胡平 文晟 魏世龙 等. 广州机动车尾气中乙醛稳定碳同位素特征和排放因子[J]. 环境科学研究 2014 27(9):958-964.

HU Ping ,WEN Sheng ,WEI Shilong *et al.* Carbon isotopic characterization and emission factors of acetaldehyde emitted by automobiles in Guangzhou [J]. Research of Environmental Sciences 2014 27(9):958–964.

广州机动车尾气中乙醛稳定碳同位素特征和排放因子

胡 $\mathbf{P}^{1,2}$, 文 \mathbf{R}^{2^*} , 魏世 \mathbf{z}^2 , 王新明², 毕新慧², 盛国英², 傅家谟²

1. 国家海洋局南海环境监测中心,广东广州 510300

2. 中国科学院广州地球化学研究所,有机地球化学国家重点实验室,广东广州 510640

摘要:为了获得机动车排放源中乙醛的 δ^{13} C(稳定碳同位素丰度)特征及其影响因素,进行不同负荷下的发动机台架试验,采集 不同怠速下的机动车尾气样品.利用气相色谱-燃烧-同位素比值质谱(GC-C-IRMS)分析乙醛 δ^{13} C值,并与 ρ (乙醛)进行分析. 结果显示:①在发动机燃烧过程中,乙醛的生成和消除反应同时存在.在发动机低负荷运行时,乙醛的 δ^{13} C分馏值为负 (-1.4% ~ -0.4%)表明生成反应占主导;而在高负荷运行时,分馏值为正(0.5% ~ 1.3%)表明消除反应占主导.②乙醛的 δ^{13} C值与其质量浓度无明显相关性,主要受发动机燃烧温度和尾气净化装置的影响.整车尾气中乙醛的 δ^{13} C 值在 - 29.1% ~ -24.4% 之间,平均值为 - 26.5% ± 1.6% .其中,汽油车为 - 25.9% ~ -24.4% ,平均值为 - 24.9% ± 0.5%;柴油车为 - 29.1% ~ -27.0% 平均值为 - 28.0% ± 0.6% .③南方机动车尾气排放源与植物排放源中的乙醛的 δ^{13} C 值范围不同 表明 δ^{13} C 值可用于 大气乙醛的源解析.通过机动车尾气中 c(乙醛) /c(CO₂)估算广州汽油车和轻型柴油车乙醛的排放因子,二者分别为(13 ± 16) 和(169 ± 106) mg/L.

关键词:乙醛;稳定碳同位素;机动车尾气;排放因子;广州
中图分类号:X831
文章编号:1001-6929(2014)09-0958-07
文献标志码:A
DOI: 10.13198/j.issn.1001-6929.2014.09.03

Carbon Isotopic Characterization and Emission Factors of Acetaldehyde Emitted by Automobiles in Guangzhou

HU Ping^{1,2}, WEN Sheng², WEI Shi-long², WANG Xin-ming², BI Xin-hui², SHENG Guo-ying², FU Jia-mo²

1. South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China

2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Abstract: Acetaldehyde (CH_3CHO) is the most abundant carbonyl compound in the atmosphere , and vehicle exhaust emissions are one of the most important sources. In this study , automobile emissions were characterized using CH_3CHO carbon isotopic ratios. Vehicle exhausts were sampled under different idling states , and CH_3CHO carbon isotopic rations were measured by gas-chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-RMS). CH_3CHO directly emitted from stand-alone engines (gasoline and diesel) running at different loads were sampled and measured concurrently. The samples were measured with HPLC for analyzing CH_3CHO concentrations. The carbon isotopic ratios indicated that both production and consumption of CH_3CHO occurred in the engine. The isotopic fractionation (ε) between CH_3CHO isotopic ratio and fuel isotopic ratio was depleted (-1.4% to -0.4%) when the engine was operated with lower load (i. e. , lower cylinder temperature). This result showed a dominant production of CH_3CHO . In contrast , the isotopic fractionation (ε) between CH_3CHO isotopic ratio and fuel isotopic ratio was negative (0.5% to 1.5%) when the engine was operated with higher load (i. e. , higher cylinder temperature); this showed a dominant consumption of CH_3CHO . The $\delta^{13}C$ data were significantly influenced by engine combustion cylinder temperature and catalytic converter , but showed no correlation with CH_3CHO concentrations. The CH_3CHO carbon isotopic ratios in vehicle exhaust varied from -29.1% to -24.4% with average of -26.5% ±

1.6%, while the $\delta^{13}C$ of CH₃CHO from gasoline vehicles and diesel vehicles varied from -25.9% to -24.4% (average $-24.9\% \pm 0.5\%$), and -29.1% to -27.0% (average $-28.0\% \pm 0.6\%$), respectively. The $\delta^{13}C$ of CH₃CHO from vehicle exhaust and biogenic emissions in southern China were different, which might provide valuable information for source

收稿日期: 2014-01-07 修订日期: 2014-06-11

基金项目: 国家自然科学基金项目(41073012 41025012)

作者简介: 胡平(1986 -) ,女 江西安福人 huping_cas@ foxmail.com.

^{*} 责任作者,文晟(1974 -),男,湖南耒阳人,副研究员,博士,主要从 事大气环境科学研究,wensheng@gig.ac.cn

identification of atmospheric CH_3CHO in southern China. Using the proportion of mole concentration CH_3CHO/CO_2 , emission factors for CH_3CHO were calculated for gasoline and diesel vehicles. They were determined to be (13 ± 16) mg/L (HCHO mass versus fuel volume) for gasoline vehicles, and (169 ± 106) mg/L for light-duty diesel vehicles in Guang zhou.

Key words: acetaldehyde; stable carbon isotope; vehicle emissions; emission factors; Guangzhou

乙醛(CH₃CHO) 是大气中含量最多的羰基化合物之一,在大气化学反应过程中,乙醛既能参加光化学反应,也是某些 VOCs(挥发性有机化合物) 与 O₃、 OH 等反应后的重要产物^[1].乙醛对人体具有一定的危害性,是 US EPA(美国国家环境保护局) 规定的大 气污染物之一^[2].大气中乙醛的排放源比较复杂,有 直接排放(如机动车尾气排放^[3-5]、生物排放^[6-7]、生 物质燃烧^[8]等),还有大气中的二次生成(如烃类的 光氧化生成等^[9-40]).近年来,同位素测量技术广泛 用于大气痕量组分的源解析和过程转化研究^[11-44], 同时,该技术也被用来评估大气组分的通量^[15-46].其 中 稳定碳同位素方法应用广泛.

 δ^{13} C = [($R_{sample}/R_{standard}$) -1]×1 000‰ 式中: δ^{13} C 为样品的稳定碳同位素丰度 ‰; R_{sample} 和 $R_{standard}$ 分别为待测样品和标准样品中的¹³ C/¹² C. 在进 行稳定碳同位素分析时 ,使用的国际通用标准样品 PDB(peedee belemnite) 是美国南卡罗来纳州碳酸岩 陨石 其¹³ C/¹² C 为11 237. 2×10⁻⁶ ± 90. 0×10⁻⁶ ,定 义其 δ^{13} C 为 0‰^[17]. 同位素分析有效进行化合物源解析研究的条件 之一是不同源的碳同位素组成不同,因此,采用该技 术的前提是要明确不同来源的同位素特征,但目前羰 基化合物碳同位素研究很少.目前虽然有部分学者 研究过自然排放源中乙醛的δ¹³C值^[6,18-20],但只有 WEN等^[21-22]报道过人为排放源附近大气样品中乙 醛的δ¹³C值.目前鲜见机动车尾气中乙醛δ¹³C值的 相关报道.

机动车尾气是城市空气污染物(NO_x、CO、羰基 化合物和 VOCs)的主要人为排放源^[9-10 23],乙醛是羰 基化合物的主要成分^[23].为此,该研究应用大气 GC-C-IRMS(气相色谱-燃料-同位素比值质谱)分析技 术^[6]研究机动车尾气直接排放乙醛的δ¹³C 值特征.

- 1 样品采集与方法
- 1.1 汽油车、柴油车尾气排放的采集

2008 年 7 月采集了 5 辆汽油车(编号为 A~E 配 有三元催化装置) 的尾气 燃料为 93[#]汽油. 2008 年 11 月采集了 8 辆柴油车(编号为 H~O ,未配尾气净化装 置) 的尾气 燃料为 0[#]柴油. 13 辆车的基本情况见表 1.

车型	编号	品牌	汽缸数量/个	汽缸排量 /L	汽缸功率/kW	车龄/a	尾气净化装置	行驶里程/km	质量/kg
汽油车	А	本田雅阁	4	2.3		6.00	有	110 000	_
	В	本田雅阁	4	2.3		6.50	有	193 000	—
	С	本田雅阁	4	2.0		5.00	有	600 00	—
	D	本田思威	4	2.0		4.00	有	136 000	—
	Е	马自达普力	4	1.8		2.50	有	63 400	_
柴油车	Н	东风小金霸	4		70	0.50	无	7 646	3 600
	Ι	东风小霸王	4		68	5.00	无	400 000	3 300
	J	江淮帅铃	4		68	1.00	无	50 000	3 300
	Κ	江淮帅铃	4		68	4.00	无	200 000	3 300
	L	福田奥铃	4		88	2.00	无	80 000	5 000
	М	解放	4		88	0.25	无	13 000	5 000
	Ν	福田奥铃	4		88	1.50	无	50 000	5 000
	0	东风小霸王	4		68	4.00	无	18 000	3 300

表1 汽油车和柴油车基本情况 Table 1 Details of gasoline vehicles and diesel vehicles tested

采样工况都为怠速下的冷启动和热启动. 怠速 指机动车在没有发生水平位移时的发动机启动状态; 冷启动采样指机动车静止放置数小时后在发动机 600 r/min 启动后立即采样; 热启动采样指在发动机 启动一段时间后再采样, 分 600 r/min 低速启动和 5 000 r/min(接近最大转速) 启动. 采用 Auto-5 手持 式尾气测试仪测定每个工况的空燃比、燃烧效率,以 及尾气排放中的 φ (CO)、 φ (CO₂)、 φ (NO)、 φ (HC)和 φ (O₂).

样品采集:在机动车启动后 将 NaHSO3 或2 4-二

硝基苯肼(DNPH) 涂布的 Sep-Gel 采样管连接到涂布 有 KI 的铜管 将铜管伸入排气管,开动抽气泵采集尾 气 尾气中的乙醛以衍生物的形式被采样管采集下 来.采样流量为 1.0~1.5 L/min,采样时间为5~10 min.采集好的采样管密封后放在冰箱保存直至洗脱 分析.

1.2 汽油发动机、柴油发动机台架尾气排放的采集

2009 年 4 月在广东工业大学机械学院柴油机台 架试验室采集柴油发动机台架尾气样品.柴油发动 机型号为 DL190-12,缸径 90 mm 缸程 110 mm,排量 0.7 L 压缩比为 18:1,额定功率 8.8 kW,额定转速 2 200 r/min.燃料为 0[#]柴油(油品 δ^{13} C 值为 - 28.4‰ ± 0.3‰).对发动机进行负荷特性(1 200 r/min,负荷分 别为 0、20%、40%、60%、80% 和 100%)曲线和怠速 时(770 r/min,零负荷)的采样,每个采样重复一次, 在距发动机气缸排气歧管 50 cm 处用温度探头测试 排气温度.

5月在广州机械科学研究院发动机性能实验室 采集了汽油发动机台架尾气.汽油发动机型号为 DH491Q,四缸四冲程,额定转速4500r/min,额定功 率70kW,燃料为93[#]汽油(油品的δ¹³C值为 -28.4‰±0.5‰).对发动机进行了负荷特性 (2500r/min,负荷分别为0、25%、50%、75%和 100%)曲线和怠速时(770r/min,零负荷)的采样,每 个采样重复一次.用直流测功机和发动机FC2000自 动控制系统调整发动机工况.在距发动机气缸排气 歧管20cm处用温度探头测试排气温度.FC2000自 动记录了每个工况的转速、负荷、扭矩、功率和歧管排 气温度.乙醛样品的采集如1.1节所示.

1.3 乙醛 δ^{13} C 值的测定

采用 GC-C-IRMS(英国 GV 公司)测定乙醛的 δ^{13} C 值. 检测条件^[6]:内填 CuO/Ni/Pt 的燃烧炉(氧化 炉)温度为 850 ℃ ,Cu 还原炉温度为 580 ℃ ,GC 与燃 烧炉连接处温度设为 300 ℃ ,进样模式为不分流进 样 ,色谱柱为 ZB-XLB(30 m × 0.32 mm × 0.25 µm , Phenomenex ,USA) 载气(氦气)流速为 1.5 mL/min ,进 样口温度为 230 ℃.色谱柱升温程序:50 ℃保留2 min , 以3 ℃ /min升至 85 ℃ ,保留 3 min ,再以 10 ℃/min升 到 290 ℃ ,保留 15 min.以 δ^{13} C 值为 – 26.65‰ 的 CO₂ 作为参考气体 ,以实验室提供的 10 个含有 C₁₂、 C₁₄、C₁₆、C₁₈、C₂₀、C₂₂、C₂₅、C₂₈、C₃₀和 C₃₂的正构烷烃标 样(δ^{13} C 值分别为 – 31.89‰、– 30.67‰、– 30.53‰ – 31.02‰、– 32.24‰、– 32.77‰、– 28.94‰、– 32.11‰ -33.05%、-29.41%)和实验室合成的 δ^{13} C值为 -25.85%(10次测量的平均值,其标准偏差 < 0.50‰)的甲醛-半胱胺衍生物标样来评估仪器的精 度与稳定性.用GC-C-IRMS测得衍生物的 δ^{13} C值, 每个衍生物样品测量3次,每个样品3次GC-C-IRMS 测定的标准偏差 < 0.5‰,在仪器精度误差允许的范 围内.

1.4 ρ(乙醛)的测定

ρ(乙醛)采用 HPLC-UV 测定^[24]. HPLC 为 Hewlett-Packard Aglient 1100 分析柱为 Aglient SB-C18 反相柱(250 mm×4.6 mm 5 μm). 流动相为乙腈和 水,采用梯度洗:60%~70%(以φ计)乙腈20 min, 70%~100%乙腈3 min,100%乙腈4 min,100%~ 60%乙腈8 min. 流量1 mL/min 检测波长为360 nm, 进样量为10 μL.

2 结果与讨论

2.1 整车尾气中乙醛的 δ^{13} C 值

整车尾气中乙醛的δ¹³C 值和ρ(乙醛) 见图1. 由 图1可知δ¹³C 值在 - 29.1‰ ~ -24.4‰之间,平均 值为 - 26.5‰ ±1.6‰.

汽油车尾气中乙醛的 δ^{13} C值在 - 25.9% ~ -24.4‰之间,平均值为 - 24.9% ±0.5% ,重于油品 的 δ^{13} C值(-28.6% ±0.6%).柴油车尾气中乙醛 的 δ^{13} C值在 - 29.1% ~ -27.0‰之间,平均值为 -28.0‰ ±0.6‰ ,与油品的 δ^{13} C值接近.该研究中 油品的 δ^{13} C值差异仅为2‰(-28.6% ~ -27.1‰). 全球原油的 δ^{13} C值在 - 34‰ ~ -23‰之间(大部分 在 - 32‰ ~ -26‰之间)^[25],虽然该研究的 δ^{13} C值 落在上述区间内,但可能和其他地区油品的值存在不 同.考虑到油品 δ^{13} C值的差异,该研究整车尾气排放 中乙醛的 δ^{13} C值(-29.1‰ ~ -24.4‰)可能只代表 南方地区在用轻型汽、柴油车的排放.

为消除燃料 δ^{13} C 值的差异影响,计算了乙醛和 油品 δ^{13} C 值的差值,以体现燃料燃烧过程中的同位 素分馏^[18]:

 $\varepsilon_{CH_3CHO-Fuel} = [[\delta_{CH_3CHO} + 1\ 000) / (\delta_{Fuel} + 1\ 000) - 1] \times 1\ 000\% o$ 式中: $\varepsilon_{CH_3CHO-Fuel}$ 为同位素(¹³C)分馏值; δ_{CH_3CHO} 和 δ_{Fuel} 分别为尾气中乙醛和燃烧油品的 δ^{13} C值.

由于 δ_{CH_3CHO} 和 δ_{Fuel} 值较小,可近似为

 $\varepsilon_{\rm CH_3CHO-Fuel} = \delta_{\rm CH_3CHO} - \delta_{\rm Fuel}$

整车尾气排放中乙醛的 δ¹³C 分馏值见图 2. 汽 油整车(有三元催化装置)尾气排放乙醛的¹³C 分馏 值为 3.7‰ ±0.5‰(2.2‰ ~4.2‰),柴油整车尾气

注: A ~ O 为测试车编号; 1—600 r/min 转速冷启动; 2—600 r/min 转速热启动;
 3—汽油车 5 000 r/min 热启动,柴油车 2 000 r/min 热启动; 下同.
 图 1 整车尾气中乙醛的 δ¹³C 值和质量浓度

Fig. 1 Concentration and carbon isotopic rations of CH₃CHO in vehicle exhaust

图 2 整车尾气排放中乙醛的 δ^{13} C 分馏值

Fig. 2 Carbon isotopic fractionation in vehicle test

则为 $-0.4\% \pm 0.7\% (-1.4\% \sim 1.1\%)$.

2.2 乙醛 δ^{13} C 值影响因素

2.2.1 发动机燃烧温度

发动机台架试验中不同负荷下尾气排放温度、 $\rho(乙醛) \ \delta^{13}C$ 值见图 3. 汽油发动机台架试验中,随 着负荷的增加,发动机内部温度、废气温度也随之 增加,乙醛的 $\delta^{13}C$ 值从 – 29.8‰升至 – 27.1‰;而 柴油发动机台架试验中则变化不明显(– 28.8‰ ~ – 28.3‰).

在发动机内部燃烧过程中,影响乙醛的 δ^{13} C值 过程主要有生成反应和消除反应.这主要决定于同 位素分子反应速率的差异.含¹³C的分子(原子)与含 ¹²C的分子(原子)的结合能具有差异,前者具有较强 的零点结合能,也就具有较低的反应速率^[27].在生 成途径中,含¹²C的分子(原子)更易生成,其结果就 体现在乙醛 δ^{13} C值变轻,分馏值为负(为 – 1.4‰~ –0.4‰).随着发动机内部温度的升高,生成的乙醛 会被高温燃烧而消除,含¹²C的分子(原子)更易被燃 烧消除掉 剩下的乙醛就会富集¹³ C,导致 δ^{13} C 增加 (即富集),分馏值为正(0.5%~1.3%).这与碳氢 化合物^[26]、甲醇、乙醛^[18]的 δ^{13} C 值随生物质燃烧火 焰中心温度增加而富集的规律类似,也与汽车尾气中 N₂O 的 δ^{15} N^[28]和 H₂ 的 δ D^[28]随发动机温度增加而 富集的规律类似.这反映了低温时乙醛的生成反应 占主导,而在高温时则以燃烧消除反应占主导的规 律.这种规律在汽油发动机台架的试验中更为明显, 可能是由于汽油发动机台架试验中排气温度(589~ 1070 K)高于柴油发动机台架试验(353~723 K)所致.

汽油车和柴油车尾气中 ρ (乙醛)分别为0.1~ 6.9和1.0~8.3 mg/m³.皮尔森相关性统计表明,乙 醛的 δ^{13} C值与 ρ (乙醛)没有相关性.可能是因为在 发动机内部,乙醛的生成反应和燃烧消除反应同时存 在,随负荷的变化这2个反应的权重影响不同所致.

2.2.2 尾气净化装置

有三元催化装置汽油车尾气中乙醛的 δ^{13} C 分馏 值为 3.7‰ ,大于无三元催化装置的(-0.1‰);柴油

注:零点转速均为700 r/min,其余转速分别为2500和1200 r/min;
 图中虚线为燃烧油品的δ¹³C值(为-28.4‰±0.5‰).
 图3 发动机台架尾气温度、乙醛的δ¹³C值和质量浓度

Fig. 3 Engine temperature , CH₃CHO Concentration and carbon isotopic

rations versus engine load in engine test

车和柴油发动机台架(均无尾气净化装置) 尾气中乙 醛的 δ^{13} C 分馏 值都 接近于 0(分别为 - 0.4‰ 和 0.2‰). 三元催化装置有高于 90% 的醛类去除效 率^[29].说明三元催化装置可能会使同位素分馏现象 更明显.这与报道中三元催化装置使汽车尾气中 N₂O 的 δ^{15} N 值^[27]和 H₂ 的 δ D 值^[28]更富集的规律一致. 2.2.3 其他运行参数的影响

用 SPSS 13.0 软件对整车车龄、行驶路程、燃烧 效率、空燃比与乙醛的 δ^{13} C 值进行皮尔森相关性统 计发现,乙醛的 δ^{13} C 值与这些因素关系不大.而 Czapiewski 等^[26]报道生物质燃烧中 NMHC 的 δ^{13} C 值 与燃料效率有关.可能原因:①样本数较少;②整车 发动机的燃烧效率都较高(大部分都高于 99%),如 此小的差异无法显示燃烧效率的影响;③采样时间超 过了5 min ,此时机动车发动机和三元催化装置均可完 全正常工作 ,消除了发动机不同怠速运转状态的差别.

2.3 乙醛排放因子估算

由图 4 可知 汽油车和柴油车 $c(乙醛) / c(CO_2)$ 分别为 0.06 × 10⁻⁴ ± 0.07 × 10⁻⁴ 和 0.6 × 10⁻⁴ ± 0.4 × 10⁻⁴. 根据碳平衡法原理,该研究粗略计算了 汽车乙醛的排放因子,其中汽油车为(13 ± 16) mg/L 〔假设汽油密度为 0.72 kg/L,油品 w(碳)为 85%)〕柴油车为(169 ± 106) mg/L〔假设柴油密度 为 0.85 kg/L 油品 w(碳)为 85%)〕. 该研究汽油车 乙醛排放因子与 Kean 等^[30](8 mg/L)和 Grosjean 等^[31]乙醛排放因子(9 mg/L)较为接近,而柴油车乙

醛排放因子远高于 Grosjean 等^[31] 重型车乙醛的排放 因子(12 mg/L),可能是由于国内轻型柴油车排放控 制水平较国外低,总碳氢化合物排放远高于发达国家 的在用汽油车所致.

2.4 与国内外乙醛 δ^{13} C 值的比较

广州石油化工厂和广东火车东站地下公交站场 附近空气中乙醛的 δ^{13} C值分别为 – 29‰和 – 21‰(见 表 2)^[21] 更接近于该研究中油品 δ^{13} C值(–28.4‰) 和机动车尾气中乙醛的 δ^{13} C值(–29.1‰~ –24.4‰).表明这 2个采样点大气乙醛主要来源是 油品和机动车尾气排放.GUO等^[6]测定的广东鼎湖 山植物排放的乙醛的 δ^{13} C值在–34.3‰~–30.8‰ 之间,与机动车 δ^{13} C值不同,乙醛的 δ^{13} C值也许可以 用于大气乙醛的源解析.该研究燃烧油品 δ^{13} C值 (–28.4‰)和Giebel等^[22](–20.9‰)不同,可能是 不同区域原油样品来源不同所致.该研究机动车尾 气排放乙醛 δ^{13} C值与Giebel^[22]报道的国际机场大气 样品中乙醛 δ^{13} C值(–26.7‰)较为接近.

表 2 乙醛 δ^{13} C 值与国内外研究对比

Table 2 Overview of stable carbon isotopic composition of acetaldehyde

样品类型	$\delta^{13}\mathrm{C}$ /% o	数据来源
广州机动车尾气排放	$-29.1 \sim -24.4$, -26.4 ± 1.6	该研究
广州石化厂大气	-29.3 ~ -29.2	文献[21]
广州公交站大气	-21	文献[21]
广东鼎湖山植物排放	-34.3 ~ -30.8	文献[6]
美国石油燃烧排放	-20.9 ± 0.4	文献[22]
美国机场大气	-26.7 ± 0.7	文献[22]

4 结论

a) 在发动机燃烧过程中,乙醛的生成和消除反应同时存在.发动机低负荷运行时,发动机燃烧室温度较低,乙醛 δ^{13} C分馏值为负(-1.4‰~-0.4‰), 表明生成反应占主导;高负荷运行时,发动机燃烧室 温度较高,分馏值为正(0.5‰~1.3‰),高温燃烧消 除反应占主导.汽油车(有三元催化装置)尾气中乙 醛的 δ^{13} C分馏值为3.7‰,大于无三元催化装置的车 (-0.1‰).乙醛的 δ^{13} C值与发动机燃烧温度和尾 气净化装置有关.

b) 机动车尾气中乙醛 δ¹³ C 值在 - 29.1‰ ~
-24.4‰之间,平均值为 - 26.5‰ ± 1.6‰;其中汽油
车在 - 25.9‰ ~ -24.4‰之间,平均值为 - 24.9‰ ±
0.5‰;柴油车在 - 29.1‰ ~ -27.0‰之间,平均值为
-28.0‰ ± 0.6‰. 南方地区机动车排放源中乙醛

 δ^{13} C 值与植物源中不同,这表明 δ^{13} C 值可以用于乙醛的来源解析.

c) 乙醛的 δ¹³C 值和其质量浓度无明显相关性. 广州汽油车和轻型柴油车乙醛的排放因子分别为 (13±16)和(169±106)mg/L. 该研究汽油车数据和 国外文献数据比较接近,但柴油车数据明显高于国 外,可能是由于国内轻型柴油车排放控制水平较发达 国家低所致.

参考文献(References):

- GROSJEAN E ,GROSJEAN D. Gas phase reaction of alkenes with ozone: formation yields of primary carbonyls and biradicals [J]. Environ Sci Technol ,1997 ,31(8): 2421-2427.
- [2] U. S. Environmental Protection Agency. Health effects notebook for hazardous air pollutants: integrated risk information system(IRIS) on acetaldehyde and formaldehyde [R]. On-line IRIS: CASRN 75-07-0 and CASRN 50-00-0. Washington DC: US EPA ,1990.
- [3] HO K F ,HO S S H ,CHENG Y ,et al. Real-world emission of factors of fifteen carbonyl compounds measured in a Hong Kong tunnel[J]. Atmos Environ 2007 41(8):1747-1758.
- [4] HOEKMAN S K. Speciated measurements and calculated reactivities of vehicle exhaust emissions from conventional and reformulated gasolines [J]. Environ Sci Technol ,1992 ,26 (6): 1206–1216.
- [5] VISKARI E L, VARTIAINEN M, PASANEN P. Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland [J]. Atmos Environ ,2000 ,34 (6):917-923.
- [6] GUO Songjun ,WEN Sheng ,WANG Xinming *et al.* Carbon isotope analysis for source identification of atmospheric formaldehyde and acetaldehyde in Dinghushan Biosphere Reserve in South China [J]. Atmos Environ 2009 *A*3(22/23): 3489-3495.
- [7] MARTIN R S, VILLANUEVA I, ZHANG Jingying, et al. Nonmethane hydrocarbon ,monocarboxylic acid ,and low molecular weight aldehyde and ketone emissions from vegetation in central New Mexico [J]. Environ Sci Technol ,1999 33(13):2186-2192.
- [8] HAYS M D ,GERON C D ,LINNA K J ,et al. Speciation of gasphase and fine particle emissions from burning of foliar fuels [J]. Environ Sci Technol 2002 36(11): 2281–2295.
- [9] HO S S H ,YU Jianzhen. Feasibility of collection and analysis of airborne carbonyls by on-sorbent derivatization and thermal desorption [J]. Anal Chem 2002 74(6):1232–1240.
- [10] POSSANZINI M, PALO V D, CECINATO A. Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air [J]. Atmos Environ 2002 36(19):3195–3201.
- [11] KEPPLER F, KALIN R M, HARPER D B, et al. Carbon isotope anomaly in the major plant C-I pool and its global biogeochemical implications [J]. Biogeosciences Discussions ,2004 ,1 (1): 123– 131.
- [12] RUDOLPH J, CZUBA E. On the use of isotopic composition

measurements of volatile organic compounds to determine the "photochemical age" of an air mass [J]. Geophysical Research Letters 2000 27(23):3865-386.

- [13] RUDOLPH J, CZUBA E, NORMAN A L, et al. Stable carbon isotope composition of nonmethane hydrocarbons in emissions from transportation related sources and atmospheric observations in an urban atmosphere [J]. Atmos Environ 2002 36(7):1173–1181.
- [14] YAMADA K , YOSHIDA N , NAKAGAWA F , et al. Source evaluation of atmospheric methane over western Siberia using double stable isotopic signatures [J]. Organic Geochemistry 2005 , 36(5):717–726.
- [15] GOLDSTEIN A H, SHAW S L. Isotopes of volatile organic compounds: an emerging approach for studying atmospheric budgets and chemistry [J]. Chemical Reviews 2003, 103(12): 5025-5048.
- [16] WANG Z ,CHAPPELLAZ J ,MARTINERIE P ,et al. The isotopic record of Northern Hemisphere atmospheric carbon monoxide since 1950: implications for the CO budget[J]. Atmos Chem Phys 2012 , 12(10):4365-4377.
- [17] CONNY J M, CURRIE L A. The isotopic characterization of methane, non-methane hydrocarbons and formaldehyde in the troposphere [J]. Atmos Environ, 1996 30(4):621-638.
- [18] YAMADA K ,HATTORI R ,ITO Y *et al.* Carbon isotopic signatures of methanol and acetaldehyde emitted from biomass burning source [J]. Geophysical Research Letters ,2009 ,36 (18). doi: 10.1029/ 2009GL038962.
- [19] YAMADA K ,HATTORI R ,ITO Y ,et al. Determination of carbon isotope ratios of methanol and acetaldehyde in air samples by gas chromatography-isotope ratio mass spectrometry combined with headspace solid-phase microextraction [J]. Isotopes in Environmental and Health Studies 2010 46(3): 392–399.
- [20] JARDINE K ,KARL T ,LERDAU M ,et al. Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia [J]. Plant Biology 2009 ,11(4): 591–597.
- [21] WEN Sheng ,FENG Yanli ,YU Yingxin ,et al. Development of a compound-specific isotope analysis method for atmospheric formaldehyde and acetaldehyde [J]. Environ Sci Technol 2005 39

(16):6202-6207.

- [22] GIEBEL B M ,SWART P K ,RIEMER D D. δ¹³ C stable isotope analysis of atmospheric oxygenated volatile organic compounds by gas chromatography-isotope ratio mass spectrometry [J]. Anal Chem 2010 82(16):6797-6806.
- [23] BAN-WISS G A ,MCLAUGHLIN J P ,HARLEY R A. Carbonyl and nitrogen dioxide emissions from gasoline-and diesel-powered motor vehicles [J]. Environ Sci Technol 2008 A2(11): 3944–3950.
- [24] FENG Yanli , WEN Sheng , WANG Xinming , et al. Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou , China [J]. Atmos Environ 2004 38(1):103–112.
- [25] YEH H W EPSTEIN S. Hydrogen and carbon isotopes of petroleum and related organic matter [J]. Geochimicaet Cosmochimica Acta , 1981 45(5):753-762.
- [26] CZAPIEWSKI K V, CZUBA E, HUANG L, et al. Isotopic composition of non-methane hydrocarbons in emissions from biomass burning [J]. Journal of Atmospheric Chemistry ,2002 ,43 (1):45-60.
- [27] TOYODA S, YAMAMOTO S, ARAI S, et al. Isotopomeric characterization of N_2O produced, consumed, and emitted by automobiles [J]. Rapid Communications in Mass Spectrometry, 2008 22(5):603-312.
- [28] VOLLMER M ,WALTER S ,BOND S ,et al. Molecular hydrogen (H₂) emissions and their isotopic signatures (H/D) from a motor vehicle: implications on atmospheric H₂ [J]. Atmos Chem Phys , 2010(10):5707-5718.
- [29] SHORE P R, HUMPHEIES D T, HADDED O. Speciated hydrocarbon emissions from aromatic olefinic and paraffinic model fuels [R]. SAE paper 930373. Detroit ,Michigan ,USA: SAE ,1993.
- [30] KEAN A J, GROSJEAN E, GROSJEAN D, et al. On-road measurement of carbonyls in California light-duty vehicle emissions [J]. Environ Sci Technol 2001 35(21):4198-4204.
- [31] GROSJEAN D ,GROSJEAN E ,GERTLER A W. On-road emissions of carbonyls from light-duty and heavy-duty vehicles [J]. Environ Sci Technol 2001 35(1):45-53.

(责任编辑:孙彩萍)