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The age of the Emeishan lavas in SW China remains poorly constrained because the extrusive rocks are (1) ther-
mally overprinted and so represent an open system unsuitable for 40Ar/39Ar geochronology and (2) inmost cases
devoid of zircon so that it is impossible for the application of U–Pb geochronology. Existing radiometric age
constraints of Emeishan large igneous province are mainly from the application of SIMS and LA-ICP-MS U–Pb
techniques to zircons frommafic and felsic intrusions, which represent indirect constraints for the lavas. In an at-
tempt to directly determine the age of the Emeishan lava succession, high-resolution chemical abrasion-thermal
ionization mass spectrometry (CA-TIMS) zircon U–Pb techniques have been used on the felsic ignimbrite at the
uppermost part of the Emeishan lava succession. These techniques have yielded a weightedmean 206Pb/238U age
of 259.1 ± 0.5 Ma (n = 6; MSWD = 0.7). We interpret this age as the termination age of the Emeishan flood
basalts. The age of the Guadalupian–Lopingian boundary is still unconstrained by high-resolution geochronology
but is likely to be close to our new age for this felsic ignimbrite.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Numerous studies suggest a causal link between large igneous
provinces (LIPs) and mass extinctions and/or global environmental
changes in the history of the Earth (e.g., Courtillot and Renne, 2003;
Wignall, 2001). Evidence for a temporal link comes mainly from high-
resolution geochronology fromboth LIP products and altered claystones
within fossil-bearing strata that record extinctions. The most striking
example is the temporal coincidence of the Siberian Traps and the
Permian–Triassic mass extinction (Bowring et al., 1998; Mundil et al.,
2004; Reichow et al., 2009; Renne et al., 1995; Shen et al., 2011). It is
therefore evident that the accurate geochronology of LIPs is pivotal in
understanding both their geodynamic context as well as potential caus-
al links with biotic crises (Courtillot and Renne, 2003; Wignall, 2001).

Despite numerous geochemical, paleontological, paleomagnetic,
geophysical, and geochronological research on the Emeishan LIP (e.g.,
Ali et al., 2004; Chung and Jahn, 1995; He et al., 2003, 2007; Xiao
et al., 2004a; Xu et al., 2001, 2004, 2008, 2010; Zhou et al., 2002), the
age of the lavas is still debated (Shellnutt, in press; Shellnutt et al.,
2012). Although the Emeishan LIP has been dated by 40Ar/39Ar and
U–Pb techniques, many of the 40Ar/39Ar dating results yield Mesozoic–
Cenozoic ages (Ali et al., 2004; Lo et al., 2002), most likely as a result
of open system behavior of the analyzed minerals and rocks due to
Mesozoic and Cenozoic thermotectonic events in the western Yangtze
Block. Consequently, the timing of the Emeishan LIP magmatism is
mainly constrained by U–Pb zircon dates from mafic–ultramafic and
felsic intrusions (e.g., Shellnutt et al., 2012; Xu et al., 2008; Zhong
et al., 2007, 2009, 2011; Zhou et al., 2002). It is assumed that these intru-
sive bodies are genetically related to the Emeishan LIP, and the acquired
U–Pb ages imply that the main phase of the Emeishan LIP took place at
~257–260 Ma (Shellnutt et al., 2012; Xu et al., 2008; Zhou et al., 2002).
This age is broadly consistent with the stratigraphic constraints that
place the Emeishan basalts between the Middle and the Late Permian,
around the Guadalupian–Lopingian (G–L) boundary (259.8 ± 0.4 Ma;
Henderson et al., 2012).

Constraints for both the age and, in particular, the duration of the
Emeishan volcanism are therefore still scarce and controversial. This is
further complicated by ambiguous structural relationships of intrusions
andmafic sills anddykeswith respect to the extrusive rocks. It is unclear
that the Emeishan volcanic event represents a single event or multiple
phases of magmatism. This problem was partly resolved by He et al.
(2007) who dated detrital zircon crystals by Sensitive High Resolution
Ion Microprobe (SHRIMP) U–Pb methods from the clastic rocks from
the Xuanwei Formation. He et al. (2007) demonstrated that these zir-
cons (dated at 257 to 263 Ma) are mostly from acidic extrusives,
which are the latest magmatic phase of the Emeishan LIP and so pro-
vides constraints on the termination age of the Emeishan volcanism.
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However, the SHRIMP techniques generally yield percent level uncer-
tainty on individual spots analyses and 1–2% uncertainty on pooled
ages but can be prone to inaccuracy if poorly calibrated or inhomoge-
neous standard materials are used or the calibration is inconsistent.

The application of TIMS zirconU–Pb techniques to chemically abrad-
ed single zircon crystals (CA-TIMS; Mattinson, 2005; Mundil et al.,
2004) yields radiometric ages with superior precision and accuracy
compared to those based on micro-beam analyses, i.e., Secondary Ion
Mass Spectrometry (SIMS including SHRIMP) and Laser Ablation-
Inductively Coupled Plasma-Mass Spectrometer (LA-ICP-MS) (Mundil
et al., 2004; Shellnutt et al., 2012). In this study therefore, we use
CA-TIMS to date zircons from the felsic ignimbrite in the uppermost
part of the lava succession in the central part of the Emeishan LIP. The
results yield a termination age for the Emeishan flood basalts that is in
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good agreementwith the recently refined dates using the samemethod
for the alkaline granitic plutons from the Emeishan LIP (Shellnutt
et al., 2012). Potential implications of this age with regard to the G–L
boundary age are also briefly discussed.
2. Geological background

The Emeishan LIP in SW China (Fig. 1a), which consists of flood
basalts and contemporaneous mafic–ultramafic intrusions and felsic
plutons, covers an area ofmore than 2.5× 105 km2with a total thickness
ranging from several hundred meters at the margin up to 5 km in the
central area (Xu et al., 2001). Relatively limited exposure is likely due
to erosion along the Ailaoshan–Red River fault and the Longmenshan
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thrust belt (Xiao et al., 2004b) and subduction in the western Yangtze
Block during the closure of the paleo-Tethys ocean (Liu et al., 2000).

The Emeishan lava succession comprises predominantly basaltic
lavas and pyroclastic deposits, withminor amounts of picrite and basal-
tic andesite (Chung and Jahn, 1995; Song et al., 2001; Xu et al., 2001). In
the eastern part of the Emeishan LIP, the succession clearly rests on the
Middle Permian carbonates of the Maokou Formation and is directly
overlain by the Upper Permian terrestrial clastic rocks of the Xuanwei
Formation and the marine clastic rocks of the Longtan Formations (Jin
and Shang, 2000). However, in most parts of the Emeishan LIP, the
basalts are underlain by the Middle Permian Maokou Formation and
are overlain by the Upper Triassic or Lower Triassic sedimentary rocks
(Fig. 1b; He et al., 2007).

The Binchuan area was chosen for the current study because the
Emeishan lava succession in this area appears to have a maximum
thickness of about 5300 m (Xiao et al., 2004b), close to the central
area. In addition, the absence of erosional soil beds in the thick Binchuan
lava succession indicates a rapid eruption of the Emeishan volcanic
rocks. The Binchuan composite section was divided into six sub-units
(Fig. 1c, P2-1 to P2-6; Xiao et al., 2004a). The lower part of the lava succes-
sion (sub-units P2-1 and P2-2) consists mainly of aphyric and locally
hyaloclastite lavas. The middle part (sub-units P2-3 to P2-4) includes
more porphyritic basalts than the lower sub-units, whereas the upper
basalts (sub-units P2-5 and P2-6) have higher phenocryst contents than
those in the middle part. Several thin felsic volcanic rock layers are
intercalated within the topmost part of sub-unit P2-5 (Fig. 1c; He et al.,
2007). These felsic volcanic rocks have not been documented in other
parts of the LIP, probably due to extensive erosion in the central part
of the Emeishan (He et al., 2003, 2007; Xu et al., 2004). The felsic
volcanic layers in the uppermost part of the Binchuan section provide
a rare, but excellent, opportunity to constrain the upper age of the
Emeishan LIP.

3. Sampling and analytical methods

A felsic ignimbrite sample (JW-1) was taken from an interbedded
felsic volcanic rock layer with a thickness of ~6.5 m within the upper-
most unit of the Emeishan basalts in the Binchuan section which is lo-
cated in the town of Jiangwei in the Yunnan Province (25°59′19.50″N,
100°7′21.78″E) (Fig. 1). Zircons separated from this sample have been
previously dated by SHRIMP techniques to be 263 ± 4 Ma (He et al.,
2007).

Sample preparation, chemical processing and CA-TIMS zircon U–Pb
analyses were carried out at the Berkeley Geochronology Center. The
sample was crushed and milled, and the powder was wet-sieved to re-
move the ultra-fine fraction. The nonmagnetic fraction of the resulting
powder was separated by a Frantz Isodynamic Separator being put
through a heavy liquid density separation. Zirconsweremicroscopically
inspected and euhedral crystals were selected for analyses. Zircon crys-
tals were pretreated using the method of thermal annealing at 850 °C
for 48 h, followed by chemical abrasionwith conc. HF in pressurized dis-
solution capsules at 220 °C for 8 to 10 h to minimize the effects from Pb
loss (Mattinson, 2005;Mundil et al., 2004). Crystalswere selected based
on clarity and apparent absence of inherited cores, and photomicro-
graphs were taken to make estimates of grain weight and, ultimately,
U and Th concentrations. Analytical procedures follow those described
in Mundil et al. (2004). Comparison of the age results is facilitated by
inter-laboratory cross calibration (Black et al., 2003, 2004) and analyses
of reference materials (Mundil et al., 2004) as well as analyses of cali-
bration solution distributed by the EARTHTIME initiative (preliminary
BGC results are published in Irmis et al., 2011).

4. Results

Sample JW-1 is a fine-grained felsic ignimbrite and contains euhedral
long prismatic zircons. Analyses of six individual zircons yield a coherent
cluster with a weighted mean 206Pb/238U age of 259.1 ± 0.5 Ma
(MSWD = 0.7) (Fig. 2). Th/U of the zircon crystals is within a narrow
range of 0.55 to 0.65, indicating a uniform population (Table 1). The age
is interpreted to represent the mean crystallization age of the magmatic
zircon population and it is consistent with, but more precise than the
age obtained from previous SHRIMP zircon U–Pb age (263 ± 4 Ma,
MSWD= 7.5) reported by He et al. (2007).

5. Discussion

5.1. Age of the Emeishan volcanism

In the past two decades numerous studies have sought to constrain
the age and duration of the Emeishan LIP. Various dating techniques
were used and have yielded more than 50 radiometric ages ranging
from ~235 to ~271 Ma (summarized in Table 1 of Shellnutt, in press)
(Fig. 3). A brief assessment of these published dates is given below:

Ages determined by micro-beam analytical techniques (i.e., SIMS
and LA-ICP-MS) have constrained the intrusive magmatism of the
Emeishan LIP as being similar to the Capitanian–Wuchiapingian bound-
ary and the duration of the magmatism to be ~10 m.y. (Shellnutt et al.,
2012). A coherent age of 259 ± 3 Ma has been obtained from SHRIMP
zircon U–Pb dating for the Xinjie layered intrusion (Zhou et al., 2002).
Assuming that the Xinjie intrusion represents a part of the feeder sys-
temof the Emeishan LIP, Zhou et al. (2002) suggested that the Emeishan
LIP was emplaced at 259 ± 3 Ma. Guo et al. (2004) obtained a slightly
older age of 262 ± 3 Ma for the zircons of mafic dykes that intruded
Devonian strata in western Sichuan and they interpreted this age as
the onset of the flood volcanism. Zhong and Zhu (2006) obtained a
zircon U–Pb age of 259.3 ± 1.3 Ma for the Hongge intrusion, virtually
identical within the error to that for the Panzhihua intrusion (Zhou
et al., 2005). The Baimazhai intrusion in southern part of the Emeishan
LIP has a SHRIMP zircon U–Pb age of 258.5 ± 3.6 Ma (Wang et al.,
2006). Two ages of 260 ± 3 Ma and 258 ± 3 Ma have been obtained
for the mafic–ultramafic intrusion in the Funing area (Zhou et al.,
2006). Similar zircon U–Pb age (261 ± 4 Ma) was reported for the
nepheline syenite in the Maomaogou area, the central Emeishan LIP
(Luo et al., 2007). Recently, LA-ICP-MS zircon U–Pb analyses for the
mafic–ultramafic intrusions and felsic plutons in the central part of the
Emeishan LIP yielded ages ranging from 255.4 ± 3.1 Ma to 259.5 ±
2.7 Ma (Zhong et al., 2011). Although the obtained ages are overall con-
sistent with each other, the age range permissible within their
uncertainties is still ca. 10 m.y. (Fig. 3) if maximum error bounds are
taken into consideration (Shellnutt et al., 2012). By contrast, the



Table 1
U–Pb isotopic data for the felsic ignimbrite sample (JW-1).

Sample Cm. Pb
(pg)

Th/U 206Pb/204Pb 208Pb/204Pb 207Pb/235U 2σ
(%)

206Pb/238U 2σ
(%)

ρ 206Pb⁎/238U
(Ma)

2σ
(abs.)

207Pb⁎/235U
(Ma)

2σ
(abs.)

01 0.9 0.58 294 88.6 0.2922 5.64 0.040908 0.4 0.83 258.46 1.02 260.3 14.68
02 1.1 0.55 188 67.5 0.2934 6.59 0.040974 0.44 0.81 258.87 1.14 261.2 17.2
03 1.2 0.59 234 77.9 0.2919 5.07 0.041023 0.4 0.71 259.17 1.04 260.1 13.18
04 1.2 0.57 131 58.4 0.2926 9.94 0.041005 0.63 0.86 259.06 1.63 260.6 25.92
05 1.1 0.65 298 94.8 0.2989 4.39 0.041102 0.58 0.52 259.66 1.52 265.5 11.66
06 1.2 0.64 179 70.2 0.2984 6.73 0.041123 0.48 0.78 259.79 1.25 265.2 17.84

Pb blank composition is 206Pb/204Pb = 18.55 ± 0.63, 207Pb/204Pb = 15.50 ± 0.55, 208Pb/204Pb = 38.07 ± 1.56, and a 206Pb/204Pb–207Pb/204Pb correlation of +0.9.
Present day Th/U ratio is calculated from radiogenic 208Pb/206Pb and age.
Isotopic ratios are corrected for tracer contribution and mass fractionation (0.15 ± 0.09%/amu).
Ratios of radiogenic Pb versus U are corrected for mass fractionation, tracer contribution and common Pb contribution.
ρ is correlation coefficient of radiogenic 207Pb/235U versus 206Pb/238U.
Uncertainties of individual ratios and ages are given at the 2σ level and do not include decay constant errors.
Ratios involving 206Pb are corrected for initial disequilibrium in 230Th/238U adopting Th/U = 6 for the crystallization environment, resulting in a correction of 80–90 ky.
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magnetostratigraphic data and field observations indicate that thewhole
volcanic sequence formed within 1–2 m.y. (Ali et al., 2002; Zheng et al.,
2010).

The ID-TIMS zircon U–Pb dating method benefits from superior
precision although its spatial resolution is limited to entire crystals or
fragments and thus it has limited applicability when complex zircon
crystals comprising inherited cores are analyzed. On the other hand,
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the ‘chemical abrasion’ pretreatment method minimizes the effects of
Pb loss, which usually lead to spuriously younger ages (Mattinson,
2005; Mundil et al., 2004). The pretreatment could remove the
metamict portions within zircon crystals prior to analysis (Mattinson,
2005). Using CA-TIMS method, Shellnutt et al. (2012) obtained ages
on several syenitic and granitic plutons and mafic dykes in the Panxi
region, central part of the Emeishan LIP. Most of the results cluster at
~259 Ma with uncertainties of ±1 Ma (Fig. 3) and the magmatism in
the Emeishan LIP was constrained to an interval from ~257 to
~260 Ma (Shellnutt et al., 2012). The limited duration of Emeishan
magmatism is relatively short to the previous suggested ca. 10 m.y.
(Xu et al., 2008; Zhong et al., 2011). Nevertheless, whether this age in-
terval observed for the intrusive rocks is applicable to that for extrusive
rocks remains unclear.

The duration of the Emeishan volcanism could be determined by
directly dating the extrusive products throughout the basaltic piles.
Unfortunately, the 40Ar/39Ar isotopic dating technique proved to be in-
applicable for the Emeishan LIP due to the post-eruption alteration
and thermotectonic resetting of the basalts (Ali et al., 2004; Lo et al.,
2002). Basalts can alternatively be dated by zircon U–Pb methods but
are very scarce because Zr is undersaturated in most basaltic magmas.
No U-bearing minerals have been isolated from extrusive products of
the Emeishan LIP. Zircon has only been found in thin interbedded felsic
volcanic rock layers such as that analyzed in this study. Given the thin
felsic volcanic rock layers in the Binchuan section are at the topmost
of the sub-unit P2-5, the 259.1 ± 0.5 Ma that is acquired in this study
may be interpreted as the termination age of the Emeishanflood basalts.
This age is consistentwith those obtained for the intrusive rocks (Fig. 3),
and is very close to the G–L boundary age (259.8 ± 0.4 Ma) recently
suggested by Henderson et al. (2012). It has been suggested that the
main phase of the Emeishan volcanism most likely occurred at the
G–L boundary (He et al., 2007). The available data therefore collectively
indicate that the Emeishan LIPwas emplaced at ~259Ma, probably over
a very short interval less than 1 Ma.

5.2. Implications for the age of the Guadalupian–Lopingian boundary

The G–L boundary is defined by the chronomorphocline from
Clarkina postbitteri hongshuiensis to Clarkina postbitteri postbitteri at the
Penglaitan section in Laibin, Guangxi Province, South China (Jin et al.,
2006). This boundary is associated with major regression, widespread
volcanism and mass extinction (Hallam and Wignall, 1999; Isozaki,
2009; Ota and Isozaki, 2006; Zhang et al., 2013; Zhou et al., 2002). How-
ever, the temporal relationship between the Emeishan volcanism and
the end-Guadalupian mass extinction is still unresolved. Constraining
the age of this boundary is therefore important but the radiometric
ages of claystones near the G–L boundary at GSSP (Global Boundary
Stratotype Section and Point) in the Penglaitan section have shown
that these deposits are redeposited clastic rocks rather than acidic
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tuffs or ashes, and are thus not suitable for the age determination of the
G–L boundary (Zhong et al., 2013).

An age of 259.8 ± 0.4 Ma has recently been suggested for the G–L
boundary in the Geologic Time Scale (GTS) 2012. This age is inferred
from interpolation (Henderson et al., 2012) between the ages of 265.3
± 0.2 Ma from the base of Capitanian stage (Bowring et al., 1998) and
257.3 ± 0.3 Ma from the Wuchiapingian stage (Mundil et al., 2004).
However, it is somewhat uncertain because the bracketing ages are
widely spaced in time and the former age possibly prone to inaccuracy
due to Pb loss. Among the six analyzed zircon fractions from the ash ex-
posed on Nipple Hill, Guadalupe Mountains National Park, Texas
(Bowring et al., 1998), five of them yield a weighted mean 206Pb/238U
age of 265.3 ± 0.2 Ma (MSWD= 0.50) (Bowring et al., 1998), whereas
one yields an age of 263.6Ma,which is obviously younger due to Pb loss,
and therefore, was rejected. Mundil et al. (2004) reported ages of two
ash beds (SH01 and SH03; 259.1 ± 1.0 Ma and 260.8 ± 0.8 Ma, respec-
tively) close to the G–L boundary in the Shangsi section (northern Si-
chuan) that are close to 260 Ma. Based on mineralogy, geochemistry
and zircon Hf–O isotopes of the clay layers (our unpublished data),
the samples SH01 and SH03 are not volcanic ashes, instead they are
clastic rocks resulting from the erosion of the Emeishan LIP (He et al.,
2007). Therefore, the age of SH03 from the Shangsi section (260.8 ±
0.8 Ma) may be a maximum age of the Emeishan volcanism rather
than a depositional age. In summary, the age for the G–L boundary sug-
gested by GTS2012 (Henderson et al., 2012) needs further constraints.

Previous studies by He et al. (2007, 2010) have shown that the G–L
boundary claystones in SW China were mainly derived from the upper-
most part of the lava succession in the central part of the Emeishan LIP.
Specifically, the lowermost part of G–L boundary claystonebed,which is
called as the Wangpo Bed in Chinese literature (Lu, 1956), may repre-
sent eroded materials of felsic extrusives in the uppermost part of the
Emeishan LIP. Given the fact that the G–L boundary claystones are
bas
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termination of the Emeishan flood basalts. The blue dashed and dot line indicates the onset of
Data sources: Guadalupian–Lopingian boundary age from Henderson et al. (2012), other ages
genetically related to the Emeishan felsic volcanism, it is reasonable to
infer that the felsic member in the uppermost part of the Emeishan ba-
salts (Xu et al., 2001), and the G–L boundary claystones at the base of
theWuchiapingian all lie on an isochron horizon (Fig. 4). If this hypoth-
esis is correct and the erosion occurred shortly after the deposition, our
new CA-TIMS age (259.1 ± 0.5 Ma) for the felsic ignimbrite sample in
the Binchuan section may provide an indirect constraint on the age of
the G–L boundary. It is also worth emphasizing that our new date is in
good agreement with the age of the G–L boundary suggested by Shen
et al. (2010).

6. Conclusions

The new, precise CA-TIMS zircon U–Pb age of the felsic ignimbrite at
the top of the lava succession of the Emeishan LIP indicates that the ter-
mination age of the Emeishan flood basalts is 259.1± 0.5Ma. The age is
likely to be close to the age of the G–L boundary if the claystones near
the G–L boundary have been eroded shortly after the emplacement of
the Emeishan volcanism. However, the precise age of the G–L boundary
and the duration of Emeishan flood basalts need further constraints.
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