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The Early Paleozoic intracontinental orogenic belt in the South China Block (SCB) is composed of massive granit-
oids andhigh-grademetamorphic rocks. Compared to thewidespread distributions of early Paleozoic S-type gran-
ites in the eastern SCB, coeval I-type granitoids are rare and consequently receive much less attention. Two
spatially associated granodiorite plutons in the northwestern rim of the orogen, namely the Banshanpu pluton
and Hongxiaqiao pluton, have been investigated in order to determine how they fit into the geodynamic setting.
The Hongxiaqiao pluton shares many lithological similarities with the Banshanpu pluton, except for the presence
of abundant mafic microgranular enclaves (MMEs) in the Hongxiaqiao pluton. Zircon U–Pb dating has yielded
weighted mean 206Pb/238U ages of 432 ± 3 Ma and 434 ± 3 Ma for the Banshanpu and Hongxiaqiao plutons, re-
spectively, indicating that they were emplaced coevally in the early Silurian. Samples from the two plutons
possess similar Nd–Sr isotope compositions (εNdT = −8.32 to −6.88; 87Sr/86Sri = 0.7109–0.7169), indicating
that they were derived from a similar crustal source. Rocks from the Banshanpu pluton are intermediate- to
high-K calc-alkaline and show strongly peraluminous (A/CNK N 1.1), adakite-like characteristics (Sr/Y ratios
N 31; Yb b 0.91 ppm), consistentwith an origin of partial melting of amphibolite in the garnet stability field. Sam-
ples from the Hongxiaqiao pluton contain lower SiO2 but considerably higher Fe2O3

T, TiO2, P2O5 and highly incom-
patible elements (e.g. Rb, Cs, Th and U) than those of the Banshanpu pluton. The MMEs from the Hongxiaqiao
pluton give ages similar to that of their host granite (429 ± 5 Ma), and their Nd–Sr isotope compositions
(εNdT =−7.45 to−7.03; 87Sr/86Sri = 0.7115–0.7143) imply an origin frommetasomatized lithospheric mantle.
The Hongxiaqiao pluton was possibly produced by a magma mixing between a crustal melt and a lithospheric
mantle-derived melt. Because the MMEs have relatively low Sr/Y (9–17) and (La/Yb)N (3–15) ratios, mixing of
the lithospheric mantle-derived melt with an adakite-like melt would dilute the adakitic signature and make com-
position of the mixture deviate from adakitic characteristics. A comprehensive evaluation of geochronological data
for magmatism and metamorphism in the orogeny reveals two phases of orogenesis: one before and one after ca.
440 Ma. The temporal and spatial developments of tectonomagmatism, as well as the increase in metamorphic
grade, are interpreted to record the progress of the intracontinental orogeny, which started in theWuyi-Yunkai do-
mains of the Cathysia Block in the Ordovician and propagated westward into the Yangtze Block in the Silurian.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Orogenic belts commonly form at convergent plate margins and
preserve important information of continental accretion and amal-
gamation (Wilson, 1965). Two categories for orogenic belts have
been recognized (Windley, 1995), i.e. collisional orogens formed by
collision of two continents (e.g. Himalaya and Alps, Sengör et al.,
1993; Yin and Harrison, 2000; Rossetti et al., 2004), and accretionary
chemistry, Chinese Academy of
0640, China. Tel.: +86 20 8529
orogens generated by accretion of juvenile materials such as sea-
mounts and island-arcs (Sengör et al., 1993; Windley, 1995). Dis-
tinctly different from the conventional orogenic belts along plate
margins, a third category, namely intra-continental (or intraplate)
orogenic belt, has also been recognized. Orogenic belts of the third
type are normally located hundreds or even thousands of kilometers
away from the edge of the continent, and commonly associated with
continental reactivation and reworking (Cawood and Tyler, 2004;
Holdsworth et al., 2001; Sandiford and Hand, 1998). Examples in-
clude the Cenozoic Tianshan orogenic belt in Central Asia (Yin
et al., 1998), the Petermann and Alice Springs orogenic belts in cen-
tral Australia (Hand and Sandiford, 1999; Raimondo et al., 2010), and
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the Laramide orogenic belt in Western America (English and
Johnston, 2004). The most remarkable features of intracontinental
orogenic belts are high-grade metamorphism and intensive defor-
mation, with or without sporadic magmatism.

The South China Block (SCB) consists of the Yangtze and Cathysia
blocks, which were amalgamated during the Early Neoproterozoic
(~880Ma) (Li et al., 2008b, 2009a). After the amalgamation, the SCB ex-
perienced three major orogenic events, i.e. Early Paleozoic, Triassic, and
Jurassic to Cretaceous (Y.J. Wang et al., 2013, and references therein).
The Early Paleozoic orogenic event, also called as Wuyi-Yunkai Orogen
(Z.X. Li et al., 2010) or Kwangsian Orogeny (Wang et al., 2010), has
been demonstrated to be an intracontinental orogen in response to
the closure of the pre-existing Nanhua rift (Charvet et al., 2010; Faure
et al., 2009; Z.X. Li et al., 2010; Wang et al., 2010). The Wuyi-Yunkai
Orogen is a broad orogen covering the entire Cathysia Block and part
of the Yangtze Block (Fig. 1), and could probably extend to the Korean
Peninsula and the Indochina Block (Z.X. Li et al., 2010, and references
therein). Besides the coeval metamorphism and deformation, a distinct
feature of theWuyi-Yunkai Orogen is the extensive distribution of early
Paleozoic granites, which is quite unique among intracontinental
orogens worldwide. In order to unravel the tectonic evolution and gen-
esis of the granites in theWuyi-Yunkai Orogen, several geodynamic sce-
narios have been proposed, e.g., transpression along faults (Charvet
et al., 2010), far-field response to the assembly of the Australian–
Indian plate with the Cathaysia Block (Y.J.Wang et al., 2011), heat accu-
mulation through decay of radioactive elements (Z.X. Li et al., 2010) and
post-kinematic lithospheric delamination (Yao et al., 2012), have been
proposed, and all these models considered that the Wuyi-Yunkai
Orogen must have experienced strong crustal thickening by crust
thrusting or intracontinental subduction.
Fig. 1. Geological map and distribution of the Early Paleozoic granitic plutons in the South Chin
China Block; NCB, North China Block; TB, Tarim Block. Faults: 1, Jiangshan-Shaoxing-Chenzho
Fault; 5, Changle-Nan’ao Fault; 6, Ganjiang Fault; 7, Zhangjiajie-Huayuan-Kaili fault. Age data
1-Li et al. (1989); 2-Li (1994); 3-Ding et al. (2005); 4-Xu et al. (2005); 5-Geng et al. (2006);
et al. (2008); 11-Liu et al. (2008); 12-Shen et al. (2008); 13-Zeng et al. (2008); 14-Cheng et
18-Yang et al. (2010); 19-F.R. Zhang et al. (2010); 20-F.R. Zhang et al. (2010); 21-F.F. Zhan
(2011); 25-W.L. Zhang et al. (2011); 26-Y. Zhang et al. (2011); 27-Chu et al. (2012); 28-Zhao
et al. (2012); 33-this study.
Granites record important information regarding the nature and
timing of orogenesis. Three primary features of granitic magmatism in
the Wuyi-Yunkai Orogen should be noted. First, almost all the granitic
intrusions with ages N440 Ma are located in the eastern Wuyi-Yunkai
Orogen (i.e. Wuyi-Yunkai domains, Fig. 1), whereas those with ages
b440 Ma occur throughout the Wuyi-Yunkai Orogen. Second, felsic in-
trusions in the Wuyi-Yunkai Orogen are dominated by peraluminous
S-type granite, and granites of other types (e.g. I-type and A-type) are
sparse (Shu, 2006). Third, no adakitic rocks have been reported in the
orogenic core (Wuyi-Yunkai domains), even though crust in the core
area was doubled in thickened. So far, most workers have focused
their studies on theWuyi-Yunkai domainswhere peraluminous granite
is predominant. Here, we report geochemical data and zircon U–Pb ages
for I-type granitic intrusions in the Yangtze Block, at the northwestern
margin of the Wuyi-Yunkai Orogen, aimed at: (1) testing previous
models; and (2) improving our understanding of the mechanism and
geodynamic process that generated the early Paleozoic intracontinental
orogensis.

2. Geological background and sample descriptions

2.1. Geological background

The SCB is composed of the Yangtze Block in the northwest and the
Cathaysia Block in the southeast (Fig. 1), which amalgamated along the
2000 km-long Jiangshan-Shaoxing-Chenzhou-Linwu Fault in the early
Neoproterozoic (~880 Ma) (Li et al., 2008b, 2009a). Subsequently, a rift,
named the Nanhua rift developed in the eastern SCB from the
Neoproterozoic to early Paleozoic and was filled with thick (N10,000 m)
sediments (Li et al., 2008a; Shu, 2006; Wang and Li, 2003). The rift failed
a Block (modified after Sun, 2006; W.X. Li et al., 2010; Y.J. Wang et al., 2011). SCB, South
u-Linwu Fault; 2, Anhua-Luocheng Fault; 3, Heyuan-Guangfeng Fault; 4, Zhenghe-Dapu
source (zircon U–Pb) for Early Paleozoic granitoids and migmatites in the eastern SCB:
6-Peng et al. (2006); 7-Sun (2006); 8-Zhu et al. (2006); 9-Wang et al. (2007); 10-Chen
al. (2009a); 15-Cheng et al. (2009b); 16-Xu et al. (2009); 17-A.M. Zhang et al. (2010);
g et al. (2010); 22-Chen et al. (2011); 23-Y.J. Wang et al. (2011); 24-A.M. Zhang et al.
et al. (2013); 29-Wu et al. (2012); 30-J.K. Li et al. (2012); 31-Liu et al. (2012); 32-Zhao
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to evolve into an ocean, as evidenced by the lack of contemporaneous
ophiolite or slices of oceanic lithosphere (Shu et al., 2011). Rift-related
magmatism occurred mainly around 780–740 Ma (Wang and Li, 2003;
Zheng et al., 2008), and there is no sign of magmatism after 740 Ma, al-
though numerous 500–700 Ma magmatic detrital and inherited zircons
associated with the Late Neoproterozoic–Cambrian orogen have been re-
ported (Li et al., 2014; Yao et al., 2014). In the early Paleozoic, a compres-
sional regime dominated the tectonic evolution of the area and gave rise
to the final closure of the Nanhua rift and intracontinental orogenesis
(Wang and Li, 2003), resulting in not only deformation and metamor-
phism of pre-Devonian rocks (Shu, 2006), but also extensive felsic
magmatism (Chu et al., 2012; Y.J. Wang et al., 2011; C. Zhang et al.,
2011; Zhang et al., 2012). After the intracontinental orogenic event, the
SCB remained relatively intact until the early to middle Permian (X.H. Li
et al., 2012), when intensive reworking of the pre-Jurassic rocks brought
about widespread crustal melting and ~80% of total granitic rocks in the
eastern SCB (Sun, 2006).

Both the Cathysia and Yangtze blocks were involved in the Wuyi-
Yunkai Orogen.However, these twoblocks showdifferentmanifestations
of the intracontinental orogensis, with the Cathysia Block having experi-
enced more intensive metamorphism, deformation and magmatism. For
example, the Wuyi-Yunkai domains in the Cathysia Block experienced
both thin- and thick-skinned thrust tectonics and greenschist to granulite
facies metamorphism (Fig. 1, Charvet et al., 2010; Faure et al., 2009; Z.X.
Li et al., 2010), whereas the area between the Ganjiang Fault in the
Cathysia Block and the Zhangjiajie-Huayuan-Kaili Fault in the Yangtze
Block underwent greenschist metamorphism and only thin-skinned
thrust tectonics (Charvet et al., 2010; Hu et al., 2010). The oldest stratum
exposed in the study area is the Neoproterozoic Lengjiaxi Group, and re-
cent investigation on the Lengjiaxi Group around the study area has re-
vealed a mafic volcanic rock-dominated section, which constitutes the
basement of the study area and consists of greenschist to amphibolite
phase tholeiitic basalt and basaltic andesite with subordinate pelite
(Wuet al., 2004).More than onehundred early Paleozoic granitic plutons
are distributed between the Anhua-Luocheng Fault and the Zhenghe-
Dapu Fault (Fig. 1). Most of these granitic intrusions are within the
Cathysia Block, while early Paleozoic granites in the Yangtze Block are
only sporadically exposed.

2.2. Early Paleozoic granitoids

Early Paleozoic felsic intrusions in the Wuyi-Yunkai Orogen are
mainly peraluminous, dominated by S-type granites (Shu, 2006). The
lack of mafic enclaves and their crustal Nd–Hf isotope compositions
suggest that the S-type granites were mainly derived from partial melt-
ing of crustal materials. In comparison with the widely distributed S-
type granites, I-type granites occur sporadically in the orogen and
have not beenwell studied. Among Early Paleozoic I-type granitic intru-
sions of the Wuyi-Yunkai Orogen, two plutons in the SE Yangtze Block,
i.e. the Banshanpu pluton and the Hongxiaqiao pluton (Fig. 1), are se-
lected for further investigation. The two plutons are hornblende-
bearing I-type granitoids and one exhibits strongly peraluminous,
adakitic characteristics (Xu et al., 2006), which are quite unusual and
only sporadically reported (e.g. Q. Wang et al., 2011). Both the
Banshanpu and Hongxiaqiao plutons are round in shape and occur in
close proximity, being 0.5 km apart (Fig. 2). The plutons were intruded
into theNeoproterozoic Lengjiaxi Group, and are overlain by Late Paleo-
zoic strata (BGMRHP, 1988) (Fig. 2). The plutons are undeformed, and
the rocks generally show massive, medium-grained structure. Rocks of
the Banshanpu pluton consist mainly of quartz (25–35 vol.%), plagio-
clase (30–45 vol.%), K-feldspar (15–30 vol.%), biotite (10–15 vol.%),
hornblende (~5 vol.%) and accessory zircon, apatite, titanite, allanite
and Fe–Ti oxide. Rocks of theHongxiaqiao pluton have a similarmineral
assemblage, with lesser proportions of quartz (20–30 vol.%) and K-
feldspar (10–20 vol.%), and more abundant plagioclase (40–50 vol.%),
biotite (10–20 vol.%) and hornblende (5–10 vol.%). The two plutons
have similar mineral association, whereas the Hongxiaqiao pluton has
higher proportion of Fe–Ti oxide. Both plutons contain xenoliths of
wall rock, mainly near the margins. Zircon and apatite are commonly
seen as inclusions within hornblende and biotite, whereas titanite and
allanite generally coexist with feldspar and quartz. A striking difference
between the two plutons is that mafic microgranular enclaves (MMEs)
commonly occur in the Hongxiaqiao pluton, but are only rarely ob-
served in the Banshanpu pluton.

2.3. MMEs within the Hongxiaqiao pluton

MostMMEs in the Hongxiaqiao pluton are elongated to ellipsoidal in
shape (Fig. 3), and are gray to dark-gray in color, with size ranging from
a few to tens of centimeters. Most MMEs show sharp boundaries with
their host, although some do exhibit transitional characteristics. The
MMEs have a porphyritic texture, with 10–20 vol.% of phenocrysts.
The matrix consists mainly of plagioclase (30–40 vol.%), hornblende
(10–20 vol.%), biotite (10–20 vol.%) and, locally, quartz (b5 vol.%),
with subordinate Fe–Ti oxides and acicular apatite. Themegacrysts con-
sist of K-feldspar and plagioclase with complex zoning, although quartz
and biotite can locally be found. In contrastwith theminerals of the host
rock that are normally tabular or stubby in shape, crystals of plagioclase
and hornblende in the MMEs are slender and elongated. Some
megacrysts of K-feldspar, biotite and quartz in the MMEs exhibit a
sieve-like texture, with tiny grains of plagioclase, hornblende and bio-
tite being enclosed within the megacrysts.

3. Analytical methods

3.1. Zircon U–Pb isotope analyses

Zirconswere separated using heavy liquid andmagnetic techniques,
and then purified by hand picking under a binocular microscope. About
100 grains were randomly selected andmounted on adhesive tape then
enclosed in epoxy resin and polished to about half their thickness. After
being photographed under reflected and transmitted light, the samples
were prepared for U–Pb dating. In order to investigate the structure of
the zircons and to choose target sites for U–Pb isotopic analyses,
cathodoluminescence (CL) imaging was carried out using a JXA-8100
Electron Probe Microanalyzer with Mono CL3 Cathodoluminescence
System for high resolution imaging and spectroscopy at the Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences (GIGCAS). CL
images of typical zircon grains are presented in Fig. 4. Zircon U–Pb dat-
ing for the two granitic plutons (samples YLL-1 and YH-1) was carried
out using an Agilent 7500a ICP-MS, coupled with a 193 nm wave laser
microprobe, at the State Key Laboratory of Isotope Geochronology and
Geochemistry, GIGCAS. Laser energy was 80 mJ and frequency was 10
Hz with ablation spot of 31 μm in diameter and 40 s ablation times. Zir-
con 91500 was used as the external standard for U–Pb dating, and was
analyzed once every 5 analyses. Detailed analytical procedures were
similar to those described by Li et al. (2011). Off-line selection and inte-
gration of background and analyte signals, and time-drift correction and
quantitative calibration for U–Pb dating were performed using the soft-
ware ICPMS DataCal 8.4 (Liu et al., 2010). Correction of common-Pb
followed the method described by Andersen (2002), and the dating re-
sults are presented in the concordia diagrams (Fig. 4). ISOPLOT (version
3.0) (Ludwig, 2003) was used to plot concordia diagrams and for age
calculations. Individual analyses with 1σ errors are available as supple-
mentary online material in Appendix A, and uncertainties in age results
are quoted at the 95% level (1σ).

Analyses for zircons from anMME sample (10BG2-4)were conduct-
ed using the Cameca IMS-1280 SIMS at the Institute of Geology andGeo-
physics, Chinese Academy of Sciences. The instrument description and
analytical procedure can be found in Li et al. (2009b), and only a brief
summary is described here. The primary O2

− ion beam spot is about
20*30 μm in size. Positive secondary ions were extracted with a 10 kV



Fig. 2. Geological sketch map of the Banshanpu and Hongxiaqiao plutons.
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potential. In the secondary ion beam optics, a 60 eV energywindowwas
used, together with a mass resolution of ca. 5400 (at 10% peak height),
to separate Pb+ peaks from isobaric interferences. A single electron
multiplier was used in ion-counting mode to measure secondary ion
beam intensities bypeak jumpingmode. Analyses of the standard zircon
Plešovice were interspersed with unknown grains. Each measurement
consists of 7 cycles. Pb/U calibration was performed relative to zircon
standard Plešovice (Sláma et al., 2008), while U and Th concentrations
were calibrated against 91500 (Wiedenbeck et al., 1995). A long-term
uncertainty of 1.5% (1σ RSD) for 206Pb/238U measurements of the stan-
dard zircons was propagated to the unknowns (Q.L. Li et al., 2010), de-
spite that themeasured 206Pb/238U error in a specific session is generally
≤1% (1σ RSD). Measured compositions were corrected for common Pb
using non-radiogenic 204Pb. Corrections are sufficiently small to be in-
sensitive to the choice of common Pb composition, and an average of
present-day crustal composition (Stacey and Kramers, 1975) is
used for the common Pb assuming that the common Pb is largely sur-
face contamination introduced during sample preparation. Data re-
duction was carried out using the ISOPLOT 3.0 program (Ludwig,
2003). Uncertainties on individual analyses in data tables are report-
ed at 1σ level; Concordia U–Pb ages are quoted with 95% confidence
Fig. 3.Outcrop picture ofmaficmicrogranular enclaves (MME) in the Hongxiaqiao pluton.
interval, except where noted otherwise. In order to monitor the
external uncertainties of SIMS U–Pb zircon dating calibrated against
Plešovice standard, an in-house zircon standard Qinghu was alter-
nately analyzed as an unknown together with other unknown
zircons. Twenty-two measurements on Qinghu zircon yield a
Concordia age of 160 ± 1 Ma, which is identical within error with
the recommended value of 159.5 ± 0.2 Ma (Li et al., 2013b). The
Cameca SIMS zircon U–Pb dating results are presented as supple-
mentary online material in Appendix B.

3.2. Whole rock geochemical analyses

Rock samples were crushed into small chips and ultrasonically
cleaned in distilled water with 5% HNO3 and distilled water, then
dried and handpicked to remove visible contamination. The rock chips
were then ground in an agate mill, and the resulting powder was used
for analyses ofmajor and trace elements, and Sr–Nd isotopes, atGIGCAS.
Major element oxides (wt.%) were determined on fused glasses with a
1:8 ratio of sample to Li2B4O7 flux, using a Rigaku ZSX100e X-ray fluo-
rescence spectrometer in the State Key Laboratory of Isotope Geochro-
nology, GIGCAS. The accuracy of the XRF analyses is estimated at ca.
1% for SiO2, ca. 5% for MnO and P2O5 and ca. 2% for other major oxides
(Li et al., 2003). Trace elements, including rare earth elements (REE),
were analyzed on a Perkin-Elmer Sciex ELAN 6000 ICP-MS at GIGCAS,
following procedures described by Li et al. (2002). Powdered samples
(50mg)were digestedwithmixed HNO3+HF acid in steel-bomb coat-
ed Teflon beakers for two days in order to ensure complete dissolution
of refractory minerals. An internal standard Rh solution was used to
monitor signal drift. USGS rock standards G-2, W-2, MRG-1 and AGV-1
and the Chinese national rock standards GSD-12, GSR-1, GSR-2
and GSR-3 were used to calibrate elemental concentrations of the
measured samples. Analytical precision was generally better than 5%
(Li et al., 2002).

3.3. Sr–Nd isotopic analyses

After separation of Sr and Nd using a two-step exchange procedure,
87Sr/86Sr and 143Nd/144Nd ratios were measured with a Micromass
IsoProbe multi-collector mass spectrometer (MC-ICP-MS) at the State
Key Laboratory of Isotope Geochronology and Geochemistry, GIGCAS,
following the procedures described by Wei et al. (2002) and Li et al.

image of Fig.�2
image of Fig.�3
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(2004). Measured 87Sr/86Sr and 143Nd/144Nd ratios were normalized to
86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, whereas the reported
87Sr/86Sr and 143Nd/144Nd ratios were adjusted to the NBS SRM 987
standard 87Sr/86Sr = 0.71025 and the Shin Etsu JNdi-1 standard
143Nd/144Nd = 0.512115, respectively.
Fig. 4. Zircon U–Pb concordia diagrams and CL images of representative zircon grains
(a) Bashanpu pluton; (b) Hongxiaqiao pluton; (c) MME within the Hongxiaqiao pluton.
4. Analytical results

4.1. Zircon U–Pb geochronology

4.1.1. The Banshanpu pluton
Sample YLL-1 from this pluton was processed for zircon separation.

Zircon grains from the Banshanpu pluton are commonly transparent,
stubby and prismatic without inherited cores (Fig. 4a). The zircon grains
range in size from 60 to 150 μm, with length-to-width ratios between
1.5 and 2.0. Twenty two zirconswere analyzed, and the analytical results
are listed in Supplementary online material (Appendix A). Most grains
have high Th/U ratios (0.59–1.19) and show concentric oscillatory zon-
ing, indicating an igneous origin. Twenty spots yield 206Pb/238U ages be-
tween 425 Ma and 438 Ma (Supplementary online material), which
form a coherent group with a weighted mean age of 432 ± 3 Ma
(MSWD = 0.40) (Fig. 4a), indicating that the Banshanpu pluton was
emplaced in the early Silurian. The other two analyses (YLL-1-19 and
YLL-1-21) give concordant ages of 480 Ma and 502 Ma that are
interpreted to be xenocryst incorporated from the wall-rocks.

4.1.2. The Hongxiaqiao pluton
Zircon grains for isotope analyses were separated from sample

YH-1 of the Hongxiaqiao pluton. Zircon grains from the pluton are
relatively large (80–200 μm) and elongated with length to width ra-
tios ranging from 1.5 to 3.0 (Fig. 4b). Most grains are euhedral to
subhedral, transparent and prismatic and display oscillatory zoning.
Inherited cores are observed in some zircons. Twenty-one zircons
were analyzed (Appendix A), and these have high Th/U ratios
(0.42–3.27), consistent with an igneous origin. Nineteen analyses
yield 206Pb/238U ages ranging from 424 Ma to 444 Ma, which record
a weighted mean age of 434 ± 3 Ma (MSWD = 0.83) (Fig. 4b).
This age is considered to reflect the emplacement time of the pluton.
In addition, spot YH-1-9 gives an older 206Pb/238U age of 780 Ma
which is interpreted to be xenocryst incorporated from the wall-
rocks (Appendix A). Spot YH-1-13 gives a discordant age (apparent
206Pb/238U age = 470 ± 6 Ma).

4.1.3. MME within the Hongxiaqiao pluton
A MME sample (10BG2-4) was processed for zircon separation.

Zircons are euhedral to subhedral, light-yellow to transparent crys-
tals, generally less than 100 μm in size. Different from zircons of
the host rocks, which occur as elongated crystals with concentric
and oscillatory zoning, zircons from the MME samples are generally
stubby crystals (length/width = 1–2.5) and display oscillatory zon-
ing in CL images (Fig. 4c). No inherited cores were found. A total of
7 zircons were analyzed and all possess high Th/U ratios (0.362–
1.797, Appendix B), which, together with their morphology and in-
ternal structure, indicate an igneous origin. Seven analyses of zircons
from sample 10BG2-4 form a coherent group on the concordia dia-
gram with a weighted mean 206Pb/238U age of 429 ± 5 Ma (Fig. 4c).
The age is indistinguishable from the zircon U–Pb ages of their host
within error (434± 3Ma, Fig. 4b), confirming that theMMEs formed
at the same time as their host.

4.2. Major oxides

Major oxide compositions of the samples are listed in Table 1. All the
granitoid samples possess intermediate to high SiO2 (64.0–69.7 wt.%)
and Al2O3 (15.2–15.7 wt.%) contents. Samples from the Hongxiaqiao
pluton fall in the granodiorite field in the TAS classification diagram,
while those from the Banshanpu pluton exhibit transitional characteris-
tics between the granodiorite and granite fields (Fig. 5). With an in-
crease in SiO2, the Banshanpu pluton samples exhibit decreasing
trends in most major oxides, whereas rocks from the Hongxiaqiao plu-
ton show a decrease in TiO2, Fe2O3

T, MgO and P2O5, together with insig-
nificant trends in Al2O3, CaO and Na2O (Table 1; Fig. 6). In comparison,
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Table 1
Major oxide and trace element concentrations of the granitoid plutons and associated MMEs in the eastern Yangtze Block.

Sample Banshanpu pluton Hongxiaqiao pluton

YLL
−1

YLL
−2

YLL
−3

YLL
−4

YLL
−5

YLL
−6

YLL
−7

YLL
−8

YLL
−9

YLL
−10

YLL
−11

YLL
−12

YH
−1

YH
−2

YH
−3

YH
−4

YH
−5

YH
−6

YH
−7

YH
−8

YH
−9

YH
−10

Major oxides (wt.%)
SiO2 68.7 68.6 69.0 69.1 69.7 69.3 69.1 69.1 69.2 69.2 69.6 68.7 65.0 65.2 65.3 65.2 64.8 64.4 64.9 65.0 65.3 65.2
TiO2 0.41 0.42 0.41 0.40 0.40 0.38 0.42 0.41 0.42 0.40 0.37 0.43 0.58 0.61 0.60 0.58 0.62 0.60 0.60 0.60 0.61 0.59
Al2O3 15.5 15.6 15.4 15.6 15.2 15.2 15.4 15.4 15.5 15.6 15.2 15.6 15.4 15.5 15.5 15.6 15.6 15.4 15.5 15.5 15.5 15.4
Fe2O3

T 2.92 2.95 2.89 2.87 2.93 2.78 2.97 2.96 2.99 2.87 2.68 3.05 4.46 4.66 4.62 4.58 4.78 4.52 4.65 4.74 4.63 4.51
MnO 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
MgO 1.48 1.54 1.47 1.44 1.46 1.37 1.58 1.46 1.43 1.44 1.36 1.48 2.56 2.66 2.61 2.52 2.69 2.67 2.65 2.64 2.64 2.63
CaO 3.16 2.84 2.43 3.05 2.64 2.97 2.87 3.14 3.17 3.09 2.90 2.83 4.11 4.05 4.18 4.13 4.07 3.75 4.19 4.28 4.23 3.93
Na2O 3.09 3.14 3.16 3.09 3.00 3.04 3.04 3.10 3.06 3.05 2.85 3.21 2.70 2.72 2.76 2.76 2.67 2.71 2.68 2.74 2.75 2.74
K2O 3.10 3.14 3.17 2.89 3.12 3.24 2.97 2.71 2.87 3.17 3.46 2.78 3.17 3.26 3.10 3.14 3.12 3.20 3.21 3.16 3.18 3.32
P2O5 0.10 0.10 0.10 0.10 0.11 0.08 0.11 0.11 0.11 0.10 0.09 0.12 0.16 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.17
LOI 1.33 1.51 1.84 1.35 1.29 1.38 1.36 1.47 1.06 0.90 1.32 1.68 1.72 0.93 0.98 1.07 1.22 2.52 1.28 0.95 0.84 1.33
Total 99.9 99.9 99.9 99.9 99.8 99.8 99.9 99.9 99.8 99.8 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Trace elements (ppm)
Sc 6.43 6.38 6.84 6.70 6.67 6.78 7.17 6.08 6.91 6.46 7.85 5.57 12.8 12.3 12.5 11.7 14.0 13.9 12.7 12.1 13.0 13.0
V 49.3 47.8 49.3 52.5 48.6 50.6 51.1 51.2 53.2 54.5 45.4 51.7 87.0 87.5 83.6 93.3 100 92.2 93.1 97.1 92.7 88.6
Cr 29.9 25.9 25.9 40.4 24.9 28.3 26.2 28.4 27.3 28.5 27.2 25.7 69.6 63.2 67.9 193 75.9 73.6 75.3 200 78.0 73.0
Co 49.2 38.7 30.6 48.5 39.5 41.9 49.9 30.5 32.4 41.5 34.6 31.2 44.4 45.9 43.5 14.0 62.8 60.5 50.2 14.5 40.2 56.1
Ni 19.7 19.0 19.3 19.7 17.5 18.3 18.8 18.7 18.8 18.8 17.7 19.3 36.5 40.0 36.5 38.2 39.0 39.0 37.9 39.0 39.0 37.1
Cu 10.8 10.6 12.1 10.2 9.6 11.1 14.7 11.0 14.4 13.6 9.7 9.4 23.5 29.2 29.3 23.3 26.2 40.9 22.2 28.0 27.1 25.5
Zn 40.0 40.4 44.8 41.6 37.7 37.5 40.4 40.8 43.2 39.3 37.4 42.0 50.2 53.3 49.8 49.7 53.9 53.8 55.6 50.8 53.2 49.9
Ga 16.4 16.1 16.7 16.9 15.8 15.9 16.6 16.5 17.6 16.9 15.4 17.7 18.0 17.4 17.1 17.3 18.5 18.4 18.1 17.6 18.1 17.6
Rb 120 132 149 119 119 136 121 131 129 125 119 141 151 155 149 146 167 163 166 162 167 164
Sr 416 462 280 376 341 350 467 335 378 394 403 335 350 344 345 352 375 382 344 343 343 340
Y 9.42 9.61 9.08 9.87 9.55 9.34 9.97 9.95 10.7 9.21 8.51 9.99 16.0 16.1 16.1 14.8 17.3 16.5 16.0 15.8 16.9 17.3
Zr 185 147 166 162 180 181 179 197 185 176 180 199 202 208 214 236 224 226 215 193 210 197
Nb 7.24 6.27 7.09 7.37 7.60 7.07 7.66 7.96 8.29 7.26 6.13 8.94 9.00 9.19 9.07 8.71 9.68 9.20 9.01 9.13 9.92 9.61
Cs 8.34 4.92 8.33 6.07 10.5 4.17 10.3 12.3 9.53 10.1 3.55 13.4 9.79 10.7 10.1 9.18 10.2 11.0 8.01 9.97 15.7 14.5
Ba 753 726 635 626 810 726 771 567 762 823 890 556 783 822 760 796 819 852 784 804 797 753
La 40.0 30.7 33.6 28.9 25.9 25.3 29.8 28.0 25.0 33.4 24.2 33.0 35.8 34.2 33.3 31.1 30.9 34.2 37.9 34.5 31.2 40.0
Ce 73.2 59.3 63.8 54.0 50.4 47.2 58.5 51.4 48.6 63.1 45.8 62.8 70.2 69.4 68.8 64.3 65.9 71.4 76.5 72.4 65.6 80.6
Pr 8.02 6.69 7.15 6.13 5.71 5.32 6.54 5.92 5.45 7.09 5.32 7.16 8.55 8.66 8.32 7.75 8.05 8.75 9.01 8.67 7.96 9.74
Nd 25.1 21.0 21.8 19.6 18.8 17.3 21.7 18.9 18.5 22.2 17.5 23.2 29.5 29.3 29.2 26.7 28.8 30.2 30.7 30.0 27.5 32.6
Sm 3.48 3.10 3.15 2.95 2.88 2.73 3.32 2.98 3.06 3.23 2.85 3.27 4.74 4.63 4.75 4.34 4.94 4.89 4.79 4.85 4.62 5.08
Eu 0.75 0.70 0.71 0.74 0.67 0.69 0.77 0.74 0.77 0.71 0.77 0.75 0.99 0.97 1.00 0.93 1.04 0.98 1.00 1.02 0.95 0.96
Gd 2.64 2.38 2.29 2.36 2.21 2.29 2.59 2.44 2.57 2.28 2.32 2.45 3.90 3.44 3.68 3.53 3.95 3.73 3.76 3.72 3.69 3.91
Tb 0.31 0.32 0.31 0.32 0.31 0.30 0.31 0.32 0.36 0.29 0.29 0.33 0.51 0.46 0.51 0.47 0.52 0.52 0.49 0.48 0.52 0.54
Dy 1.72 1.67 1.58 1.74 1.61 1.66 1.78 1.74 1.89 1.55 1.57 1.79 2.73 2.62 2.78 2.64 2.93 2.87 2.76 2.71 2.83 3.03
Ho 0.31 0.29 0.28 0.31 0.31 0.30 0.32 0.32 0.34 0.29 0.28 0.33 0.52 0.50 0.52 0.50 0.56 0.54 0.53 0.51 0.55 0.59
Er 0.82 0.81 0.75 0.82 0.83 0.81 0.84 0.82 0.92 0.71 0.70 0.89 1.40 1.32 1.37 1.35 1.49 1.47 1.47 1.38 1.45 1.56
Tm 0.12 0.11 0.11 0.12 0.12 0.12 0.13 0.13 0.14 0.11 0.10 0.13 0.22 0.20 0.21 0.21 0.23 0.23 0.22 0.21 0.22 0.24
Yb 0.80 0.76 0.73 0.78 0.84 0.78 0.86 0.84 0.91 0.74 0.67 0.82 1.45 1.35 1.37 1.39 1.54 1.55 1.49 1.42 1.52 1.55
Lu 0.13 0.11 0.12 0.12 0.13 0.12 0.13 0.13 0.13 0.12 0.10 0.13 0.23 0.22 0.22 0.22 0.25 0.25 0.23 0.23 0.24 0.24
Hf 4.85 3.73 4.32 4.01 4.77 4.48 4.90 4.90 4.78 4.43 4.43 4.86 5.51 5.37 5.53 6.31 5.77 6.22 5.87 5.13 5.73 5.35
Ta 0.84 0.58 0.76 0.88 0.84 0.81 0.94 0.88 0.92 0.77 0.58 0.85 0.96 0.94 0.92 0.82 1.09 1.05 0.96 0.87 1.22 1.03
Pb 113 105 97.8 109 109 102 116 98.9 119 120 108 115 126 121 123 120 131 138 125 128 133 131
Th 20.4 17.9 19.3 19.3 15.2 14.6 18.1 15.9 18.2 20.2 13.7 19.9 23.1 21.4 23.0 21.7 25.4 26.7 24.6 24.7 22.2 26.8
U 2.77 3.05 3.25 3.06 4.37 3.24 3.88 3.77 3.33 3.50 2.13 4.98 3.54 3.21 3.55 4.10 4.29 5.28 5.23 4.90 4.11 7.05
LaN/YbN 35.8 29.1 33.2 26.6 22.2 23.2 24.8 23.8 19.6 32.4 25.9 29.0 17.7 18.2 17.4 16.0 14.4 15.8 18.3 17.4 14.7 18.5
Eu/Eu* 0.76 0.78 0.80 0.85 0.81 0.85 0.80 0.84 0.84 0.80 0.92 0.81 0.71 0.75 0.73 0.72 0.72 0.70 0.72 0.74 0.70 0.66
Mg# 54.1 54.9 54.4 54.0 53.8 53.4 55.3 53.5 52.7 53.9 54.1 53.0 57.2 57.0 56.8 56.2 56.8 58.0 57.0 56.5 57.0 57.6

Mg#= 100*Mg/(Mg + Fe2+), assuming Fe2+/Fetotal =0.85; LOI = loss of ignition; Fe2O3
T = total Fe oxides as Fe2O3; footnote N means chondrite normalization. 39
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Table 1
Major oxide and trace element concentrations of the granitoid plutons and associated MMEs in the eastern Yangtze Block.

Sample Hongxiaqiao pluton MME

YH
−11

YH
−12

YH
−13

YH
−14

YH
−15

YH
−16

YH
−17

YH
−18

YH
−19

YH
−20

YH
−21

YH
−22

YH
−23

YH
−24

YH
−25

YH
−26

YH
−27

YH
−28

10BG
1-01

10BG
1-02

10BG
1-04

10BG
1-06

10BG
2-3

10BG
2-4

10BG
2-5

Major oxides (wt.%)
SiO2 65.2 64.0 64.2 64.9 65.3 65.0 64.8 64.4 64.5 65.0 64.6 65.2 65.0 65.2 65.3 65.4 64.9 64.2 55.9 53.2 53.2 54.9 58.7 53.2 52.2
TiO2 0.59 0.60 0.63 0.59 0.58 0.59 0.57 0.61 0.63 0.59 0.61 0.60 0.59 0.61 0.58 0.58 0.61 0.64 0.86 0.81 0.80 0.92 0.85 0.84 0.85
Al2O3 15.4 15.4 15.6 15.5 15.5 15.5 15.4 15.6 15.6 15.6 15.5 15.6 15.7 15.6 15.7 15.5 15.5 15.6 17.0 16.7 16.7 17.1 17.8 13.8 13.8
Fe2O3

T 4.51 4.66 4.76 4.48 4.38 4.52 4.43 4.68 4.79 4.51 4.57 4.56 4.60 4.71 4.49 4.48 4.63 5.08 7.39 8.35 8.34 7.89 6.17 7.33 7.3
MnO 0.06 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.06 0.06 0.07 0.15 0.17 0.17 0.15 0.09 0.11 0.11
MgO 2.60 2.76 2.82 2.57 2.50 2.57 2.55 3.06 2.77 2.63 2.67 2.67 2.59 2.73 2.62 2.55 2.69 2.88 4.93 5.84 5.90 5.25 2.98 9.28 8.56
CaO 4.18 4.12 3.73 3.93 3.89 3.92 3.81 3.49 4.34 4.15 4.15 3.34 3.97 4.39 4.36 4.24 4.01 4.42 6.02 6.91 6.89 6.15 5.08 5.96 6.19
Na2O 2.67 2.59 2.63 2.65 2.66 2.65 2.64 2.80 2.60 2.61 2.75 2.70 2.71 2.73 2.75 2.63 2.50 2.65 2.88 3.06 2.97 2.91 3.13 1.97 2.29
K2O 3.33 3.35 3.28 3.32 3.34 3.36 3.30 3.29 3.14 3.20 3.23 3.15 3.31 2.95 3.07 3.27 3.41 3.07 2.72 2.10 2.22 2.61 2.79 3.21 1.50
P2O5 0.17 0.17 0.17 0.16 0.15 0.16 0.16 0.18 0.17 0.16 0.17 0.16 0.16 0.17 0.16 0.17 0.16 0.17 0.23 0.40 0.37 0.26 0.24 0.28 0.28
LOI 1.24 2.18 2.00 1.69 1.53 1.50 2.21 1.73 1.30 1.44 1.61 1.82 1.16 0.74 0.83 0.96 1.49 1.15 1.41 2.04 1.95 1.45 1.76 3.68 6.89
Total 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.6 99.6 99.6 99.6 99.6 99.6 100.0

Trace elements (ppm)
Sc 12.8 14.0 13.4 12.4 11.4 11.3 12.4 14.1 13.2 13.2 13.6 12.2 12.3 13.4 12.4 11.4 12.9 13.5 17.6 18.9 18.4 18.5 11.8 16.1 16.0
V 90.6 111 94.5 84.6 80.8 81.4 85.7 93.7 94.7 89.3 101 82.9 93.9 91.7 85.7 82.0 87.0 115 110 112 113 120 100 100 101
Cr 65.7 85.2 72.0 66.0 58.9 61.9 65.2 77.9 78.0 61.7 73.9 60.6 209 79.4 66.6 58.7 63.5 202 132 154 155 119 69.5 418 424
Co 42.0 52.1 40.3 41.4 45.7 37.6 33.6 45.6 47.7 49.3 58.6 38.4 14.2 41.2 47.9 44.4 44.3 16.1 16.7 20.7 21.2 18.0 12.7 25.7 24.3
Ni 35.7 40.8 36.6 35.5 33.7 34.1 38.0 40.1 38.2 35.4 38.5 34.8 38.1 38.6 38.5 34.3 37.8 40.8 30.5 71.8 73.7 30.0 11.9 171 145
Cu 19.5 29.6 26.7 74.2 71.4 75.2 70.2 17.9 44.3 21.8 22.2 59.8 22.5 30.9 20.6 29.0 49.5 34.7 141 178 167 150 47.6 7.9 9.4
Zn 51.5 57.8 53.8 50.9 48.2 48.4 51.2 50.9 54.1 47.7 52.3 49.2 53.9 53.0 50.5 46.5 52.6 54.0 60.1 65.5 65.6 64.2 44.1 52.6 60.0
Ga 16.8 18.1 18.2 17.9 17.2 16.8 17.6 17.6 18.1 17.3 17.7 17.0 18.1 18.5 18.1 16.3 18.8 17.4 14.0 14.7 14.5 14.2 13.6 11.2 11.5
Rb 144 157 163 161 153 174 155 157 168 150 180 157 167 171 154 144 178 146 111 87.7 96.7 118 101 165 66.2
Sr 327 343 349 349 337 342 320 410 361 371 364 352 376 355 364 334 363 353 193 218 224 188 240 171 157
Y 15.7 17.1 17.2 16.2 15.7 15.8 15.5 17.2 16.4 15.6 16.6 15.2 15.5 17.8 15.9 14.6 16.5 16.9 18.6 25.5 25.7 19.9 13.9 10.9 11.1
Zr 198 194 219 205 220 188 201 213 208 199 199 198 211 210 201 192 239 192 152 293 284 152 162 151 151
Nb 8.76 9.33 9.28 8.70 9.20 9.18 9.19 8.81 9.43 8.56 9.13 8.88 8.64 10.4 8.75 8.30 8.99 9.09 10.6 11.8 11.6 11.9 7.47 6.53 6.75
Cs 10.5 11.5 15.0 10.6 10.4 12.0 9.34 10.7 12.1 10.9 14.1 13.1 16.9 16.9 14.8 8.18 11.0 9.63 9.94 3.93 5.71 11.5 7.50 25.5 12.2
Ba 783 797 851 792 745 783 785 870 769 803 845 849 839 761 744 798 849 804 477 479 432 472 524 430 226
La 35.6 37.0 41.4 35.6 34.2 37.6 40.9 36.5 41.0 35.6 37.4 39.7 32.8 38.7 32.4 35.3 36.0 23.1 10.0 27.7 25.1 10.2 32.2 24.7 24.3
Ce 73.0 76.3 84.4 73.1 68.8 75.2 82.9 73.5 82.8 72.8 75.4 77.8 68.5 79.4 66.7 70.5 73.9 52.2 30.3 69.4 64.4 31.8 64.2 55.1 55.0
Pr 8.84 9.53 10.2 8.97 8.22 8.88 9.91 8.94 9.88 9.02 9.12 9.18 8.50 9.70 8.03 8.54 8.60 7.05 5.13 10.3 10.1 5.42 7.82 7.36 7.38
Nd 29.8 32.6 33.7 30.8 27.6 29.7 32.8 30.4 32.5 30.1 31.0 30.4 29.1 33.0 28.0 28.6 29.7 26.2 23.8 44.2 43.5 25.6 28.3 29.7 29.7
Sm 4.73 5.34 5.12 4.74 4.50 4.58 4.83 4.87 5.01 4.73 4.99 4.71 4.66 5.23 4.47 4.42 4.83 4.61 5.27 8.52 8.39 5.59 4.48 4.54 4.56
Eu 0.97 1.05 1.03 0.99 0.97 0.97 0.95 1.02 1.04 0.97 1.01 1.00 0.97 1.03 0.95 0.91 1.00 1.00 1.07 1.47 1.47 1.09 0.98 0.94 1.00
Gd 3.70 4.09 3.89 3.58 3.57 3.34 3.68 3.87 3.97 3.51 3.85 3.61 3.51 4.12 3.60 3.35 3.73 3.56 4.26 6.65 6.65 4.45 3.73 3.25 3.40
Tb 0.51 0.55 0.53 0.49 0.46 0.48 0.47 0.52 0.53 0.48 0.53 0.46 0.48 0.55 0.50 0.44 0.50 0.51 0.68 0.97 0.97 0.72 0.51 0.45 0.46
Dy 2.80 3.03 2.90 2.70 2.57 2.66 2.66 2.86 2.85 2.66 2.90 2.60 2.65 3.02 2.68 2.42 2.78 2.79 3.81 5.20 5.15 4.02 2.76 2.23 2.30
Ho 0.54 0.58 0.56 0.52 0.50 0.52 0.52 0.55 0.55 0.51 0.55 0.49 0.52 0.58 0.51 0.47 0.52 0.55 0.77 1.03 1.01 0.83 0.55 0.45 0.45
Er 1.43 1.51 1.47 1.39 1.33 1.37 1.37 1.46 1.48 1.37 1.45 1.30 1.38 1.53 1.36 1.24 1.42 1.45 2.10 2.88 2.81 2.21 1.58 1.21 1.26
Tm 0.22 0.22 0.22 0.21 0.21 0.21 0.22 0.22 0.22 0.20 0.22 0.20 0.22 0.23 0.21 0.19 0.22 0.22 0.31 0.40 0.40 0.32 0.22 0.18 0.18
Yb 1.47 1.53 1.54 1.43 1.38 1.39 1.44 1.49 1.51 1.39 1.49 1.30 1.41 1.56 1.40 1.28 1.46 1.48 2.00 2.63 2.62 2.11 1.55 1.15 1.21
Lu 0.23 0.24 0.24 0.23 0.22 0.22 0.22 0.23 0.24 0.22 0.23 0.21 0.22 0.25 0.22 0.19 0.23 0.23 0.30 0.39 0.39 0.31 0.23 0.18 0.18
Hf 5.43 5.34 5.91 5.65 5.96 5.03 5.45 5.69 5.67 5.44 5.36 5.03 5.57 5.76 5.20 5.09 6.37 5.21 4.95 9.29 9.23 4.96 5.12 4.83 4.84
Ta 0.91 0.98 0.95 1.02 0.99 1.07 1.02 0.97 0.98 0.94 1.04 0.87 0.85 1.16 0.93 0.82 0.96 0.85 1.09 1.11 1.07 1.24 0.73 0.53 0.55
Pb 133 118 112 157 137 164 177 122 120 114 129 108 131 141 128 124 121 121 30.4 27.7 27.0 29.9 28.2 26.1 39.2
Th 26.5 23.2 25.6 25.5 23.6 24.4 25.9 27.6 25.7 22.8 26.3 23.9 24.6 27.4 21.9 22.8 25.6 19.6 12.8 22.2 27.0 16.4 24.1 29.7 29.5
U 4.89 5.37 5.01 4.76 5.36 4.99 4.64 5.62 4.44 4.92 5.69 5.00 5.41 6.92 4.75 4.45 4.65 4.39 3.87 6.21 6.66 4.15 3.82 4.24 4.35
LaN/YbN 17.4 17.4 19.3 17.9 17.9 19.4 20.3 17.5 19.5 18.4 17.9 21.9 16.7 17.8 16.7 19.8 17.7 11.2 3.59 7.55 6.88 3.47 14.9 15.4 14.4
Eu/Eu* 0.71 0.69 0.70 0.73 0.74 0.75 0.69 0.72 0.71 0.73 0.71 0.74 0.74 0.68 0.72 0.72 0.72 0.76 0.69 0.60 0.60 0.67 0.73 0.75 0.78
Mg# 57.4 58.0 58.0 57.2 57.0 57.0 57.2 60.4 57.4 57.6 57.7 57.8 56.7 57.4 57.6 57.0 57.5 56.9 60.9 62.0 62.2 60.8 53.0 74.7 73.2
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Fig. 5. Nomenclature diagram for the granitoid and MME rocks from the eastern Yangtze
Block (after Cox et al., 1979; Wilson, 1989) (Solid line represents the boundary between
alkaline and sub-alkaline rocks).
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the Banshanpu pluton rocks are strongly peraluminous (A/CNK N 1.1)
and have intermediate- to high-K calc-alkaline compositions, whereas
samples from the Hongxiaqiao pluton seem to be more K-enriched
(K2O/Na2O = 1.08–1.36) and mostly exhibit weak peraluminous char-
acteristics (Fig. 7a, b).

MME samples from the Hongxiaqiao pluton possess wide ranges of
SiO2 (52–59 wt.%) and Al2O3 (13.8–17.8 wt.%) (Table 1), and their var-
iably high K2O contents (1.50–3.21 wt.%) indicate calc-alkaline to high-
K calc-alkaline characteristics (Fig. 7b). In spite of their wide range of
MgO (2.98–9.28 wt%), the MME samples all show relatively high Mg#
(53–75), and their P2O5 contents (0.23–0.40 wt%) are significantly
higher than those of coeval high-Mg basalt and gabbro (b0.24 wt%) in
the Cathysia Block (Y.J. Wang et al., 2013; Yao et al., 2012). In the TAS
classification diagram, most MME samples fall in the diorite fields
(Fig. 5).

4.3. Trace and rare earth elements

All the granodiorite andMME samples exhibit LREE-enriched patterns
(Fig. 8), and there is no significant trend of total REE with increasing SiO2

(not shown). Samples from the Banshanpu pluton have relatively low
HREE (Yb = 0.67–0.91 ppm) and are characterized by strongly fraction-
ated patterns ((La/Yb)N = 20–36; (Gd/Yb)N = 2.2–2.9), with weak neg-
ative Eu-anomalies (Eu/Eu*= 0.76–0.92). Samples from theHongxiaqiao
pluton aremoreREE-enriched (ΣREE= 125–187ppm) and exhibit inter-
mediate REE fractionation ((La/Yb)N= 11–22; (Gd/Yb)N= 2.0–2.3). The
MME samples have variable REE contents (90–182 ppm), but all exhibit
mild REE fractionation ((La/Yb)N= 3–15; (Gd/Yb)N= 1.7–2.3) although
their negative Eu anomalies (Eu/Eu* = 0.60–0.78) are equivalent to, or
slightly stronger, than those of their host rocks (Eu/Eu* = 0.66–0.76)
(Fig. 8c).

Samples from the Banshanpu and Hongxiaqiao plutons share some
similarities in their trace element characteristics, and they all possess rel-
atively high contents of large ion lithophile elements (LILE) (Fig. 8d, e),
e.g. Rb (119–180 ppm), Sr (280–467 ppm), Ba (556–890 ppm), U
(2.13–7.05 ppm) and Th (13.7–27.6 ppm). Comparatively, the
Banshanpu pluton samples have lower levels of high field strength ele-
ments (HFSE), e.g. Zr, Nb,Hf, Ta andY, and consequently higher Sr/Y ratios
(31–48) than those of the Hongxiaqiao pluton samples, while samples
from the Hongxiaqiao pluton possess higher levels of transitional metals
(e.g. V, Cr, Ni, Sc and Zn), consistent with their relatively high TiO2,
Fe2O3

T and MgO contents. The Hongxiaqiao pluton samples also contain
higher HFSE than those of the Banshanpu pluton samples. For example,
theHongxiaqiao pluton samples have Y contents (14.6–17.8 ppm) almost
twice as high as those of the Banshanpupluton samples (8.51–10.7 ppm),
which make their Sr/Y ratios (20–24) significantly lower. In the Sr/Y ver-
sus Y diagram (Fig. 9), samples from Banshanpu pluton fall in the adakite
field, whereas samples from Hongxiaqiao pluton simply display transi-
tional characteristics between adakite and normal arc rocks (Fig. 9). Sam-
ples from the Banshanpu and Hongxiaqiao plutons possess almost
identical Nb/Ta (8.1–10.9) and Zr/Hf (36.2–41) ratios, which are distinct
from those of theMME samples (Nb/Ta= 9.6–12.4; Zr/Hf = 30.6–31.7).

The MME samples have transitional metal element and LILE higher
and lower than those of the granodiorite samples, respectively
(Table 1). Their variable HFSE concentrations span the ranges of sam-
ples of the Banshanpu and Hongxiaqiao plutons. All the MME samples
possess low Sr/Y ratios (9–17), which are quite close to those of coeval
gabbro and high-Mg basalt in South China (Y.J. Wang et al., 2013; Yao
et al., 2012).

4.4. Sr–Nd isotopic compositions

Sr–Nd isotope compositions of the rock samples are listed in Table 2.
Although samples from the Banshanpu and Hongxiaqiao plutons show
distinct characteristics in major and trace element compositions, Nd–
Sr isotope compositions for the Banshanpu pluton (εNdT = −7.47 to
−6.88; 87Sr/86Sri = 0.7121–0.7169) and the Hongxiaqiao pluton
(εNdT=−8.32 to−7.28; 87Sr/86Sri = 0.7109–0.7149) samples mostly
overlap and are almost indistinguishable from those of the MME sam-
ples (εNdT = −7.45 to −7.03; 87Sr/86Sri = 0.7115–0.7143). In the
Nd–Sr isotope correlation diagram, all the granitoid and MME samples
fall in the field of Early Paleozoic granites of the eastern Yangtze Block
(Fig. 10), implying a strong affinity to this crustal source. The samples
display relatively small amounts of Sm/Nd fractionation (fSm/Nd =
−0.29 to−0.54), and all exhibit Mesoproterozoic model ages irrespec-
tive of assumptions on their evolutionary history (single-stage or two-
stage) (Table 2).

5. Discussion

5.1. Source and petrogenesis

5.1.1. The Banshanpu pluton
Rocks of the Banshanpu pluton are peraluminous (A/CNK N 1.1),

and have low Y (b10.7 ppm), HREE (Yb b 0.91 ppm) but high Sr
(280–462 ppm) contents, characterized by high Sr/Y (31–48) and
(La/Yb)N (20–36) ratios. These characteristics are similar to those
of adakite (Fig. 9) (Defant and Drummond, 1990), and imply a basaltic
source in a pressure–temperature field where garnet ± amphibole
is stable but plagioclase is not (i.e., eclogite, garnet amphibolite or
amphibolite) (Garrison and Davidson, 2003).

Adakiteswere originally defined as sodic, intermediate to silicic rocks,
characterized by high SiO2 (N56 wt%), Al2O3 (mostly N 15 wt%) and low
MgO (usually b 3 wt%), with high Sr (N400 ppm), low Y (b18 ppm) and
HREE (Yb b 1.9 ppm). The above characteristics, together with high Sr/Y
ratios (mostly N40) and strikingly fractionated REE (La/Yb N20) of
adakites, imply a genesis by partial melting of subducted slab in the gar-
net stability field (Defant and Drummond, 1990). More recently, a large
group of rocks with trace element characteristics similar to those of
adakite has been reported in collision-related environment (e.g. Chung
et al., 2003;Wang et al., 2005; Xu et al., 2002). In comparisonwith typical
adakites, rocks of this group are relatively K-rich and has been classified
as “K-adakites”, “continental adakites” or “C-type adakites” (Moyen,
2009; Xiao and Clemens, 2007). In addition, Kolb et al. (2013) use
“adakite-like” to describe calc-alkaline arc rocks that share similar
trace-element signatures, but have distinct major element concentra-
tions from those of typical adakites. It appears that adakites and
adakite-like rocks cover a wide spectrum and their lithological complex-
ity is closely related to their petrogentic diversity (Moyen, 2009 and
references therein).
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Fig. 6. Harker diagrams for the granitoid and MME samples (symbols are as in Fig. 5).
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A distinct feature, namely adakitic signature, of adakites and adakites-
like rocks is the lowHREE and high Sr concentrations, which are generally
interpreted in terms of amphibole, garnet, and plagioclase stability be-
cause of their high compatibility for these elements (Kay and Kay, 1991;
Moyen, 2009). Both amphibole and garnet fractionation can lead to Y
and HREE depletion, while the enrichment of Sr is generally ascribed to
the retarded crystallization of plagioclase in water-rich magmas (Grove
et al., 2002; Müntener et al., 2001). In addition to the slab-melting
model, other models have also been proposed to account for the genesis
of adakitic signature, including: (1) partial melting of previously existing
TTG or adakitic rocks (Kamei et al., 2009;Watkins et al., 2007); (2) partial
melting of delaminated lower crust and interacting to some extent with
mantlematerial (Kay andKay, 1993; Xu et al., 2002); (3)mixing between
crust- and mantle-derived magmas (Guo et al., 2007); (4) high pressure
fractional crystallization of mantle-derived primitive arc magma
(Castillo, 2006; Macpherson et al., 2006; Richards and Kerrich, 2007);
and (5) partial melting of thickened lower crust (Atherton and Petford,
1993; Chung et al., 2003; Wang et al., 2005). Because rocks of the
Banshanpu pluton have SiO2 contents (b70 wt%) strikingly lower, and
Cr (25–40 ppm) and Ni (17–20 ppm) contents significantly higher than
those of “pseudo-adakite” (SiO2 N 73 wt%; Cr ≤ 12 ppm; Ni ≤ 12 ppm)
(Kamei et al., 2009), genesis of the Banshanpu pluton by partial melting
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Fig. 7. (a) ANK-ACNK diagram (after Maniar and Piccoli, 1989); (b) K2O vs. SiO2 correla-
tion diagram (after Le Maitre et al., 1989) for granitoids and MME from the eastern
Yangtze Block. Symbols are as in Fig. 5.
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of cryptic adakitic rocks seems unlikely. Likewise, partial melting of
delaminated lower crust and magma mixing are unrealistic either be-
cause of the relatively low Mg# (~50) of the rocks and the lack of MME
in the pluton. Other models mainly involve two processes, i.e. high-
pressure fractionation of hydrous magmas and partial melting of lower
crust in the garnet stability field. Fractionation of both garnet and amphi-
bole can significantly decrease the HREE and Y levels in residual melt
(Davidson et al., 2007; Macpherson et al., 2006). Apart from garnet and
hornblende, some accessory minerals (e.g. titanite, apatite and zircon)
possess high partitioning coefficients of REE and their fractional crystalli-
zation may decrease the REE levels in residual melt (Li et al., 2013a). Of
the accessory minerals, some prefer to incorporate HREE (e.g. titanite
and zircon) while others are strongly enriched in LREE (e.g. apatite)
(Hoskin et al., 2000; Stefan and Stephan, 2006; Tiepolo et al., 2002), and
removal of these accessory minerals will give rise to counterbalanced ef-
fect and produce limited influence on the REE patterns of the residual
magma. Because high-pressure crystallization of garnet and hornblende
consumes iron and magnesium and requires high H2O contents
(N3wt%) (Alonso-Perez et al., 2009;Müntener et al., 2001), it is common-
ly invoked to account for the evolution of primary arcmagmas in subduc-
tion zones (e.g. Coldwell et al., 2011; Davidson et al., 2007; Hidalgo et al.,
2011; Rodríguez et al., 2007), where dehydration of subducting slab may
generate high water flux to the mantle wedge and cause abundant arc
magmas. In the case of granitoids, however, it has been demonstrated
that it is difficult to generate peraluminous I-type graniticmelt by remov-
al of amphibole, and experimental work has demonstrated that
dehydrationmelting of basaltic to andesitic rocks is capable of generating
peraluminous melt below garnet stability field where breakdown of bio-
tite and amphibole will yield pyroxene and give rise to the excess Al and
H2O in themelt (Chappell et al., 2012 and reference therein). I-type gran-
ite by dehydration melting is commonly silica-oversaturated, normal to
high-K calc-alkaline and markedly undersaturated in water, which, to-
gether with the relatively high viscosity, makes differentiation of granitic
magma difficult (Clemens and Stevens, 2012 and references therein).

Likemost I- and S-type granites, adakites and adakite-like rocks can be
generated by dehydration or hydrous partial melting of mafic lower crust
in both subduction-related environments and post-collisional settings
(e.g. Atherton and Petford, 1993; Chung et al., 2003). Discerning between
high-pressure fractionation and lower-crustal melting is difficult, and
field evidence (e.g. lithological association and proportion of adakites or
adakitic rocks)must be taken into account. There are numerous examples
showing that adakites in subduction-related environment are commonly
associated with abundant mafic and ultramafic rocks (e.g. Castillo, 2006;
Dessimoz et al., 2012; Macpherson et al., 2006), which represent the pa-
rental magma evolving into adakites or adakite-like rocks through high-
pressure fractionation. Because the Wuyi-Yunkai Orogen is an intra-
continental orogen and there are no coeval and volumetrically abundant
mafic or ultramafic rocks associated with the pluton (Z.X. Li et al., 2010;
Wang et al., 2010); subduction-related models, e.g. partial melting of a
subducted slab andAFCprocess of primitive arcmagma, can be precluded
for the genesis of the Banshanpu pluton. Samples from the Banshanpu
pluton possess low εNd(t) values that are analogous to those of granite
and metabasalt in the eastern Yangtze Block, which, together with their
high radiogenic 87Sr/86Sri ratios, clearly indicate a crustal source
(Fig .10). Therefore, we tentatively consider partial melting of the mafic
lower crust as the more likely regime to generate the Banshanpu pluton.

Experimentalwork has demonstrated that adakitic signatures can be
achieved by dehydration and hydrous partial melting of a basaltic
source at P–T conditions of N1.0 GPa and N650 °C (Hastie et al., 2010
and references therein). The experiments have two folds of implication.
First, the residues of partial melting in the source may involve a wide
range of metamorphic phases, ranging from amphibolite, garnet am-
phibolite, eclogite or granulite; and second, adakitic signature can be
achieved at relatively lowpressures (~1.0GPa) as has been demonstrat-
ed in some studies (Johnson et al., 1997; Zellmer et al., 2012). This sug-
gests that adakitic signature can be attained under a normal crustal
thickness, and it is unnecessary to exclusively ascribe adakitic signature
to an over-thickened crust.

Rocks of the Banshanpu pluton have K2O/Na2O ratios (0.86–1.21)
significantly higher than those of typical adakites (~0.4) (Moyen,
2009). The relatively potassic composition generally reflects a K-rich
mafic source (Wang et al., 2005; Xiao and Clemens, 2007). Geological
investigation around the study area revealed a Late Archean to Mid-
proterozoic basement consisting of greenschist to amphibolite phase
tholeiitic basalt and basaltic andesite with subordinate pelite (Wu
et al., 2004). Anatexis experiment for interlayered amphibolite and
pelite at 10 kbar has demonstrated that a composite sourcewill become
more fertile than those with sole lithology and can give rise to more
melt in dehydration-melting (Skjerlie and Patiño Douce, 1995). Despite
the low-K composition of the metavolcanics, their contact with the K-
rich pelitewould facilitate the dehydration-melting and generate potas-
sic melt. If the above reasoning is correct, a question arises as to what
caused the adakitic signature of the Banshanpu pluton. Although both
garnet and amphibole, either as fractional or residual phases, can effec-
tively decrease the HREE and Y levels in partial melts, they cause differ-
ent REE fractionation. Garnet commonly incorporates heavy REEs,while
amphibole preferentially incorporates middle REEs (MREE) over heavy
REEs. In the Dy/Yb vs. La/Yb diagram (Fig. 11), samples from the
Banshanpu pluton exhibit a two-stage variation trend, i.e. with the in-
crease of La/Yb ratios, their Dy/Yb ratios increase accordingly then de-
crease at a gentle slope. The variation trend at the first stage is
coincident with the garnet vector, while the trend at the second stage
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Fig. 8. Chondrite-normalized REE patterns and primitive mantle normalized multi-element diagrams for the granitoid and MME samples (Normalizing values are from Sun and
McDonough, 1989).
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most likely reflects the fractionation or residue of amphibole. Crystalli-
zation of amphibole can occur at both high pressure and hypobaric con-
ditions, but amphiboles crystallized under the former condition can
scavenge HREE and MREE more effectively than those in the latter
case (Coldwell et al., 2011; Hastie et al., 2010; Larocque and Canil,
2010; Rodríguez et al., 2007). Because no pegmatitic or aplitic dykes
occur in the Banshanpu pluton, an extreme fractionation scenario can
be excluded (Clemens and Stevens, 2012). This suggests that magma
of the Banshanpu pluton must be water-undersaturated and probably
possessed relatively high viscosity. Therefore, it is reasonable to infer
that the initially increasing and subsequently decreasing Dy/Yb ratios
with increasing La/Yb ratiosmost likely resulted from the residue of gar-
net and amphibole in the source. The source and petrogenesis of the
Banshanpupluton can be further illustratedwith theNb/Ta vs. Zr/Smdi-
agram (Fig. 12), which was designed to discern source nature of TTG
and adakite-like rocks (Foley et al., 2002).When plotted in the diagram,
all plots of the Banshanpu pluton fall into the fourth quadrant and are
very close to the modeled melt of amphibolite, whereas adakitic rocks
from the Tibetan Plateau exhibit much higher Nb/Ta ratios (Fig. 12).
The remarkable difference between the C-type adakite in Tibet and
the Banshanpu pluton implies that the crustal source of the Banshanpu
pluton may not undergo significant thickening.
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Fig. 9. Chemical discrimination diagram of Sr/Y versus Y for the Banshanpu and
Hongxiaqiao plutons (after Defant and Drummond, 1993; symbols are as in Fig. 5).

Fig. 10. Nd–Sr isotope compositions of the granitoid and MME samples (calculated
at 432 Ma; symbols are as in Fig. 5). Data source: Neoproterozoic TTG-like rocks in the
Yangtze Craton (Zhang et al., 2009); Early Paleozoic granites in the eastern Yangtze
Block (Cheng et al., 2009a, 2009b; Zhang et al., 2012); Early Paleozoic granites in the
Cathaysia Block (Bai et al., 2006; Geng et al., 2006; Z.X. Li et al., 2010; Shen et al., 2008;
Y.J. Wang et al., 2011; F.R. Zhang et al., 2010; Zhang et al., 2012).
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5.1.2. The Hongxiaqiao pluton
Although the closely associated granitoids of the Banshanpu and

Hongxiaqiao plutons possess almost identical Nd–Sr isotopic composi-
tions, rocks from the Banshanpu and Hongxiaqiao plutons show differ-
ent major and trace element compositions. Because rocks of the
Hongxiaqiao pluton have lower SiO2 but relatively higher Rb, Cs and U
contents than those of the Banshanpu pluton (Table 2), they cannot
readily be attributed to various degrees of fractional crystallization or
partial melting of a parental magma/common source. The two plutons
exhibit similar variation trend on most major oxides (Fig. 6), implying
a close genetic relationship. Simultaneous emplacement and spatially
adjacent occurrence strongly suggest that the two plutons may have
originated from a common crustal source. A critical difference between
the two plutons is that MME commonly occurs in the Hongxiaqiao plu-
ton but is rare in the Banshanpu pluton. The occurrence of coeval MME
suggests that a magma mixing regime between mantle- and crust-
derived melts must have involved (Didier and Barbarin, 1991), thus it
is reasonable to infer that the Hongxiaqiao and Banshanpu plutons
Table 2
Sr–Nd isotopic compositions for the granitoid rocks and associated MME samples.

Sample 87Rb/86Sr 87Sr/86Sr Error (2σ) 87Sr/86Sr (i) 147

BP YLL-3 1.4984 0.721557 0.000004 0.7121 0.0
YLL-5 0.9882 0.723169 0.000004 0.7169 0.0
YLL-11 0.8315 0.719237 0.000004 0.7140 0.1
YLL-12 1.1875 0.720510 0.000005 0.7130 0.0

HP YH-1 1.2179 0.722340 0.000004 0.7146 0.1
YH-2 1.2668 0.722404 0.000003 0.7144 0.1
YH-8 1.3366 0.722313 0.000003 0.7139 0.1
YH-9 1.3680 0.719561 0.000003 0.7109 0.1
YH-13 1.3198 0.722454 0.000004 0.7141 0.0
YH-14 1.2975 0.722958 0.000004 0.7147 0.0
YH-18 1.0820 0.721741 0.000004 0.7149 0.0
YH-24 1.3610 0.722892 0.000004 0.7143 0.1
YH-26 1.2178 0.721934 0.000004 0.7142 0.0
YH-27 1.3853 0.722755 0.000004 0.7140 0.1

MME 10BG1-01 1.6246 0.723693 0.000013 0.7137 0.1
10BG1-02 1.1351 0.720946 0.000020 0.7140 0.1
10BG1-04 1.2200 0.721272 0.000019 0.7138 0.1
10BG1-06 1.7715 0.724513 0.000017 0.7136 0.1
10BG2-3 1.1856 0.721471 0.000019 0.7142 0.1
10BG2-4 2.7093 0.728195 0.000015 0.7115 0.0
10BG2-5 1.1918 0.721625 0.000016 0.7143 0.0

Notes: (1) 87Rb/86Sr and 147Sm/144Nd were calculated using whole-rock Rb, Sr, Sm and
(3) εNd(t) = [(143Nd/144Nd)S/(143Nd/144Nd)CHUR − 1] × 10,000; TDM = ln{[(143Nd/144

tion, (143Nd/144Nd)CHUR = 0.512638, (147Sm/144Nd)CHUR = 0.1967, (143Nd/144Nd)DM =
TDM − (TDM − t)((fcc − fs)/(fcc − fDM), where fcc, fs and fDM are the fSm/Nd values of the co
fcc = −0.4 and fDM = 0.08592, t = 432 Ma.
shared the same crustal source and that injection of mantle-derived
magma into the Hongxiaqiao pluton made its composition deviate
from that of the Banshanpu pluton. Such a mechanism can further be
demonstrated by the asymptotic curve in diagrams involving two ratios
of incompatible elements (Langmuir et al., 1978). In the Zr/Sm vs. Th/La
diagram, all the rock samples of this study plot along a hyperbolic line,
with plots of the Hongxiaqiao pluton in between those of MME and
Banshanpu samples (Fig. 13). As discussed above, the precursor
magma of the Banshanpu pluton rocks most likely resulted from partial
melting of the lower crust, thus the Hongxiaqiao pluton was probably
generated by mixing between the crustal melt with adakitic signature
and a mantle-derived magma. A few sample plots deviate from the
mixing lines towards lower Zr/Sm and Th/La ratios, which are probably
attributed to the crystallization of zircon that contains high Zr and Th
contents. Calculation based on a binary mixing model suggests that
Sm/144Nd 143Nd/144Nd Error (2σ) εNd (t) TDM (Ma) TDM2 (Ma)

917 0.511968 0.000009 −7.28 1474 1761
970 0.511982 0.000009 −7.30 1523 1762
034 0.511991 0.000008 −7.47 1597 1776
895 0.511982 0.000008 −6.88 1431 1729
019 0.511967 0.000009 −7.88 1611 1809
003 0.511982 0.000008 −7.49 1567 1778
026 0.511946 0.000009 −8.32 1649 1845
068 0.511968 0.000009 −8.12 1682 1829
964 0.511954 0.000009 −7.82 1551 1805
977 0.511957 0.000009 −7.84 1565 1806
979 0.511972 0.000010 −7.54 1547 1782
005 0.511971 0.000009 −7.71 1584 1795
980 0.511986 0.000010 −7.28 1530 1760
034 0.511982 0.000009 −7.65 1610 1791
402 0.512106 0.000008 −7.17 2157 1756
223 0.512059 0.000008 −7.19 1813 1752
225 0.512063 0.000006 −7.13 1812 1747
385 0.512092 0.000008 −7.45 2135 1771
006 0.512002 0.000009 −7.11 1544 1747
970 0.511996 0.000008 −7.03 1504 1740
976 0.511982 0.000006 −7.33 1530 1765

Nd contents in Table 1; (2) The errors of 87Sr/86Sr and 143Nd/144Nd are all 2σ;
Nd)S − (143Nd/144Nd)DM]/ [(143Sm/144Nd)S − (147Sm/144Nd)DM]}/λ; In the calcula-
0.51315, (147Sm/144Nd)DM = 0.2137, λ = 0.00654 Ga−1 and t = 432 Ma. TDM2 =
ntinental crust, the sample and the depletedmantle, respectively; In this calculation,
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Fig. 11. La/Yb vs. Dy/Yb diagram for the granitoid andMME rocks (symbols are as in Fig. 5). Fig. 13. Th/La vs. Zr/Sm covariant diagram for the granitoid andMMEs rocks (symbols are
as in Fig. 5).
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the ratio of the crustal melt to mantle-derived melt was around 6:4
(Fig. 13).

Unlike samples of the Banshanpu pluton with typical adakitic char-
acteristics, however, samples of theHongxiaqiao pluton possess consid-
erably lower Sr/Y and La/Yb ratios and do not fit the criteria of adakitic
rocks (Richards and Kerrich, 2007), although their Sr concentrations are
equivalent to those of the Banshanpu pluton samples. We interpret this
to mean that the original component of the crustal melt may be identi-
cal to themagmaof the Banshanpu pluton, but thatmagmamixingwith
amantle-derived componentwas responsible for the relatively low Sr/Y
and La/Yb ratios of the Hongxiaqiao pluton rocks (Table 1). This infer-
ence may have important bearings on the genesis of adakitic rocks. Pre-
vious authors have concentrated on the genesis of adakitic rocks, and
magma mixing has been invoked as an alternative regime to account
for the formation of adakitic rocks (e.g. Guo et al., 2007). However, little
attention has been paid to the possibility thatmelt evolution towards an
adakitic composition could be aborted due tomixingwith amagma that
lacked a garnet signature. The mantle-derived magma, as represented
by the MME samples, is characterized by relatively low Sr (b240 ppm)
and high HREE (Yb ~ 2.63 ppm) contents, and their low (La/Yb)N ratios
(3–15) are consistent with a mantle source in the spinel stability field
(Y.J. Wang et al., 2013; Yao et al., 2012). Involvement of such a melt
from a shallow mantle source would dilute the adakitic signature
Fig. 12. Nb/Ta vs. Zr/Sm diagram for adakites and granitoid rocks of the Banshanpu and
Hongxiaqiao plutons (after Foley et al., 2002; symbols are as in Fig. 5). Data of adakitic
rocks by partial melting of thickened lower crust in Tibetan Plateau are fromWang et al.
(2005).
when mixed with a crustal melt and move the composition of the
magma away from the adakitic field.
5.1.3. Origin of the MME
Low SiO2 contents, high Mg# values (50–70) as well as relatively

high Cr (up to 424 ppm) and Ni (up to 171 ppm) contents suggest
that the MME samples most likely originated from a mantle source.
The MME samples are relatively depleted in Nb–Ta (Fig. 8f), and their
relatively low Nb/Ta ratios (b12.4) preclude the possibility of an origin
from asthenospheric mantle. In particular, the Nd–Sr isotope composi-
tions of theMME samples arewell within the range of those of the gran-
itoid host rocks and are distinctively different from asthenosphere-
derived components. Collectively, the above evidences suggest that
the MMEs most likely originated from a metasomatized lithospheric
mantle.

A key issue for understanding the tectonic evolution of the Wuyi-
Yunkai Orogen is the role that the mantle played during the develop-
ment of the intra-continental orogeny. However, early Paleozoic
mantle-derived magmatic rocks were not recognized within the
Wuyi-Yunkai Orogen until recently, when high-Mg basalt and gabbroic
intrusionswere identified (Y.J.Wang et al., 2013; Yao et al., 2012). These
mantle-derived rocks occur sporadically in the Cathysia Block and, al-
though variable in composition, all have been demonstrated to have
an origin from metasomatized lithospheric mantle (Y.J. Wang et al.,
2013; Yao et al., 2012). The MME samples have similar ages (ca.
430 Ma) and share many similarities with these high-Mg basalt and
gabbroic intrusions, e.g. high Mg# values and crust-like Nd–Sr isotope
compositions (Y.J. Wang et al., 2013; Yao et al., 2012), confirming
their same origin from a lithospheric mantle source.
5.2. Tectonic implication for the Wuyi-Yunkai Orogen

It is now widely accepted that the Wuyi-Yunkai Orogen is an
intracontinental orogen, and strong compression and intensive thrust-
ing due to the collision between the Cathysia and Yangtze blocks gave
rise to doubly-thickened crust (Charvet et al., 2010; Faure et al., 2009;
Z.X. Li et al., 2010;Wang et al., 2007; Y.J. Wang et al., 2013). Subsequent
delamination and post-orogenic collapse led to the upwelling of the as-
thenosphere and partial melting of the lower crust to form the wide-
spread early Paleozoic granitiods in Wuyi-Yunkai Orogen (Y.J. Wang
et al., 2013; Yao et al., 2012). Although a major advance has been
achieved in research of the Wuyi-Yunkai Orogen, some details of the
intra-continental orogensis still remain enigmatic.
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Fig. 14. Age histogram of the Early Paleozoic granitoid and migmatitic rocks in the SCB.
Data source: Chen et al. (2008, 2011), Cheng et al. (2009a, 2009b), Chu et al. (2012),
Geng et al. (2006), Li et al. (1989), Li (1994), J.K. Li et al. (2012), Liu et al. (2008, 2012),
Peng et al. (2006), Shen et al. (2008), Sun (2006), Wang et al. (2007), Y.J. Wang et al.
(2011), Wu et al. (2012), Xu et al. (2005, 2009), Yang et al. (2010), Zeng et al. (2008),
A.M. Zhang et al. (2010), F.F. Zhang et al. (2010), F.R. Zhang et al. (2010), W.L. Zhang
et al. (2011), L. Zhang et al. (2011), Zhao et al. (2012, 2013) and Zhu et al. (2006).
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5.2.1. Paradox of adakitic rocks
One of unexplained phenomena in the Wuyi-Yunkai Orogen is the

paradox of the adakitic rocks. Lower crust-derived adakites are usually
formed during collision, where crustal thickening can force the lower
crust into the garnet stability field (Chung et al., 2003; Wang et al.,
2005). In addition, where a thickened lithosphere was delaminated
into hot asthenospheric mantle, the detached lithospheric root would
melt to generate high-Mg adakitic magma (Kay and Kay, 1993; Xu
et al., 2002). Field studies demonstrate that the Wuyi-Yunkai Orogen
underwent significant crustal thickening due to intense thrusting
(Charvet et al., 2010; Z.X. Li et al., 2010), and a crustal delamination re-
gime was proposed to explain the wide occurrence of early Paleozoic
granitoids in the SCB (Y.J. Wang et al., 2013; Yao et al., 2012). If this
was the case, lower crust-derived adakitic rocks should be produced
in the Wuyi-Yunkai Orogen. However, no adakitic rocks, either low-
Mg or high-Mg types, have so far been reported in theWuyi-Yunkai do-
mains, where crustal thickening was believed to be the most intensive
(Charvet et al., 2010; Faure et al., 2009; Z.X. Li et al., 2010; Wang et al.,
2007, 2010). Instead, adakitic rocks (i.e. Banshanpu pluton) were pro-
duced at the northwestern margin of the Wuyi-Yunkai Orogen, far
from the Wuyi-Yunkai domains.

Although pressure (i.e. crustal thickness) plays a key role in produc-
ing adakitic magma in the lower crust, temperature is also a critical fac-
tor in controlling the composition of the partial melt. Recent
experimental study has revealed that the most appropriate P–T condi-
tions for producing adakitic melt in the lower crust are 800–950 °C
and 10–12.5 kb, and that higher temperature (N950–1000 °C) and pres-
sure (N45–50 km crust) may not be favorable for the genesis of adakitic
rocks (Qian and Hermann, 2013). This is because, if the temperature is
too high, garnet and hornblende will be consumed to produce plagio-
clase and pyroxene (Getsinger et al., 2009), thus adakitic characteristics
of partial melts would not be preserved.

Generally, delamination of thickened lower crust would cause ex-
tension and rapid rebound of the lithosphere (Kay and Kay, 1991;
McLelland et al., 1996). Large-scale extensionwould lead to fast upwell-
ing of the asthenospheric mantle, which would melt to generate mafic
magma and cause underplating of the lowest part of the crust. The un-
derplating process would further give rise to a “long lived” thermal
anomaly for several tens of millions of years (Schulmann et al., 2002;
Thompson, 1999). Therefore, a high temperature regime caused by the
upwelling of asthenosphere, and accompanied by orogenic collapse,
can best explain the widespread and synchronous none-adakitic gran-
ites in the Cathysia Block.

This hypothesis is further supported by other recent investigations.
High-Mg basalt with an age of 435 Ma has been found in the Cathysia
Block (Yao et al., 2012). The basalt was derived from partial melting of
an ancient metasomatized sub-continental lithospheric mantle, the po-
tential temperature of which was estimated to be higher than 1300 °C
based on primarymelt composition (Yao et al., 2012).Moreover, studies
on a synchronous charnockite and metamorphic complex in the SW
Cathysia Block revealed an intense tectonothermal event at ca.
430 Ma, characterized by high-temperature (up to 850 °C) regional
metamorphism and crustal anatexis at relatively shallow crustal level
(4–7 kb) (Chen et al., 2012; D. Wang et al., 2013). All these pieces of in-
formation, together with the sporadic distribution of mafic intrusions in
the Wuyi-Yunkai domains (Y.J. Wang et al., 2013), indicate that the
Cathysia Block experienced a more intensive tectonothermal event,
with much higher temperature, than that affecting the Yangtze Block.
This contrast in tectonothermal conditions may explain the differences
in magmatic activity between the Cathysia and Yangtze blocks in the
Early Paleozoic.

5.2.2. Two phases of orogenesis
An important issue that has puzzled researchers for a long time re-

lated to the temporal and spatial distribution of granitic intrusions in
theWuyi-Yunkai Orogen. The Early Paleozoic granites were considered
to be randomly distributed (Shu, 2012; Y.J.Wang et al., 2011, 2013). Our
recent investigation of the distribution of granitic intrusions shows,
however, that the Early Silurian (ca. 440 Ma) is a critical period relating
to the change in distribution of the magmatic rocks. Almost all the gra-
nitic plutons with ages older than 440 Ma are confined to the eastern
part of the orogen (e.g. Wuyi-Yunkai and Wugongshan domains),
whereas plutons younger than 440 Ma occur throughout the Wuyi-
Yunkai Orogen (Figs. 1, 14). The change in distribution of granitic plu-
tons suggests that the Wuyi-Yunkai Orogen experienced two phases
of orogenesis, with 440 Ma being the turning point.

Orogenesis was probably initiated in the Middle Ordovician
(N460 Ma), when the Nanhua rift closed and a compressive regime
dominated (Z.X. Li et al., 2010). During this period, intensive crustal
shortening, manifested by tight folds and thrust tectonics, rapidly thick-
ened the crust to twice its normal thickness (Charvet et al., 2010; Faure
et al., 2009; Wang et al., 2012). Rapid crustal thickening resulted in in-
tensive erosion, which gave rise to depositional rate 20 to 200 times
as much as usual (Chen et al., 2010; Rong et al., 2010). Metamorphism
occurred under intermediate P–T conditions, characterized by amineral
assemblage of staurolite, kyanite, garnet and biotite (BGMRJP, 1984).
Anatexis was common in the Wuyi-Yunkai domains, whereas
magmatism was sporadic and small in scale and dominated by granitic
veins and stocks (Z.X. Li et al., 2010; Wang et al., 2012). No mafic
magmatism has been identified at this time.

The second phase began in the Early Silurian (ca. 440 Ma), when
tectono-magmatic processes changed significantly. Metamorphic as-
semblages of this phase were characterized by biotite–garnet–silliman-
ite–muscovite, reflecting higher temperature and lower pressure than
those in the first phase (Faure et al., 2009; Zhao and Cawood, 1999).
Mantle-derived mafic magma was identified for the first time in the
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Fig. 15. εNdT vs. age diagram for the Early Paleozoic mafic rocks of the eastern SCB.
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Early Silurian (ca. 435Ma) (Yao et al., 2012), and occurred intermittent-
ly until the Early Devonian (Y.J. Wang et al., 2013; Zhong et al., 2013).
These mafic magmas were mainly derived from metasomatized litho-
spheric mantle with a rather high potential temperature (N1300 °C).
A striking trend can be observed in the εNdT vs. age diagram (Fig. 15),
i.e. with decreasing formation age, εNdT values of the mafic rocks in-
crease significantly. This implies an increasing influence of the astheno-
spheric mantle, which has been attributed to the rise of the lithosphere
thermal boundary during post-orogenic collapse or delamination (Y.J.
Wang et al., 2013; Yao et al., 2012). Granitic intrusions were widely
emplaced in both the Yangtze and Cathysia Blocks, suggesting wide-
spread crustal melting due to the underplating of mantle-derived
magmas. The presence of MMEs in the Hongxiaqiao pluton (434 Ma)
suggests that the lithosphericmantle of the Cathysia andYangtze blocks
was reworked simultaneously in the Early Silurian, although the process
in the Cathysia Block was more extreme.

6. Conclusions

Two closely-spaced granitoid plutons in the eastern Yangtze Block,
namely the Banshanpu pluton and the Hongxiaqiao pluton have been
investigate in order to provide some important constraints on the
Early Paleozoic intracontinental orogeny of South China. Based on the
geochronological and geochemical data as well as field observations,
the following conclusions can be made:

(1) LA-ICP-MS zircon dating indicates that theBanshanpupluton and
the Hongxiaqiao pluton formed at 432 ± 3 Ma and 434 ± 3 Ma,
respectively, indicating that they were emplaced coevally in the
Early Silurian.

(2) The plutons originated from a common crustal source at the gar-
net stability field, which imposed typical adakitic signatures on
the Banshanpu pluton. MMEs (ca. 430 Ma) in the Hongxiaqiao
pluton possess less fractionated REE patterns, and their Nd–Sr iso-
tope compositions are similar to those of the granodiorite, sug-
gesting an origin from metasomatized spinel-phase lithospheric
mantle. Rocks from theMME-bearingHongxiaqiao pluton possess
considerably lower Sr/Y and La/Yb ratios than those from the
MME-absence Banshanpu pluton. It is suggested that mixing of a
deep crust-derivedmelt with a shallowmantle-derivedmelt sup-
pressed the Sr/Y and La/Yb ratios of the Hongxiaqiao pluton rocks.

(3) An analysis of previous geochronological data from the orogen re-
veals two distinct pluses separated at ca. 440Ma. The first phase is
characterized by intensive crustal thickening, accompanied by
anatexis and metamorphism at intermediate P–T conditions. Gra-
nitic intrusions were scattered and mostly small in scale, and no
mafic magmatism was identified in this phase. The second phase
is characterized by high-T mafic magmatism, which reflects the
gradually increasing influence of asthenosphere-derived melt
with time. The change in magmatism and metamorphism reflects
a rise of the lithosphere boundary, probably caused by delamina-
tion during post-orogenic collapse. The unusually high tempera-
ture imposed on the Cathysia Block at this time may be
responsible for the scarcity of synchronous adakitic rocks in the
Wuyi-Yunkai domains, where the crust was doubled in the thick-
ness during the first phase of orogenesis.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2014.07.016.
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