩三段沉积时期可能处于有利于木本植物发育的 较温湿的气候状态。嫩四段萤蔥、芘、苯并萤蔥、 苯并 a 菌等生物质燃烧来源的多环芳烃化合物相对 丰度较嫩三段的高、指示高强度燃烧成因的晕苯等 化合物的丰度也明显增加,表明高强度生物质燃烧 频发。因而、嫩四段沉积时期生物质燃烧事件发生的 频率较嫩三段沉积时期高,同时嫩四段样品中惹烯 丰度明显降低, 这表明松柏类植物输入减少, 与嫩江 组植被类型的研究结果相契合^[27],可能反映了嫩四 段沉积时期相对干热的气候特征。综上所述、嫩江组 顶部沉积时期的气候可能呈现逐渐干旱的过程。

4 结 论

松辽盆地嫩江组嫩三段的有机质丰度较嫩四段高, 嫩三段的 TOC 为 1.37~2.52%, 而嫩四段的 TOC 均小于 1%。嫩三段和嫩四段样品中正构烷烃组成分布呈单峰 型,低碳数正构烷烃占优势,显示了藻类等低等水生生 物有机质输入为主的特征。嫩四段下部样品中高碳数正 构烷烃丰度增加且呈奇碳优势,表明嫩四段下部沉积 时期陆生高等植物来源有机质输入有所增加。

嫩三段和嫩四段检出了萤蔥、芘、苯并萤蔥、 苯并 a 蔥、苯并 e 芘、晕苯、茚并芘、苯并[g, h, i] 苝、菲、甲基菲、^亩、惹烯和苝等多种较高丰度的 多环芳烃化合物。嫩三段相关多环芳烃化合物比值 参数范围为 BaAn/(BaAn + Chry) > 0.35、Fla/(Py + Fla) > 0.5 和 InPy/(BghiP + InPy) < 0.2; 而嫩四段为 BaAn/(BaAn + Chry) > 0.35、Fla/(Py + Fla) > 0.4 和 InPy/(BghiP + InPy)比值处于 0.5~0.2 之间。这些比 值参数范围显示萤蔥、芘、苯并萤蔥、苯并 a 蔥、 苯并 e 芘、晕苯等多环芳烃化合物主要来源于生物 质的不完全燃烧; 菲、甲基菲、_菌、惹烯、 花以及 嫩三段检测到的茚并芘和苯并[g, h, i] 花可能主要来 自于原始有机质输入及其成熟转化; 花和惹烯主要 是与特定生源母质有关的化合物; 而嫩四段中的茚 并芘和苯并[g, h, i] 花主要是生物质燃烧和成岩转化 的混合来源。多环芳烃化合物成因来源及在垂向上 丰度的变化反映了嫩三段和嫩四段沉积时期古气候 逐渐由相对温湿向干旱的转变。

参考文献(References):

- 席党鹏,尹秀珍,崔莹,荆夏,万晓樵.松辽盆地中部青山 口组-姚家组界线上下的古湖泊特征及古气候响应[J].微 体古生物学报,2008,25(3):266-274.
 Xi Dang-peng, Yin Xiu-zhen, Cui Ying, Jin Xia, Wang Xiao-qiao. Paleolimnology and paleocimate from the upper Qingshankou to the lower Yaojia Formations in central Songliao Basin [J]. Acta Micropalaeontol Sinica, 2008, 25(3): 266-274 (in Chinese with English abstract).
- [2] 黄清华,陈春瑞,王平在,韩敏欣,李星军,伍大庆.松辽 盆地晚白垩世生物演化与古湖泊缺氧事件[J]. 微体古生物 学报,1998,15(4):417-425.
 Huang Qing-hua, Chen Chun-rui, Wang Ping-zai, Han Min-xin, Li Xing-jun, Wu Da-qing. The late Cretaceous bio-evolution and anoxic events in the ancient lake in the Songliao Basin [J]. Acta Micropalaeontol Sinica, 1998, 15(4): 417-425 (in Chinese with English abstract).
 [3] 万传彪,乔秀云,吕茜,金玉东,王平,迟焕远,焦玉国,
- [3] 万传彪, 尔努云, 白西, 玉玉东, 王平, 迟深远, 黑玉国, 张国斌. 大庆长垣以西地区嫩江组三段孢粉、藻类化石组 合研究[J]. 大庆石油地质与开发, 2004, 23(5): 33–36. Wan Chuan-biao, Qiao Xiu-yun, Lü Qian, Jin Yu-dong, Wang Ping, Chi Huan-yuan, Jiao Yu-guo, Zhang Guo-bin. Spore and pollen, alga fossil assemblage of Nenjiang Formation in the western part of Daqing Placanticline [J]. Pet Geol Oilfield Develop Daqing, 2004, 23(5): 33–36 (in Chinese with English abstract).
- [4] 刘美羽. 松辽盆地松科 1 井晚白垩世生物标志化合物与湖 泊水体环境变化[D]. 北京: 中国地质大学(北京), 2014.
 Liu Mei-yu. Late Cretaceous Lake environmental change revealed by biomarkers from SK-1, Songliao Basin [D]. Beijing: China University of Geosciences (Beijing), 2014 (in Chinese with English abstract).
- [5] Chamberlain C P, Wan X Q, Graham S A, Carroll A R, Doebbert A C, Sageman B B, Blisniuk P, Kent-Corson M L, Wang Z, Wang C S. Stable isotopic evidence for climate and basin evolution of the Late Cretaceous Songliao basin, China [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 106–124.
- [6] 马安来,李贤庆,熊波,王铁冠,冯子辉,孔庆云,李少华. 松辽盆地齐家古龙地区烃源岩有机岩石学研究[J]. 石油勘 探与开发,2002,29(4):26-28.
 Ma An-lai, Li Xian-qing, Xiong Bo, Wang Tie-guan, Feng Zi-hui, Kong Qing-yun, Li Shao-hua. Organic petrology of the source rocks in Qijia-Gulong region, Songliao basin [J]. Pet Explor

Develop, 2002, 29(4): 26-28 (in Chinese with English abstract).

- [7] Song Z G, Yin Q, George S C, Wang L, Guo J T, Feng Z H. A biomarker study of depositional paleoenvironments and source inputs for the massive formation of Upper Cretaceous lacustrine source rocks in the Songliao Basin, China [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 137–151.
- [8] 李振广,冯子辉,宋桂侠,王雪.松辽盆地原油芳烃分布、 组成特征与原油类型划分[J].石油与天然气地质,2005, 26(4):494-500.

Li Zhen-guang, Feng Zi-hui, Song Gui-xia, Wang Xue. Distribution and composition of aromatic hydrocarbons and classification of oil in Songliao basin [J]. Oil Gas Geol, 2005, 26(4): 494–500 (in Chinese with English abstract).

- [9] Feng Z Q, Jia C Z, Xie X N, Zhang S, Feng Z H, Cross T A. Tectonost ratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, nor theast China [J]. Basin Res, 2010, 22(1): 79–95.
- [10] 高有峰,王成善,王璞珺,万晓樵,任延广,程日辉,王国 栋. 松科 1 井北孔选址、岩心剖面特征与特殊岩性层的分 布[J]. 地学前缘,2009,16(6):104-112.
 Gao You-feng, Wang Cheng-shan, Wang Pu-jun, Wan Xiao-qiao, Ren Yan-guang, Cheng Ri-hui, Wang Guo-dong.
 Well site selecting, core section characteristics and distribution of the special lithological layers in CCSD-SK-In bore
 - hole, Songliao Basin [J]. Earth Sci Front, 2009, 16(6): 104–112 (in Chinese with English abstract).
- [11] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributiors to lacustrine sediments [J]. Org Geochem, 1987, 11(6): 513–527.
- [12] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322–1334.
- [13] 陈义才, 沈忠民, 罗小平. 石油与天然气有机地球化学[M]. 北京: 科学出版社, 2007: 163-165.
 Chen Yi-cai, Shen Zhong-min, Luo Xiao-ping. Petroleum and Gas Organic Chemistry [M]. Beijing: Science Press, 2007: 163-165 (in Chinese).
- [14] Yunker M B, Macdonald R W, Vingarzan R, Mitchell R H, Goyette D, Sylvestre S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Org Geochem, 2002, 33(4): 489–515.
- [15] Sicre M A, Marty J C, Saliot A. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin [J]. Atmos Environ, 1987, 21(10): 2247–2259.
- [16] Yunker M B, Macdonald R W, Snowdon L R, Fowler B R. Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments [J]. Org Geochem, 2011, 42(9): 1109–1146.
- [17] Yunker M B, Lachmuth C L, Cretney W J, Fowler B R, Dangerfield N, White L, Ross P S. Biota-sediment partitioning of aluminium smelter related PAHs and pulp mill related diterpenes by intertidal clams at Kitimat, British Columbia [J]. Mar Environ Res, 2011, 72(3): 105–126.
- [18] Hossain H M Z, Sampei Y, Roser B P. Polycyclic aromatic hy-

drocarbons (PAHs) in late Eocene to early Pleistocene mudstones of the Sylhet succession, NE Bengal Basin, Bangladesh: Implications for source and paleoclimate conditions during Himalayan uplift [J]. Org Geochem, 2013, 56: 25–39.

- [19] Jiang C, Alexander R, Kagi R I, Murray A P. Polycyclic aromatic hydrocarbons in ancient sediments and their relationships to palaeoclimate [J]. Org Geochem, 1998, 29(5–7): 1721–1735.
- [20] Alexander R, Bastow T P, Fisher S, Kagi R I. Geosynthesis of organic compounds: II. Methylation of phenanthrene and alkylphenanthrenes [J]. Geochim Cosmochim Acta, 1995, 59(20): 4259–4266.
- [21] Smith J W, George S C, Batts B D. The geosynthesis of alkylaromatics [J]. Org Geochem, 1995, 23(1): 71–80.
- [22] Denis E H, Toney J L, Tarozo R, Anderson R S, Roach L D, Huang H. Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLCfluorescence detection [J]. Org Geochem, 2012, 45: 7–17.
- [23] Tan Y L, Kong A, Monetti M. Biogenic polycyclic aromatic hydrocarbons in an Alaskan arctic lake sediment [J]. Polycycl Aromat Compound, 1996, 9(1–4): 185–192.
- [24] Johns R B. 沉积记录中的生物标志物[M]. 北京: 科学出版 社, 1991: 21-29.
 Johns R B. The Biomarkers in the Deposition Record [M]. Beijing: Science Press, 1991: 27-29 (in Chinese).
- [25] Ramdahl T. Retene A molecular marker of wood combustion in ambient air [J]. Nature, 1983, 306(5943): 580–582.
- [26] Simoneit B R T, Rogge W F, Lang Q, Jaffé R. Molecular characterization of smoke from campfire burning of pine wood (*Pinus elliottii*) [J]. Chemosp: Global Chang Sci, 2000, 2(1): 107–122.
- [27] Wang C S, Feng Z Q, Zhang L M, Huang Y J, Cao K, Wang P J, Zhao B. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2013, 385: 17–30.
- [28] Aizenshtat Z. Perylene and its geochemical significance [J]. Geochim Cosmochim Acta, 1973, 37(3): 559–567.
- [29] Jiang C Q, Alexander R, Kagi R I, Murray A P. Origin of perylene in ancient sediments and its geological significance [J]. Org Geochem, 2000, 31(12): 1545–1559.
- [30] Grice K, Lu H, Atahan P, Asif M, Hallmann C, Greenwood P, Maslen E, Tulipani S, Williford K, Dodson J. New insights into the origin of perylene in geological samples [J]. Geochim Cosmochim Acta, 2009, 73(21): 6531–6543.
- [31] Suzuki N, Yessalina S, Kikuchi T. Probable fungal origin of perylene in Late Cretaceous to Paleogene terrestrial sedimentary rocks of northeastern Japan as indicated from stable carbon isotopes [J]. Org Geochem, 2010, 41(3): 234–241.
- [32] 王书宝,孙钰,钟建华,王国壮. 松辽盆地晚白垩世古气候
 变化对层序发育的影响[J]. 石油地质与工程,2008,22(4):
 29-32.

Wang Shu-bao, Sun Jue, Zhong Jian-hua, Wang Guo-zhuang. Effect of palaeoclimate change at the late Cretaceous period on lithologic sequences in Songliao basin [J]. Pet Geol Engin, 2008, 22(4): 29–32 (in Chinese with English abstract).