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Abstract The amount and timing of precipitation in East Asia are important aspects of the East Asian
monsoon. Many paleoclimate records that act as proxies for wet or dry climatic conditions have been linked
to changes in precipitation amounts and are thus used to indicate changes in the East Asian monsoon system.
However, few studies have examined changes in the timing of the rainy season. Here, we consider the timing
of the seasonal precipitation cycle during the middle to late Holocene, using records derived from coupled
high-resolution Sr/Ca and δ18O records preserved in Porites corals from the northern South China Sea. These
records indicate that the timing of the rainy season in this region changed during the middle to late Holocene.
The present-day rainy season generally occurs over the summer and autumn (June–October), which has also
been recorded in Porites coral, whereas the rainy season at around 1500 and 6800years B.P. occurred through
the autumn and winter (August–December), and the rainy season at around 2540 and 5000 years B.P. occurred
in the winter and spring (January–April or December–March). During the period around 5900 years B.P., the
seasonal distribution of precipitation varied from year to year. These shifts in the timing of the rainy season
require changes in temperature and humidity patterns and appear to agree with changes in the magnetic
susceptibility of lake sediments in this region, which may reflect movements of the Intertropical Convergence
Zone location and changes in atmospheric circulation during the middle to late Holocene.

1. Introduction

The climate of East Asia is dominated by the monsoon [An, 2000]. Generally, winds blow toward land in
summer, bringing abundant rainfall, whereas they blow toward the sea in winter, resulting in a relatively
dry climate. As a result, most of the precipitation occurs during the warm seasons [Wang et al., 2005],
with almost synchronous seasonal variations in temperature and precipitation. Natural ecosystems and
human activities in this region appear to have adapted to this seasonal pattern; e.g., the period of warm
and rainy conditions during late spring and summer in South China favors the growth of rice [Timsina and
Connor, 2001].

Global trends in climate change are accompanied by uncertainties [Folland et al., 2001; Reilly et al., 2001;
Karl and Trenberth, 2003; Webster et al., 2003; Hegerl et al., 2007]. If climate change modifies the synchro-
nous variations of temperature and precipitation, the seasonal distribution of precipitation may change,
potentially leading to prolonged drought in summer or heavy snow and rainfall in winter. A study of the
evolution of the hydrologic system suggests that the seasonal balance of precipitation over the inland
Pacific Northwest has shifted from 10% to 50% falling in the winter and 50% to 90% in summer during the last
glacial period, to the current situation of around 75% falling in the winter and 25% in summer [Takeuchi,
2007]. A change in the rainy season would have a significant impact on ecosystems and disastrous conse-
quences for social and economic development. For example, persistent and heavy rain and snow in South
China lasted for more than a month during the winter of 2008 [Ding et al., 2009] and resulted in at least
129 deaths, U.S. $15.4 billion of direct economic losses, and disruption to the lives of more than 400 million
people, as well as affecting industrial and agricultural production [National Climate Center, 2008].

Little is known about long-term changes in the timing of the rainy season in East Asia, including the mech-
anism of change, the factors that disturb the synchronicity of precipitation and temperature, and future
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patterns. These uncertainties may be addressed by examining historical records of changes in the timing
of the rainy season. However, instrumental observations in this region only extend over the past several
decades, which is insufficient to examine temporal variations in the timing of the rainy season. To develop
a better understanding of such changes over longer timescales, it is necessary to extend the historical
records using proxies [Mann, 2002; Jansen et al., 2007; Jones et al., 2009]. In this regard, massive corals
provide the most reliable archives, as they contain clear annual bands and have high growth rates, thereby
providing a detailed record of seasonal variations in paleoclimate [Gagan et al., 2000; Grottoli, 2001; Cole,
2003; Felis and Pätzold, 2003; Lough, 2010], including changes in the seasonal distribution of precipitation
[Deng et al., 2009]. Sr/Ca ratios in coral skeletons have long been used to reconstruct changes in sea
surface temperature (SST) [Smith et al., 1979; Beck et al., 1992; McCulloch et al., 1999] and δ18O values in
coral reflect SST and δ18O in ambient seawater [Swart and Coleman, 1980; Dunbar and Wellington, 1981].
Residual δ18O (i.e., Δδ18O), which is calculated by subtracting the contribution of temperature from coral
δ18O, can be used as a tracer of temporal changes in seawater δ18O (δ18Osw) [McCulloch et al., 1994; Gagan
et al., 1998, 2000; Corrège, 2006]. In areas where freshwater input is a key contributing factor to variations
in seawater δ18O, δ18Osw can trace temporal changes in precipitation [McCulloch et al., 1994; Shen et al.,
2005]. As δ18O in freshwater is generally more negative than that in seawater, minimum δ18Osw values
typically indicate the maximum input of freshwater, and thus the occurrence of peak precipitation, i.e., the
rainy season. Assuming that SST shows seasonal changes, the phase offset between peaks in δ18Osw and
SST may also provide information on seasonal changes in precipitation [Shen et al., 2005] and change in
the timing of the rainy season could be estimated from the phase angles of the cross-spectral analysis of
δ18Osw and SST records [Deng et al., 2009].

An ideal site for the investigation of changes in the timing of the rainy season is the coastal region of South
China, next to the northern South China Sea (SCS), where seasonal variations in precipitation are significant,
with over 80% of the annual precipitation occurring between May and October. The heavy precipitation
during the rainy season causes the peak river runoff to the coastal region, strongly influencing the isotopic
and elemental records preserved in corals [Wei et al., 2000]. Our recent study showed that seasonal change in
δ18Osw is a reliable proxy for the rainy season and that the timing of the rainy season on Hainan Island during
the mid-Holocene differed to that of the present-day rainy season [Deng et al., 2009].

Here we revisit the Sr/Ca-SST and δ18O records of themiddle to late Holocene corals from the Leizhou Peninsula
(20°13–17′N, 109°54–58′E), northern SCS (Figure 1), of Yu et al. [2005]. The δ18Osw values obtained from these
corals are reexamined and the time offsets between the δ18Osw and SST records estimated using cross-spectral
analysis. The time offsets indicate temporal change in the timing of the rainy season in this region from the
middle to late Holocene. In turn, this provides information on changes in the timing of the rainy season in the
northern SCS and enables a better understanding of the evolution of the East Asian monsoon.

Figure 1. Satellite image of the Leizhou Peninsula. The star indicates the sample location. Instrumental SST is monitored at Haikou and SSS
at Weizhou Island. The coral-based rainy season study site of Deng et al. [2009] was at Sanya.
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2. Materials and Methods

We analyzed one modern and five fossil Porites lutea corals collected from the low-tidal emerged reef flat on
the Leizhou Peninsula, northern SCS (Figure 1). The ages of the five fossil corals ranged from A.D. 487 to 4789
B.C., and their growth periods were approximately 10 years [Yu et al., 2005]. The total length of these samples
would probably not allow a distinction between the older and younger agesmeasured by the 238U-234U-230Th
method with its associated dating uncertainty of decades. However, the well-preserved fossil corals were in situ
growth and without any transitional forms (supporting information Figure S1), so their top (youngest part) and
bottom (oldest part) could be clearly identified (supporting information Figures S2 and S3), enabling a
definite sampling direction from the youngest to the oldest for all six corals. In addition, the direction of
the maximum growth axes of these corals can be clearly identified in the X-radiographs of the coral slices
(Figure 2), which provides further guidance for the sampling direction.

The growth chronologies of the corals were constructed using Sr/Ca ratios, assuming that each Sr/Ca cycle
represents 1 year, and by cross-validating this approach with visual observations from the X-radiographs.
Sr/Ca maxima were assigned to the beginning (January) of each year, which is generally the coldest time in
this region and used as time control points. Monthly time resolution was obtained by linear interpolation
(for an annual cycle with< 12 data points) or by averaging the nearest neighbor data (for an annual cycle
with> 12 data points). The top and bottom of the coral cores were assigned the youngest and the oldest
ages, respectively.

SSTs derived from the Sr/Ca ratios, and the δ18O and Δδ18O values of these corals, have previously been
analyzed to assess temporal changes in the strength of the summer monsoon during the middle to late
Holocene [Yu et al., 2005]; however, variations in the timing of the rainy season have yet to be explored.
Values of δ18Osw (Δδ18O) were calculated by the method of Gagan et al. [1998]; i.e.,

δ18Osw Δδ18O
� � ¼ dδ18O=dT � Tδ18O–TSr=Ca

� �

where dδ18O/dT is the slope of the empirical δ18O-SST relationship and Tδ18O and TSr/Ca are the apparent SSTs
calculated from the δ18O and Sr/Ca ratios, respectively. The slopes for dδ18O/dT and d(Sr/Ca)/dT are
�0.017‰/°C and�0.0424mmol/mol/°C, respectively [Yu et al., 2005]. This study focuses on the temporal re-
lationship between the variation in SST and δ18Osw, and the influence of seawater δ18O variation on the coral
δ18O-SST relationship was not considered. Some studies argue that this may result in large errors in δ18Osw

and makes it problematic to use δ18Osw to estimate changes in seawater δ18O [Ren et al., 2003; Cahyarini
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Figure 2. X-radiographs of onemodern and five Porites lutea fossil corals collected from the Leizhou Peninsula. Arrows indicate the direction
of the maximum growth axes.
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et al., 2008]. Several new methods have been proposed to calculate δ18Osw, which may partially reduce the
possible errors related to the calibration of coral δ18O with SST [Ren et al., 2003; Cahyarini et al., 2008].
However, Huppert and Solow [2004] demonstrated that the method of Ren et al. [2003] is essentially the same
as that of Gagan et al. [1998]. And, while the δ18Osw values obtained by the methods of Cahyarini et al. [2008]
and Gagan et al. [1998] have different absolute values, they have the same pattern of variation and a good
positive correlation [Deng et al., 2009]. This study is mainly concerned with identifying patterns of variation
in the δ18Osw record to determine the timing of precipitation rather than to quantitatively reconstruct past
seawater δ18O. Values of δ18Osw (Δδ18O) calculated using the method of Gagan et al. [1998] can reliably indi-
cate changing patterns of seawater δ18O, and hence changes in the pattern of precipitation over the northern
SCS, as has been demonstrated by Deng et al. [2009].

Changes in the timing of the rainy season can be estimated from the temporal offset between δ18Osw and SST
records. Recent observations (A.D. 1975–2000) indicate that more than 80% of the annual precipitation on
the Leizhou Peninsula falls between June and October (Figure 3). This peak in precipitation is associated with
a marked decrease in the δ18O value of surface seawater around coastal coral reefs, corresponding to strongly
negative δ18Osw peaks in the coral skeletons [Yu et al., 2005]. Assuming that temperature change correlates with
changes in the seasons (i.e., maximum temperatures indicate midsummer, while minimum temperatures indi-
cate midwinter), the time offset between negative δ18Osw peaks and maximum SSTs may indicate the season
with the greatest precipitation, i.e., the rainy season. Such time offsets can be estimated quantitatively using
cross-spectral analysis, which has been used in paleoclimate studies to identify phase relationships between
two harmonic time series [Schulz and Stattegger, 1997]. This method has successfully been established and used
to estimate changes in the timing of the rainy season at around 6500 years B.P. on Hainan Island, northern SCS
[Deng et al., 2009]. The feasibility of this method is further demonstrated in the present study.

3. Results

The Sr/Ca-SST and δ18Osw values from the six corals are shown in Figure 4. Both time series show clear annual
cycles but with variable time offsets between the two data sets. The negative δ18Osw peaks generally lag
behind the maximum summer SSTs in the records from A.D. 1989 to 2000, A.D. 487 ± 22, and 4789± 43 B.C. In
contrast, the negative δ18Osw peaks generally lead the maximum summer SSTs in the records from 541±24 BC
and 3011 ± 54 B.C. At 3906 ± 28 B.C., the temporal relationship between the δ18Osw and SST is complex,
with variable leads and lags between the negative δ18Osw peaks and the maximum SSTs.

Figure 5 shows the mean monthly variations in Sr/Ca-SST and δ18Osw, calculated by averaging the data for
each month. The leads and lags between the negative δ18Osw peaks and the maximum SSTs are similar to
those in Figure 4.

The time offset between the records of δ18Osw and SST was estimated using the phase angles of the cross-
spectral analysis between the two records [Deng et al., 2009], using the software SPECTRUM [Schulz and
Stattegger, 1997]. These phase angles, and the corresponding time offsets, are summarized in Table 1. The results
show that the timing of the rainy season changed significantly during the middle to late Holocene in this region,
from around 4.0months ahead of the present-day situation to around 4.5months behind, as described in more
detail below.
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Figure 3. Time series of mean monthly precipitation, SSS, and SST. Precipitation data are from the meteorological observatory at the Xuwen
Salt Factory (1.5 km from the sampling site) for the period A.D. 1975–2000. SSS data are from the ocean observatory on Weizhou Island
(110 km from the sampling site) for the period A.D. 1960–1994. SST data are from Haikou Ocean Observatory (47 km from the sampling site)
for the period A.D. 1960–2000.
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3.1. Circa 1513Years B.P. (A.D. 487)

The temporal relationship between δ18Osw and SST in the coral from around 1513 years B.P. is similar to
that in modern coral, with negative δ18Osw peaks significantly lagging behind the maximum SST
(Figures 4b and 5b). The time offset between the two records is �4.0±0.7months; thus, the rainy season
during this period may have occurred approximately 4.0 � 2.5 = 1.5months later than in the present day (i.e.,
from August to December).

3.2. Circa 2541Years B.P. (541 B.C.)

In contrast to themodern coral, the negative δ18Osw peaks in the coral from around 2541years B.P. precede the SST
maxima (Figures 4c and 5c) by 3.5±0.3months. Thus, the rainy season during this periodwas 2.5+3.5=6.0months
ahead of the modern timing and occurred between January and April.

3.3. Circa 5011Years B.P. (3011 B.C.)

Similar to the coral from around 2541 years B.P., the negative δ18Osw peaks in the coral from around
5011 years B.P. lead the SST maxima (Figures 4d and 5d) by 4.5 ± 0.1months (Table 1). Therefore, the rainy
season during this period was approximately 2.5 + 4.5 = 7months ahead of the June–October period of the
modern day (i.e., during winter, from December to March).
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Table 1. Time Offset Between Sr/Ca-SST and δ
18
Osw Estimated by Cross-Spectral Analysis

Period Phase Anglea (Deg) Time Offset (Month) Instrumental or Inferred Rainy Season

1989–2001 �80 ± 10 �2.5 ± 0.3 Jun to Oct
Circa 1513 years B.P. (487 A.D.) �121 ± 20 �4.0 ± 0.7 Aug to Dec
Circa 2541 years B.P. (541 B.C.) 106 ± 10 3.5 ± 0.3 Jan to Apr
Circa 5011 years B.P. (3011 B.C.) 140 ± 3 4.5 ± 0.1 Dec to next Mar
Circa 5906 years BP (3906 B.C.) 0 0 Irregular
Circa 6789 years B.P. (4789 BC) �129 ± 15 �4.3 ± 0.5 Aug to Dec

aNegative phase angles indicate that δ
18
Osw lags precipitation and vice versa.
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3.4. Circa 5906Years B.P. (3906 B.C.)

The coral from around 5906 years B.P.
shows complicated time offsets be-
tween the negative δ18Osw peaks and
SST maxima (Figures 4e and 5e). Both
leads and lags are observed, and in
some years the negative δ18Osw peaks
are synchronous with the SST maxima.
As a result, cross-spectral analysis be-
tween the two records did not yield a
consistent value for the time offsets
between them (Table 1), suggesting
that the timing of the rainy season var-
ied from year to year during this period.

3.5. Circa 6789Years B.P. (4789 B.C.)

The negative δ18Osw peaks of the coral
from around 6789 years B.P. lag the SST
maxima (Figures 4f and 5f) by �4.3 ±
0.5months (Table 1), which is similar
to the lag recorded in the modern
coral. Thus, the rainy season at around
6789years B.P. was 4.3� 2.5=1.8months
later than that of the modern day
(i.e., from August to December).

In summary, the timing of the rainy season on the Leizhou Peninsula was variable during the middle
to late Holocene. In contrast to the summer–autumn rainy season (June–October) of the modern day,
the rainy season occurred between August and December at around 1500 and 6800 years B.P., from
December to March at around 5000 years B.P., and from January to April at around 2500 years B.P.
Around 5900 years B.P., there was no consistent trend in the timing of precipitation, which varied from
year to year.

4. Discussion
4.1. Values of δ18Osw as a Proxy for the Timing of the Rainy Season

Concentrated precipitation during the rainy season is generally associated with peak river runoff into coastal
reefs, resulting in low sea surface salinity (SSS) and a negative δ18Osw peak being preserved in coral skeletons.
These factors are therefore a reliable proxy for the timing of the rainy season, and this relationship has been well
documented on southern Hainan Island and used to reconstruct the record of the rainy season in this region
[Deng et al., 2009].

On the Leizhou Peninsula, the rainy season generally occurs between June and October, with peak precipi-
tation falling in August and September (Figure 3) [Yu et al., 2005]. Consequently, the SSS near the coral reefs
shows aminimum in August and September (Figure 3a). Temporal variations in themodern δ18Osw record are
in agreement with the instrumental precipitation record, with negative δ18Osw peaks generally correspond-
ing to precipitation maxima (Figures 6a and 6b), except in 1997 and 1998, possibly due to the effects of the El
Niño–La Niña cycle on the SST and rainfall in the northern SCS at that time [Ciesielski and Johnson, 2006].
Moreover, variations in the mean monthly δ18Osw values of the modern coral are generally in step with those
of precipitation (Figure 6c). To highlight this synchronous variation more clearly, two identical annual cycles
of mean monthly variations in the two records are presented. The similarity of temporal variations in pre-
cipitation, SSS, and coral δ18Osw supports the proposal that the coral δ18Osw record is a good proxy for
temporal change in the timing of the rainy season in this region.
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In terms of coral paleoclimate records,
seasonal changes can be represented by
monthly SST cycles derived from Sr/Ca
ratios. Using this approach, the occur-
rence of peak precipitation or the rainy
season can be inferred from the time
offsets between δ18Osw and Sr/Ca-SST
trends [Deng et al., 2009]. Negative
δ18Osw peaks generally lag behind Sr/Ca-
SST maxima in modern coral (Figures 4a
and 5a) by 2.5± 0.3months (Table 1), as
estimated by cross-spectral analysis. This
finding agrees with the time offsets be-
tween SST and precipitation during the
period A.D. 1960–2000. As shown in
Figure 3b, the mean monthly precipita-
tion maximum occurs in September on

the Leizhou Peninsula, while the mean monthly SST maximum occurs in July. Thus, the time offset between
δ18Osw and SST in coral records is equal to that between observed precipitation and SST (Figure 3b). Again, this
finding supports the reliability of coral δ18Osw as a proxy for the seasonal distribution of precipitation and shows
the feasibility of using the time offsets between δ18Osw and SST records in corals to reconstruct the timing of the
rainy season in this region.

4.2. Possible Evidence for a Change in the Timing of the Rainy Season Over the Northern SCS

Previous studies have reported temporal changes in the timing of the rainy season over the northern SCS.
Even so, historical studies of rainy season trends remain scarce. A coral record from Nanwan Bay, southern
Taiwan, showed a relatively early occurrence of the rainy season during some years around 6730 years B.P.
[Shen et al., 2005]. Our latest study at Sanya Bay, southern Hainan Island, which focused on a period of more
than 30 years around 6494 years B.P., indicated that the rainy season started in December–January and
continued until early spring [Deng et al., 2009]. Pollen records also suggested that thermal and humidity
conditionsmay have become decoupled around 6000–7000years B.P. in central Taiwan [Liew et al., 2006]. These
results, together with those of the present study, indicate that the timing of the rainy season over the northern
SCS was variable during the middle to late Holocene.

The changes in the rainy season appear to correspond to other paleoclimate records from the northern SCS.
Near-annual time-resolved magnetic susceptibility records from sediments in Lake Huguang Maar (located
120 km from the coral reefs off the Leizhou Peninsula) indicate temporal variations in the monsoon climate
[Yancheva et al., 2007]. It is interesting to note that thewinter–spring rainy seasons at around 2541 and 5011 years
B.P. in this region, and at around 6494 years B.P. on southern Hainan Island, generally coincidewith periods of low
magnetic susceptibility (600–800×10�6 Système Internationale, SI). In contrast, the autumn–winter rainy seasons,
at around 1513 and 6789years B.P., coincide with phases of high magnetic susceptibility (1400–2100×10�6 SI)
(Figure 7), and this is also the case for the present-day summer–autumn rainy season (approximately
2400 × 10�6 SI). In addition, the period around 5906 years B.P., which shows no consistent seasonal distribution
of precipitation, yields a moderate susceptibility value (approximately 1200×10�6 SI) (Figure 7).

Such variations in magnetic susceptibility have previously been related to changes in the strength of the
winter monsoon, as an enhanced winter monsoon could deliver larger amounts of wind-blown magnetic
material from inland China [Yancheva et al., 2007]. However, geochemical studies of the sediments in Lake
Huguang Maar indicate that the local products of chemical weathering dominate, with a negligible contri-
bution from aeolian minerals derived from inland China [Zhou et al., 2007]. Thus, variations in magnetic
susceptibility mainly indicate changes in the local climate and environment rather than the strength of the
winter monsoon. Although magnetic susceptibility is controlled mainly by the amount of magnetic minerals
in the sediment, it is also influenced by the grain size of sediments, the species of Fe-bearing minerals, and
redox conditions, which are in turn affected by the local climate and other environmental factors.
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Figure 7. Inferred timing of the rainy season in the middle to late Holocene and com-
parison with the magnetic susceptibility of sediments from Lake Huguang Maar. See
text for discussion. Vertical lines and corresponding months indicate the timing of the
rainy season. Horizontal bars and corresponding numbers indicate magnetic suscepti-
bility values. Magnetic susceptibility data are from Yancheva et al. [2007].
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The warm and humid climate in South China gives rise to high rates of chemical weathering [Ma et al., 2007].
Such weathering tends to concentrate Fe-bearing and other magnetic minerals in the weathering products
[Ma et al., 2007], resulting in the enhanced magnetic susceptibility of soils and sediments [Yancheva et al.,
2007]. The high temperatures and humidity of the current summer–autumn rainy season of South China
causes intensive chemical weathering. Consequently, sediments from the upper section of the core from
Lake Huguang Maar yield high values of magnetic susceptibility (approximately 2400 SI; Figure 7). The oc-
currence of a winter–spring rainy season at around 2500, 5000, and 6500 years B.P. may have been associated
with a relatively dry warm season (summer–autumn), which would not favor intense chemical weathering.
Consequently, the sediments of this age in Lake Huguang Maar yield low values of magnetic susceptibility
(820–850 SI; Figure 7). For the periods around 1500 and 6800 years B.P., when the rainy season occurred
during the late autumn to early winter, the relative timing of the periods of high temperature and humidity
was moderately favorable to chemical weathering (i.e., less favorable than the present situation but more
favorable than the conditions at 2500, 5000, and 6500 years B.P.), yielding intermediate values of magnetic
susceptibility (Figure 7). For the period around 5900 years B.P., when the timing of the rainy season was
variable, themagnetic susceptibility was approximately 1200 SI, higher than that for the period with a winter–
spring rainy season but lower than that from other periods (Figure 7). The agreement between the timing of
the rainy season, as derived from our coral records, and the magnetic susceptibility of sediments at Lake
Huguang Maar is consistent with our hypothesis of a link between the coral and sediment records and
supports the reliability of reconstructing variations in the timing of the rainy season from coral records.

4.3. Possible Mechanisms for a Change in the Timing of the Rainy Season Over the Northern SCS

Recent paleoclimate studies suggest that the annual mean position of the Intertropical Convergence Zone
(ITCZ) has changed in the past due to changes in the strength of the summer monsoon [Fleitmann et al., 2007;
Yancheva et al., 2007]. The migration of the ITCZ may influence the spatial and temporal distribution of peak
precipitation [Fleitmann et al., 2007]. A coral-based reconstruction of ITCZ variability over Central America
indicated that the zone of maximum rainfall in the eastern Pacific has expanded northward during each
Northern Hemisphere summer since 1707 [Linsley et al., 1994]. Another recent study of coral records also
suggests that a northward shift of the ITCZ could have led to less precipitation over the SCS but increased
continental precipitation for inland Asia during the mid-Holocene [Yokoyama et al., 2011]. Therefore, it is very
likely that a change in the strength of the Asian Monsoon, and a shift in the position of ITCZ, could cause
variations in the timing of the rainy season over the northern South China Sea.

No previous study has performed detailed numerical modeling of temporal changes in the timing of the rainy
season. Changes in atmospheric circulation may cause a shift in the rainy season over the northern SCS
(B. Wang, University of Hawaii, personal communication, 2008). According to numerical modeling of the Asian
summermonsoon [Chou, 2003], themajor rainband during themiddle to late Holocene developed to the north
of its present-day location, because of the relatively strong summer monsoon that created a dipole pattern in
rainfall anomalies (negative in the south and positive in the north). The northern SCS is located in the southern
negative region, indicating reduced summer rainfall and maximum rainfall during the autumn and winter
(C. Chou, Academia Sinica, personal communication, 2009). The springtime rainy season may be associated
with an enhanced springtime frontal system (C. Chou, personal communication, 2009), although this
possibility requires further examination.

5. Conclusions

In this paper we have reconstructed changes in the seasonal precipitation cycle over the northern SCS during
the middle to late Holocene, based on coupled Sr/Ca and δ18O records from reef corals. Our results indicate
temporal variations in the timing of the rainy season during this period. Unlike the current summer and
autumn rainy season (June–October), the rainy season during the middle to late Holocene occurred during
the autumn and winter (August–December) around 1513 and 6789 years B.P., but in winter and spring
around 5011 years B.P. (December–March) and 2541 years B.P. (January–April). The timing of precipitation
showed no consistent pattern during the period around 5906 years B.P. Migration of the position of the ITCZ
may have caused a shift in the rainy season timing during the middle to late Holocene. A relatively strong
summer monsoon in Asia during the middle to late Holocene drove the ITCZ northward of its present loca-
tion, along with the location of themain rainband, resulting in negative rainfall anomalies during the summer
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for the northern SCS, and a rainfall peak in autumn–winter. A springtime rainy season may be triggered by an
enhanced springtime frontal system.
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