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• Soil sewage contamination is light in
the Pearl River Delta and its adjacent
areas.

• Impact of sewage inputs is mainly con-
fined within the points of discharge.

• Anthropogenic impacts play a major
role in the spatial pattern of soil LABs.

• Atmospheric transport is the main
route for LABs to diffuse to remote
areas.
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Tracing regional anthropogenic influences is important for assessing the magnitude of human interferences with
the environment. In the present study, the utility of soil linear alkylbenzenes (LABs) as indicators of anthropogenic
influences was examined, with the emphasis on the role of atmospheric transport in dissipating LABs from input
sources to remote areas. The Pearl River Delta, South China, which has experienced rapid economic growth and ur-
banization, was selected as the study region. The concentrations of LABs (mean: 8.6 ng/g and median: 5.7 ng/g,
with an outlier of 2020 ng/g excluded) suggested that sewage contamination throughout the entire study region
was generally light. The spatial variation of sewage pollutionwas significantly positively correlatedwith population
density and per capita gross domestic product, with hot spots concentrated in the central PRD. Atmospheric
deposition was hypothesized as an important input route for soil LABs in forestry and drinking water source
areas with little impact of irrigation or direct wastewater discharge. This proposition could explain the opposite
spatial patterns of LAB concentrations and values of a biodegradation index (5-C12 + 5-C13) / (5-C11 + 5-C10),
where i-Cn defines a specific LAB congenerwith i and n indicating the position of the phenyl group and the num-
ber of carbon atoms on the alkyl chain, respectively. These findings somewhat validated LABs as tracers of region-
al anthropogenically derived contamination, with atmospheric transport of LABs as a viable dissipating
mechanism.

© 2014 Elsevier B.V. All rights reserved.
86 20 85290706.
1. Introduction

Rapid urbanization and population growth have posed increasing
anthropogenic influences on the environment at multiple scales
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(Hardoy et al., 2001; Grimm et al., 2008; Marcotullio et al., 2008).
Soil, an important compartment of the environment, is regarded as
a major reservoir of pollutants (Wild et al., 1990; Wild and Jones,
1995), and thus can be used to reflect anthropogenic footprints.
Anthropogenic pollutants generated from diverse sources (Doney,
2010) can be redistributed via a number of routes, such as hydrody-
namic and atmospheric transport, and exerted impacts even on areas
distant from points of discharge (Heywood et al., 2006; Nam et al.,
2009). Due to the complexity of input sources and transport mecha-
nisms, geochemical markers have often been utilized in tracking
anthropogenic influences.

Our previous study (Wei et al., 2014b) utilized soil polycyclic
aromatic hydrocarbons (PAHs) to elucidate anthropogenic impacts on
the terrestrial environment of a large watershed in South China, the
Pearl River Delta (PRD; Fig. S1 of the Supplementary data; “S” indicates
tables andfigures in the Supplementary data thereafter), and the central
PRD was found to have become a secondary source of PAHs to the
adjacent areas through atmospheric transport. Because PAHs are not
exclusively derived from anthropogenic sources but also generated
from natural origins (Gagosian et al., 1981;Mai et al., 2003a), our previ-
ous conclusion required further solidification. To this end, additional
evidence can be obtained from linear alkylbenzenes (LABs), which
are uniquely associated with the production of linear alkylbenzene
sulfonates (LASs) (Eganhouse et al., 1983), one of the most widely
used anionic detergents and surfactants. Linear alkylbenzenes can be
discharged into the environment as residues (1–3%) of commercial
detergents (Hartmann et al., 2000; Eganhouse and Sherblom, 2001;
Heim et al., 2004; Isobe et al., 2004), and in fact have been detected in
various environmental matrices from different regions worldwide
(Eganhouse et al., 1983; Takada and Ishiwatari, 1987; Takada et al.,
1992; Isobe et al., 2004; Medeiros and Bícego, 2004; Martins et al.,
2010, 2012; Venkatesan et al., 2010; Rinawati et al., 2012). For example,
previous studies presented evidence for direct discharge of untreated
wastewater, which may have exerted strong impacts on aquatic
systems of the PRD and the adjacent South China Sea (Luo et al., 2008;
Ni et al., 2008; Zhang et al., 2012). Fluvial runoff was regarded as the
dominant route for transporting LABs from sources to the riverine and
coastal systems (Luo et al., 2008; Ni et al., 2008, 2009). In addition,
irrigation with polluted river water was assessed as an important
input mode for LABs in agricultural lands (Ni et al., 2009). Despite
these previous efforts, whether soil LABs can be used for assessing
anthropogenic influences on a regional scale, particularly if LABs can
be volatilized into the atmosphere and transported to remote areas,
a largely unverified proposition, remained to be examined.

We set out to address the above-mentioned issues by collecting a
large number of surface soil samples from the PRD and adjacent regions
(Fig. S1), one of the economically fastest growing but alsomost contam-
inated regions in China, and analyzed them for LABs. The magnitude of
sewage contamination was assessed by exploring the spatial distribu-
tion and compositional profiles of soil LABs. To examine the importance
of atmospheric transport in dispersing LABs, we also analyzed rainfall,
dry particle deposition and aerosol samples collected in Guangzhou,
a megalopolis within the PRD.

2. Materials and methods

2.1. Materials

Linear alkylbenzene components are abbreviated as i-Cn, where n
represents the number of carbon atoms in the alkyl chain and i indicates
the position of the phenyl group. Because there were only a few indi-
vidual LAB standards available commercially (all were 1-Cn), these
LAB standards consisting of 1-Cn (n = 10–14) obtained from Sigma
Aldrich (St. Louis, MO, USA) were used as primary calibration stan-
dards. A mixture of LABs containing homologues of C10, C11, C12 and
C13 except for 1-Cn (n = 10–13), the sum of which is designated as
ΣLAB (sum of the LAB congeners in each homologue is labeled as
ΣCn-LAB), was purchased from Procter & Gamble (Guangzhou,
China) and used as a secondary standard. 1-Phenyldodecane-d30
and 1-phenylpentadecane-d36 were utilized as the surrogate and
internal standards, respectively, both obtained from C/D/N Isotopes
(Pointe-Claire, Quebec, Canada). Assuming that the relative response
factors of all LABs in an isomeric group were identical, the secondary
standards, including C10-LABs, C11-LABs, C12-LABs, and C13-LABs,
were quantified with the calibration curves of 1-C10, 1-C11, 1-C12,
and 1-C13, respectively. The calibration procedures were detailed in
a previous study (Ni et al., 2008).
2.2. Field sampling

The procedures for soil sampling design and collectionwere detailed
previously (Wei et al., 2014b). Briefly, a total of 224 surface soil samples
were collected between December 2009 and March 2010 in the PRD
and adjacent areas from six land-use types, i.e., industry, agriculture,
drinking water source, landfill, residency, and forestry (Fig. S1). For
further comparison of spatial patterns, the study sites were also divided
into four geographic regions (Fig. S1) containing various numbers of
administrative districts (listed in parentheses): (a) the West region
(Yangjiang and Yunfu); (b) the PRD's periphery (Zhaoqing, Qingyuan,
Jiangmen and Huizhou); (c) the central PRD (Guangzhou, Foshan,
Dongguan, Zhongshan, Zhuhai and Shenzhen); and (d) the East region
(Heyuan, Shanwei and Shaoguan). In addition, a total of 157 rainfall
samples were collected from three districts (Tianhe, Haizhu and
Luogang) of Guangzhou, whereas dry particle deposition and aerosol
samples were collected monthly at Tianhe District. The detailed
procedures for sample collection and pretreatment were described
in a previous study (Guo et al., 2014).
2.3. Sample extraction

The procedures of sample extraction and purification/fractionation
used in the present study were detailed previously (Zeng et al., 1997;
Ni et al., 2008). Briefly, freeze-dried soil samples (~25 g), loaded GF/F
filters, and PUF plugs were spiked with the surrogate standard, and
Soxhlet-extracted with 200 mL of a mixture of dichloromethane
and acetone (1:1 in volume) for 48 h, separately. For filtered rain
samples, glass columns packed with a mixture of XAD-2 and XAD-4
resins (1:1 in mass) were used to retain the target analytes, which
were eluted three times with dichloromethane. The extract was con-
centrated, solvent-exchanged to hexane, and purified/fractionated
on a glass column filled with alumina/silica gel (1:2 in volume).
The fraction containing LABs was eluted with 30 mL of hexane,
evaporated to 0.5 mL, and spiked with the internal standard prior
to instrumental analysis.
2.4. Instrumental analysis

Concentrations of LABs were quantified with a Shimadzu GC/MS-
QP2010. Chromatographic separation was achieved with a 30 m ×
0.25 mm × 0.25 μm DB-5MS column (J&W Scientific, Folsom, CA,
USA). Column temperature was programmed from 80 °C to 290 °C at
a rate of 5 °C/min and held for 30 min. Temperatures of injection,
ion source and interface were maintained at 280, 250 and 250 °C,
respectively. Mass spectra were acquired in the electron impact and
selective ion monitoring modes, with characteristic ions at m/z 91 and
105 for C10–C13-LABs except for 1-Cn, m/z 100 for the surrogate and
internal standards, and m/z 92 for 1-Cn-LABs (Luo et al., 2008; Ni et al.,
2008). Typical capillary gas chromatograms of LABs are displayed
in Fig. S2.



Table 1
Concentrations (ng/g, dry weight) of linear alkylbenzenes in soils collected in the Pearl
River Delta (PRD) and adjacent areas.

District No. of samples Range Mean Median

Guangzhou 26 1.8–21 9.0 9.1
Foshan 11 1.2–48 8.5 3.2
Dongguana 18 2.3–48 17 12
Zhongshan 9 3.7–122 22 8.6
Zhuhai 7 3.6–14 6.9 5.8
Shenzhen 9 3.8–14 9.3 11
Huizhou 37 1.8–18 6.0 4.8
Shanwei 4 1.8–2.8 2.3 2.3
Heyuan 19 1.9–11 4.2 3.1
Shaoguan 3 1.5–8.8 4.3 2.7
Qingyuan 17 1.5–52 11 7.6
Zhaoqing 29 1.4–38 8.0 6.1
Yunfu 8 1.9–10 5.7 5.7
Jiangmen 24 1.3–35 7.0 5.7
Yangjiang 3 1.6–6.4 4.4 5.1
West regionb 11 1.6–10 5.3 5.6
PRD's peripheryb 107 1.4–52 7.5 5.7
Central PRDa, b 80 1.2–122 12 8.6
East regionb 25 1.5–9.0 3.8 2.8
Total a 224 1.2–122 8.6 5.7

a An extremely high concentration (2020 ng/g dry weight) was found in an
industrial soil close to a paper mill, which was excluded in the calculation of mean
and median values.

b The study region is divided into four geographic regions (Fig. S1): the West re-
gion (Yangjiang and Yunfu); PRD's periphery (Zhaoqing, Qingyuan, Jiangmen and
Huizhou); central PRD (Guangzhou, Foshan, Dongguan, Zhongshan, Zhuhai and
Shenzhen); and East region (Heyuan, Shanwei and Shaoguan).
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2.5. Measurements of total organic carbon

Measurement of total organic carbon (TOC) followed a previously
described procedure (Mai et al., 2003b). Briefly, approximately 1 g of
each dried soil sample was treated with 10% hydrochloric acid to
remove inorganic carbon, washed with deionized water for 5 times,
and dried at 60 °C to constant weight. The content of TOC was deter-
mined with a C230 carbon determinator (LECO, MI, USA) (Table S1).
Acetanilide was used as an external calibration standard.

2.6. Quality assurance and quality control

For every 15 field samples, a procedural blank, a spiked blank and
a matrix spiked sample were also processed, where the primary
calibration standards were used in the blank and matrix spiked
samples. Recoveries (mean ± standard deviation) of the surrogate
standard were 90 ± 12% for QA/QC samples, 97 ± 19% for soil
samples, 91 ± 20% for wet deposition samples, and 75 ± 15% for
dry deposition samples. In addition, the recoveries of the target
analytes from spiked blank and matrix spiked samples were 84 ± 10%
and 87 ± 9.6%, respectively. If the concentrations of LABs in the
procedural blanks were greater than the lowest calibration levels
(1.32–5.85 ng/mL; Fig. S2a), the average blank values of LABs in a
final extract volume of 0.5 mL divided by the average sample weight
(482 m3 and 30 L for aerosol and rainfall samples, respectively) were
defined as the reporting limits (RL; Table S2). Otherwise, the lowest
calibration levels were divided by the average sample weight (25.2 g
and 0.36 g for soil and dry particle deposition samples, respectively)
and a final extract volume of 0.5 mL to obtain RL (Table S2). Conse-
quently, the reported LAB concentrations in soil and dry particle
deposition samples were not blank corrected, while the LAB levels
in aerosol and wet deposition samples were corrected with blank
values. A zero value was reported for any concentration below the
RL in concentration calculation, whereas half a RL was used in
compositional analysis.

2.7. Data analysis

In the present study, three molecular indices, i.e., (6-C12 + 5-C12) /
(4-C12 + 3-C12 + 2-C12), (5-C12 + 5-C13) / (5-C11 + 5-C10) and
ΣC13-LAB / ΣC12-LAB (abbreviated as I/E, L/S, and C13/C12, respectively),
were employed to evaluate the likelihood for the degradation of LABs,
which is based on the preferential biodegradation of external isomers
over inner isomers (Eganhouse et al., 1983; Takada and Ishiwatari,
1990), as well as more susceptibility to degradation of short-chain
homologues than long-chain homologues (Gustafsson et al., 2001;
Eganhouse and Pontolillo, 2008). Compared with detergents, the
indices with higher values indicate the occurrence of degradation
and they all increase with increasing extent of degradation.

Significant differences in concentrations, degradation indicators
and compositional profiles of LABs were examined using one-way
analysis of variance and nonparametric Kruskal–Wallis H tests with
statistical significance defined at p b 0.05, performed with SPSS
13.0 (Chicago, IL, USA). The Ordinary Kriging interpolation method
was used to characterize the spatial distribution of LABs in soils for
assessing sewage contamination, which was carried out with ArcGIS
9.3 (ESRI, Redlands, California, USA) (Juang and Lee, 1998; Carlon
et al., 2001; Hu et al., 2006, 2009).

3. Results and discussion

3.1. Occurrence of linear alkylbenzenes in soil and precipitation

The concentrations of ΣLAB (ng/g; in dry sample weight thereafter)
varied in a range of 1.2–2020 ng/g with an arithmetic mean of 18 ng/g
and a median of 5.8 ng/g, and the range, mean and median values
became 1.2–122, 8.6 and 5.7 ng/g, respectively, after an extremely
high concentration of 2020 ng/g in an industrial soil collected near a
paper mill in Dongguan was excluded (Tables 1 and S1). Descriptive
analysis indicated that the value of 2020 ng/g was substantially greater
than the sum of median (5.8 ng/g) and three times of standard devia-
tion (135 ng/g), thereby it was treated as an outlier. Conversely,
all other concentrations (1.2–122 ng/g, n = 223) were considered as
normal values for spatial distribution. Interestingly, this high concentra-
tion was comparable to those (with a mean of 2300 ng/g) in sediments
near paper mill outfalls in Dongguan since LASs were extensively used
for dyeing in papermaking industries (Zhang et al., 2012). In addition,
the relative abundances of individual LAB components in this soil
sample were similar to those in industrial effluents (dissolved and
particulate phases combined) and sediments near the paper mill
outfalls (Fig. 1) (Zhang et al., 2012). Furthermore, this industrial soil
was also enriched with TOC (25.7%) and PAHs (21,000 and 12,000 ng/g
for Σ28PAH and Σ15PAH, respectively) (Wei et al., 2014b). Hence,
the soil sample was probably contaminated by point sources
(e.g., wastewater from paper mills (Zhang et al., 2012) and petroleum
industry (Wei et al., 2014b)), and can be treated as a point-source soil.
As a result, it is reasonable to exclude this sample from significant differ-
ence tests and Kriging interpolation for spatial distribution. Besides,
we detected notable levels ofΣLAB (range;mean;median) inwet depo-
sition (3.28–3300; 393; 189 ng/L), dry particle deposition (0.54–4.66;
1.57; 0.94 μg/g) and aerosol samples (10.5–146; 58.6; 38.6 ng/m3)
collected in Guangzhou.

Compared with available LAB data in various environments around
the world (Table S3), the concentrations of LABs in most soil samples
in the present study were substantially lower than those in sewage
sludge (Takada et al., 1994; Luo et al., 2008) and the particulate phase
of riverine runoff (Takada and Ishiwatari, 1987; Ni et al., 2008). They
were also substantially lower than those in river sediments from
Zhujiang River, Xijiang River and Dongjiang River of the PRD (Luo
et al., 2008; Zhang et al., 2012), Sumidagawa River and Tamagawa
River in Japan (Takada and Ishiwatari, 1987), and Arakawa River
(Takada et al., 1992), lake sediments from Chaohu Lake (Wang et al.,
2012), and coastal sediments from the coastal zones of Guangdong
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Fig. 1.The relative abundances (%) of individual linear alkylbenzene congeners in (a) detergents (Ni et al., 2008); (b) an industrial soil close to a papermill inDongguan (with an extremely
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Province (Liu et al., 2013), Jakarta Bay (Rinawati et al., 2012), Santa
Monica Bay (Venkatesan et al., 2010), Victoria Harbor (Hong et al.,
1995), Barcelona Harbor (Díez et al., 2006), Tokyo Bay (Takada et al.,
1992), South and Southeast Asia (Isobe et al., 2004), and Southern
California Bight (Macías-Zamora and Ramírez-Alvarez, 2004). They
were slightly lower than those in nearshore sediments from the Pearl
River Estuary and the northern South China Sea (Luo et al., 2008) and
Admiralty Bay (Martins et al., 2012). These findings suggested that
contamination of soil by sewage was generally light in the PRD; the
impacts of wastewater discharge appeared to be mostly confined
around the points of discharge.
3.2. Spatial distribution

Spatially, the levels of ΣLAB (Table 1) in the West region were
not significantly (p N 0.05) different from those in the other three
geographical regions, but ΣLAB levels considerably varied (p b 0.05)
among the PRD's periphery, central PRD and East region (Table S4).
Hot spots were concentrated around the large metropolises within the
central PRD (Fig. 2a), which are more economically prosperous and
densely populated and subsequently are supposed to bear more inten-
sive anthropogenic influences than other three regions. As expected,
samples from the West and East regions less economically developed
and populated contained substantially lower concentrations of ΣLAB
than those from the central PRD. Apparently, the spatial distribution
pattern of ΣLAB levels indicated greater anthropogenic impacts on the
terrestrial environment of the central PRD than the other three regions,
and the central PRD may have served as an important source of LABs
found in remote areas. This spatial pattern of soil LABs was similar to
that of soil PAHs with higher concentrations of both Σ28PAH and
Σ15PAH in the central PRD than in other three geographic regions
(Wei et al., 2014b), indicating that the concentrations of both LABs
and PAHs were well reflective of anthropogenic influences on the
regional terrestrial environment.

Among six land-use types, there was no significant difference
for ΣLAB concentrations among industry, agriculture and residency
(p N 0.05), while other land-use types had significant differences
(p b 0.05) between each other (Tables 2 and S5). The magnitude
of sewage pollution (and therefore anthropogenic impact) was
also strongly associated with land-use types, with heavier sewage
contamination in anthropogenic landscapes than in natural landscapes
(Su et al., 2011; Wang et al., 2013).
3.3. Implications of anthropogenic influences

The central PRD is more populated (1870 persons/km2) and
discharges larger amounts of domestic wastewater (5.68 million m3/d)
than the other three regions (in the ranges of 228–307 persons/km2

and 0.1–0.53 million m3/d, respectively) (Statistical Bureau of
Guangdong Province, 2011). Although daily wastewater treatment
capacity in the central PRD (8.43 million m3/d) was much larger than
those in the PRD's periphery, East and West regions (1.31, 0.66 and
0.19 million m3/d, respectively) (JianQiang Environmental, 2011),
higher ΣLAB levels within the central PRD suggested that some portions
of the large volume of wastewater generated in the central PRD may
have been discharged without treatment. This was consistent with a
previously reached conclusion that population was a major factor in
controlling ΣLAB levels in riverine runoffs (Ni et al., 2008), as LABs
were predominantly derived from domestic wastewater discharge.
Besides, Ni et al. (2008) obtained the highest degradation rate of LABs
in wastewater collected from the oxidation ponds of wastewater
treatment plants and ascribed biodegradation under aerobic conditions



Fig. 2. Spatial distribution patterns of (a) the concentrations (ng/g dry weight) of linear alkylbenzenes (LABs) and (b) (5-C13+ 5-C12) / (5-C11+ 5-C10) values in soils from the Pearl River
Delta and adjacent areas with Kriging interpolation. An extremely high concentration (2020 ng/g dry weight) of LABs detected in an industrial soil close to a paper mill in Dongguan was
excluded in Kriging interpolation.
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as the principal removal mechanism for LABs, which was in accordance
with a previous study (Takada et al., 1992). As a result, enhanced
oxidation during wastewater treatment may be an effective way for
aggressive removal or mitigation of LABs.

Arithmetic mean concentrations of soil ΣLAB were moderately
correlated with the population densities (r2 = 0.44, p b 0.05; Fig. 3a)
Table 2
Concentrations (ng/g dry weight) of linear alkylbenzenes in soils of various land-use
types.

Land-use type No. of samples Range Mean Median

Industrya 28 1.9–44 13 8.7
Agriculture 64 1.4–48 8.4 5.7
Drinking water source 21 1.5–6.9 3.6 3.5
Landfill 7 7.0–122 32 10
Residency 30 1.8–38 9.8 9.5
Forestry 74 1.2–16 6.1 5.2
Totala 224 1.2–122 8.6 5.7

a An extremely high concentration (2020 ng/g dry weight) was found in an
industrial soil close to a paper mill, which was excluded in the calculation of mean
and median values.
of the administrative districts (Statistical Bureau of Guangdong
Province, 2011). This implied that domestic wastewater discharge
wasmainly responsible for soil pollution by sewage in the PRD. Howev-
er, limited industrial usage of LASs in papermaking, textile printing
and dyeing industries (Zhang et al., 2012) may account for an insignifi-
cant relationship between the mean ΣLAB levels and per capita gross
domestic product (GDP) (r2 = 0.19, p N 0.05; Fig. 3c). Moreover, high
concentrations of ΣLAB in landfill soils from Zhongshan (121 ng/g)
and Qingyuan (52 ng/g) and in industrial soils from Dongguan (with a
mean of 22 ng/g), probably suggested the existence of point sources
that increased the mean ΣLAB levels in these administrative districts.
If these data points are excluded, significant correlations can be obtain-
ed between the arithmetic averageΣLAB concentrations and population
densities (r2= 0.75, p b 0.05; Fig. 3b), aswell as betweenΣLAB concen-
trations and per capita GDP (r2 = 0.75, p b 0.05; Fig. 3d). These signifi-
cant positive correlations suggested that both population density
and economic prosperity may have dictated the regional consumption
pattern of LAS-type detergents and domestic wastewater discharge,
and consequently implicated the influences of human activities.
However, no significant correlation between the ΣLAB levels and TOC
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(r2 = 0.06, p b 0.05; Fig. S3a) possibly implied that soil organic matter
was not the key factor controlling the distribution of hydrophobic
compounds in soils, which was also corroborated by the poor correla-
tion between TOC and PAHs (Wei et al., 2014b). Besides, a weak rela-
tionship between the concentrations of ΣLAB and anthropogenic PAHs
(Σ15PAH) (Wei et al., 2014b) (r2 = 0.18, p b 0.05; Fig. S3b) in soils
was ascribed to different input sources for LABs and PAHs.
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Higher L/S values (range; mean; 95% confidence interval) in soils
(0.20–16; 2.9; 2.6–3.2) than those in domestic detergents (0.22–3.1;
1.8; 1.7–2.0) (Ni et al., 2008) indicated possible degradation of LABs in
soils, whereas comparable values of I/E (0.42–5.9; 1.0; 0.93–1.1) and
C13/C12 (0.07–7.4; 0.77; 0.70–0.85) to those for detergents (0.52–1.6;
1.0; 0.96–1.1 for I/E, and 0.46–1.2; 0.83; 0.78–0.88 for C13/C12)
(Ni et al., 2008) suggested no progressive degradation of LABs.
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Similar contradiction was also reported previously and L/S was
suggested as a more reliable indicator of LAB degradation in offshore
sediments (Gustafsson et al., 2001; Luo et al., 2008). For soils, statis-
tically higher L/S values (p b 0.05) were observed in the PRD's
periphery, East and West regions than in the central PRD (Fig. 4a).
Visually, the spatial distribution pattern of L/S values (Fig. 2b)
was basically opposite to that of ΣLAB concentrations (Fig. 2a).
In fact, with the exception of Zhongshan, Qingyuan, Zhuhai and
Shanwei, the L/S values were negatively correlated with ΣLAB
concentrations (r2 = 0.45, p b 0.05; Fig. S4b) based on the admin-
istrative districts. Apparently, the spatial variability of the L/S values
was well reflective of the patterns of regional sewage contamination
and LAB degradation.

3.4. Transport mechanisms

The compositional profiles of soil LABs were predominated by
C12-LABs (44 ± 11%), followed by C13-LABs (31 ± 9%), C11-LABs
(13 ± 11%) and C10-LABs (11 ± 7%) (Fig. 5). Among all correlations
(Table S4), there were significant differences (p b 0.05) for values
of C11-LABs and C12-LABs among the PRD's periphery, central PRD,
and East region, for C10-LABs between the PRD's periphery and
central PRD, and for C12-LABs between the East and West regions.
A previous study found similar compositional profiles of LABs for
commercial detergents commonly used in Guangdong Province,
which implicated a quite unanimous source of LABs in the study
region (Ni et al., 2008). In addition, the compositional profiles
of LABs were similar in river water from both the central PRD
and the West region (Ni et al., 2008). However, LAB compositions
varied among different environmental compartments of the PRD,
i.e., detergent (Ni et al., 2009), soil (present study), wastewater
(Zhang et al., 2012), river water (Ni et al., 2008), and air and rainwater
(Fig. 5 and Table S6), possibly suggesting congener specificity of
transport mechanisms, as well as subsequent phase partitioning and
degradation potentials, for LAB components from sources to receptors.

Hydrodynamic flow and atmospheric transport are considered as
the dominant input routes for hydrophobic contaminants in soils
(Wania et al., 1998; Jones and de Voogt, 1999). Ni et al. (2009) observed
the widespread occurrence of LABs in riverine runoff of the PRD and
estimated that irrigation with polluted river water was a key pathway
for LABs to enter agricultural lands. Moreover, direct wastewater
discharge from paper mills around Dongguan (Zhang et al., 2012) was
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Fig. 5. Compositional profiles of linear alkyl benzenes in detergents (Ni et al., 2008), soils
(present study), wastewater of paper mills in Dongguan (Zhang et al., 2012), river water
(Ni et al., 2008), and dry depositing particles, air, and rainwater collected fromGuangzhou
(present study).
suggested as a point source for soil LABs, but it might be confined in a
small area. Although 45% of the sewage sludge produced was utilized
in agricultural soils of China (Chen et al., 2012), the extremely poor
correlation of ΣLAB levels and TOC (Fig. S3a; p b 0.05) dismissed the
application of composted sewage sludge in soils as the main input
route for soil LABs.

Because of the low vapor pressures for LABs (from 0.015 Pa for
2-C13-LAB to 0.418 Pa for 5-C10-LAB) (Sherblom et al., 1992) and no
report of LABs in the atmosphere, atmospheric transport of LABs has
not been considered a viable transport mechanism (Gustafsson et al.,
2001; Ni et al., 2009). In the present study, we detected considerable
levels of LABs in precipitation, dry particle deposition, and aerosol
samples, which pointed to the possibility for volatilization of LABs into
the atmosphere, atmospheric transport, and aerial deposition into
soils. A previous study (Takada et al., 1992) on hydrodynamic transport
of LABs in coastal zones demonstrated that hydrophobic LABs were
associated with lower-density particles and could be transported great-
er distances than PAHs. On one hand, high average concentrations of
fine particulate matter (PM2.5) in Guangdong Province (ranging from
37 to 139 μg/m3 for 2001–2008) (Cao et al., 2003; Hagler et al., 2006;
Deng et al., 2013) are possibly the basis for atmospheric transport of
particle-bound hydrophobic pollutants. On the other hand, a previous
study suggested a significant contribution of atmospheric inputs to
sedimentary LABs in open sea distant from the coastline of China
(Wei et al., 2014a). All these findings favor atmospheric transport
and aerial deposition as the predominant mechanisms for the
widespread occurrence of LABs on a regional scale.

In fact, atmospheric deposition can reasonably explain the occur-
rence of soil LABs in the forestry and drinking water source areas,
which are without irrigation inputs and/or away from any points of
direct wastewater discharge (Fig. S5). The L/S values in soil samples
from the forestry and drinking water source areas were higher than
those from other land-use types (Fig. 4b), i.e., LABsmay have degrad-
ed considerably during atmospheric transport from input sources to
distant areas. This notion is further supported by the roughly oppo-
site spatial patterns of ΣLAB levels and L/S values (Fig. 2). The central
PRD with higher LAB levels appeared to serve as an important
emission source and dissipated LABs to other areas via atmospheric
transport, which was also observed for PAHs (Wei et al., 2014b).
Conversely, higher L/S values and lower sewage contamination
in the remote areas than in the central PRD (Fig. 2b) suggested
additional degradation of LABs during atmospheric transport of
LABs and after deposition into soil. Although much work is needed
to quantify the relative importance of transport pathways and the
soil–air exchange of LABs, the results from the present study clear-
ly implicated atmospheric transport as a viable mechanism for
redistributing LABs from input sources to distant areas. As such,
LABs can be used as an indicator of anthropogenic impacts on a
regional scale.

4. Conclusions

Soil pollution by sewage within the PRD and adjacent areas was
generally light, while the impacts of direct wastewater discharge were
mostly confined around point sources. The spatial distribution of
sewage contamination was significantly related to population density
and per capita GDP, validating the utilization of soil LABs as tracers
of anthropogenic influences at a regional scale. Finally, atmospheric
deposition was proposed as an important input mechanism for LABs
to enter soil in remote areas.
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Appendix A. Supplementary data

Additional tables and figures containing information about the sam-
pling sites, reporting limits and the chromatograms of LABs, compari-
sons of LABs concentrations worldwide, as well as data analysis about
the concentrations, compositional profiles and L/S values of LABs are
presented in Supplementary data. Supplementary data to this article
can be found online at http://dx.doi.org/10.1016/j.scitotenv.2014.04.
067.
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