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Despite numerous geologic and geochemical studies conducted on the Emeishan Large Igneous Province (LIP) in
SWChina, thedeep origin of this LIP is still poorly constrained. Herewe investigate the residual gravity anomaly in
South China, and its relationship to the Emeishan LIP, in conjunction with deep seismic sounding profiles, deep
seismic reflection surveys and a variety of broadband seismic observations performed in South China during
the past few decades. Our analysis includes the removal of related gravitational effects due to: (1) the sediments,
(2) the crystalline basement, undulations of (3) the upper crust, (4) theMoho and (5) themantle lid. The resultant
residual gravity anomaly in the Emeishan LIP and surrounding region reaches a maximum value of +150 mGal
and decreases gradually with distance from this inner zone. With the conjugate gradient method, we develop a
lithospheric model consisting of a cylindrical-shaped positive density anomaly that provides a good fit to the ob-
served residual gravity anomaly. The inverted density anomaly of the Emeishan LIP is +0.06 g/cm3 in the inner
zone and decreases to about+0.03 g/cm3 in the outer zone. The observed positive residual gravity and the corre-
sponding high density can be attributed to mafic/ultramafic rocks and cooled surrounding rocks generated by
large scale magmatic intrusion. Hence, taking account of the Permian Emeishan LIP, our residual gravity and den-
sity model provide evidence for the formation by an upwelling of a mantle plume.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A mantle plume is the ascent of hot buoyant material toward the
Earth's surface or the base of the lithosphere (Griffiths and Campbell,
1991; Larson, 1991; Leng and Zhong, 2010). As the top/head of amantle
plume can partiallymelt when it reaches shallowdepths and pressure is
reduced, they are thought to be the cause of volcanic centers and flood
basalts (Campbell and Griffiths, 1990; Coffin and Eldholm, 1994;
Morgan, 1971;White and McKenzie, 1989; Zhao, 2001). The plume hy-
pothesis has been widely adopted to explain the formation of age-
progressive volcanic chain hotspots such as Hawaii and Large Igneous
Provinces (LIPs) in both oceanic and continental settings (Campbell
and Griffiths, 1990; Coffin and Eldholm, 1994; Morgan, 1971; White
and McKenzie, 1989; Xu et al., 2004, 2007; Zhao, 2001, 2007; Zhong
and Watts, 2002).

The Late Permian basalts of the Emeishan LIP are erosional remnants
of mafic rock from a series of voluminous volcanic eruptions that oc-
curred in the western margin of the Yangtze Craton (Xu et al., 2004,
ospheric Evolution, Institute of
eijing 100029, China.
ng).
2007). Previous studies have documented that the main phase of the
flood basalt volcanism occurred at the Middle-to-Late Permian bound-
ary that is estimated at 260 Ma (Gradstein et al., 2012). The total age
span of the Emeishan basalts has been estimated to be in the range of
251–263 Ma (Xu et al., 2007), but more recent chronological studies
suggest that the Emeishan volcanics were emplaced during a very
short period (b2 m.y.) at ~259 Ma (Shellnutt et al., 2012; Zhong et al.,
submitted for publication).

The Emeishan LIP lieswithin a rhombus-shaped area of 250,000 km2

bounded by the Longmenshan fault to the northwest and the Red River
fault to the southwest (Xu et al., 2001). In recent years, the Emeishan LIP
has attracted the attention of the scientific community because of
its possible synchrony with the eruption of the end-Permian mass
extinction (Ali et al., 2002; Chung and Jahn, 1995; Chung et al., 1998;
Lo et al., 2002; Shellnutt, 2013; Wignall et al., 2009; Wu and Zhang,
2012).

A recent review shows that there are seven convincing arguments in
support of a Permianmantle plume origin for the Emeishan LIP, namely:
(1) pre-volcanic crustal uplift, (2) high-temperature magmas, (3) ther-
mal zoning structure, (4) geochemistry, (5) duration of volcanism,
(6) extent and volume of volcanism, (7) physical volcanology (Xu
et al., 2007). From the sedimentological and paleogeographic data, the
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Fig. 2. Left: the reference lithospheric/asthenospheric structure described in terms of the
respective depths and densities (in g/cm3) of the major layers. Right: sketch illustrating
the laterally varying lithosphere in South China. The circles indicate the compositional
density anomaly of the lithosphere to the reference model within the layers.
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dome-shaped structure associated with the Emeishan LIP can be divid-
ed into three zones, the inner, middle and outer zones, according to the
extent of erosion of the Maokou Formation composed of Mid–Late
Permian carbonates (He et al., 2003; Xu et al., 2004) (Fig. 1). The bound-
ary between the inner andmiddle zones is the Xiaojiang fault to the east
(labeled F7 in Fig. 1). The extent of erosion is the most apparent in the
inner zone that is proposed to be the site of a rising plume head
(He et al., 2003).

Many geological and geochemical studies have been conducted on
the Emeishan LIP, but the deep origin is still poorly constrained. Global-
ly, there has been an increasing body of evidence for the existence of
deep mantle plumes, particularly on the basis of the results supplied
by seismic tomography (Goes et al., 1999; Lei and Zhao, 2006; Lü
et al., 2013; Montelli et al., 2004, 2006; Rhodes and Davies, 2001;
Ritsema and Allen, 2003; Romanowicz and Gung, 2002; Zhao, 2001).
In this paper we assess the mantle plume model for the Emeishan LIP
based on a detailed modeling of gravity data, because neither the seis-
mic P-wave nor S-wave velocities by themselves provide sufficient in-
formation about the density structure of the lithosphere (Mooney and
Kaban, 2010). The cratonic roots, which show positive S-wave veloci-
ties, offer a clear example of the ambiguity of the seismic models for
determining lithospheric density. These cratonic roots present near-
zero density anomalies because their low temperatures (which increase
density) are compensated by the low Fe composition of the root. Thus,
gravity data provide valuable constraints on the physical state of the
lithosphere that are complementary to the seismic data, and may shed
more light on geodynamic processes in the region. For example, density
variations in the lithosphere and sublithospheric mantle play an impor-
tant role in controlling the surface elevation.

Measured Bouguer gravity is a summation of all density anomalies
within the lithosphere including the density difference to the reference
model within the layers and the undulation of intra-crustal and sub-
crustal layers (Fig. 2) (Q.S. Wang et al., 2003; Zeng, 2005). In this
paper we investigate the residual gravity of the Emeishan LIP through
a process of gravity-stripping that consists of the systematic calculation
of 3D corrections to the observed Bouguer gravity. We obtain the resid-
ual gravity by removing the effects caused by the sediments, crystalline
basement and the undulation of the lithospheric layers as inferred from
deep seismic sounding profiles, deep seismic reflection surveys, and a
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Fig. 1.Topographic relief and tectonic units in South China (locationmap is in the bottom right co
lines indicate the inner,middle and outer zones of the Emeishan Large Igneous Province (LIP). Th
et al. (2012); the distribution of the Permian basalts is based onXuet al. (2004, 2007). A: Asian p
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Guangzhou city. There are four main basins in South China, namely: Sichuan basin; Jiangh
variety of broadband seismic observations (Bai et al., 2011; Deng et al.,
2011; Hu et al., 2003; Li et al., 2006; C.Y. Wang et al., 2003; Xiong
et al., 2009; Zhang et al., 2009, 2010). The consequent residual gravity
mainly reflects the compositional density anomaly (the circles in
Fig. 2) of the lithosphere beneath the study area, which in turn is corre-
lated with the geological evolution of the Emeishan LIP.
2. Data processing and gravitational effects

In order to better understand the gravity anomaly of the Emeishan
LIP, we first analyze the data on a larger scale. Pavlis et al. (2008,
2012), who presented the Earth Gravitational Model (EGM2008), com-
puted the original Bouguer gravity over South China and surrounding
region. This model has a grid spacing of 2.5 × 2.5 arc-minute in both
land and ocean. The standard deviation of the Bouguer gravity data in
this area is less than 5 mGal (Pavlis et al., 2008). As shown in Fig. 3, in
South China, small positive gravity anomalies (b+100 mGal) are con-
fined to regions near the ocean and offshore. Considering a larger geo-
graphic area, negative gravity anomalies (about −200 mGal) can be
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Fig. 3. Bouguer gravity map of South China and surrounding regions (after Pavlis et al., 2008, 2012). The tectonic units are the same as in Fig. 1. The circular lines on the left half of the plot
outline the inner, middle and outer zones of the Emeishan LIP. The four stars (a), (b), (c) and (d) correspond to the locations of four wells discussed in Fig. 4. Small positive gravity anom-
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observed in parts of the Qinling–Dabie orogen and the Sichuan basin. In
the Songpan–Ganzi blockof the Tibetan Plateau, theBouguer gravity de-
creases westward to progressivelymore negative values, reaching up to
−550 mGal. Thus, this pattern can be summarized as follows: the
higher the elevation of the ground, the greater the negative Bouguer
gravity anomaly (Deng et al., 2013). However, it is hard to find the cor-
relation between the gravity anomaly and the circular regions
representing the inner, middle and outer zones of Emeishan LIP
(Fig. 3). Therefore, although the topography and free-air effects have
been removed from the Bouguer gravity, in order to isolate the gravity
response of Emeishan LIPwe have to remove other gravitational effects,
in particular those caused by the sedimentary cover, crystalline base-
ment, the undulation of the upper crust, Moho and the lithosphere.
This sequential procedure, referred to as stripping, was first described
by Hammer (1963) and later developed by other authors (Bielik,
1988; Bielik et al., 2013a, b; Mooney and Kaban, 2010).

Low-density sediments result in a negative gravity anomaly rela-
tive to the crystalline crust. Thus removing this sedimentary effect
will increase the residual anomaly. We must also account for depth
variations of the crystalline basement. An uplift of the Moho discon-
tinuity produces a positive gravity anomaly and leads to a reduction
in the residual anomaly. In contrast, a depression of the Moho pro-
duces a negative anomaly; the same is true for undulations of the
lithosphere, which is here assumed to be 0.02 g/cm3 denser than
the underlying asthenosphere.

It is generally assumed that any change affecting the horizontality of
the homogeneous reference density model would lead to a change in
the residual gravity anomaly (Mooney and Kaban, 2010), whereas the
gravity from a uniform horizontal layer with invariable density is a con-
stant. Our reference model (Fig. 2) corresponds to a continental crust
with flat topography, and consisting of a 15-km-thick upper crust
with a density of 2.7 g/cm3 (Mooney and Kaban, 2010), and a 25-km-
thick lower crust with a density of 2.94 g/cm3 (Deng et al., 2011;
Mooney and Kaban, 2010). The average density of the mantle
lithosphere is set equal to 3.33 g/cm3, while that of the asthenosphere
is 3.31 g/cm3 (Burov, 2010).

Forward modeling of gravity data is a linear problem (Li and
Oldenburg, 1998; Nagy, 1966). The vertical component of the gravity
field at a point (x, y, z) produced by the density ρ(x, y, z) is given by

F r0
!� �

¼ G
Z
V

ρ r! z−z0
r!−r0

!j j3
� �

dv

where r0
! (x0, y0, z0) is the vector defining the observation point and r!

(x, y, z) denotes the position vector of the point source mass. V repre-
sents the volume of the anomalous mass, and G is the gravitational con-
stant. To implement the procedurewe divide the volume of interest into
a set of 3D prismatic cells, which have azimuth (i, j) and height k, by
using a 3D orthogonal mesh and assume a constant density within
each cell. The gravity at surface can be obtained through the equation

F x0; y0ð Þ ¼ G
X
i; j;k

ρi; j;k

Vi; j;k xi−x0ð Þ2 þ ðy j−y0Þ2 þ z2Þ
� �1=2

xi−x0ð Þ2 þ ðy j−y0Þ2 þ z2
� �3=2

where Vi,j,k is the volume of each cell.

2.1. Gravitational effect of the sediments

The first step in processing the Bouguer gravity field consists of re-
moving the effect of the sedimentary cover. To this end we need know
the geometry (elevation and thickness) and density for each grid cell
in which the medium has been subdivided. A significant amount of
data is available on the sedimentary basins in South China (Li and Li,
2007; Wang, 2009; Wang et al., 2006) and these investigations are use-
ful to constrain the features of the basin. The density measurements in
three boreholes located in the central and western parts of Sichuan
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basin (Liu and Chang, 2003) and one borehole located in the Jianghan
basin (Wang et al., 2010) are shown in Fig. 4. The densities determined
in these four boreholes range between 2.4 g/cm3 and 2.6 g/cm3, and the
average density of the sedimentary materials is assumed to be
2.5 g/cm3.

We have compiled a set of thickness data for the sediments within
the basins with the aid of national institutions such as the Chinese Na-
tional Petroleum Company, the Chinese National Oil and Natural Gas
Company and the China Ocean Petroleum Company (Li and Zhou,
1990; Luo and Tong, 1988; Zhang et al., 1996). The dashed black lines
in Fig. 5 (upper plot) outline the regionwherewe collected sedimentary
thickness data from the review by Z. Zhang et al. (2011), while in other
regions the sediment thickness data were taken from the global digital
model of Laske and Masters (1997). Fig. 5 (upper plot) shows the map
of the sediment thickness in South China, which varies considerably
from one location to another. For example, the Sichuan basin locally
has the largest sediment thickness, about 9 km, while the Jianghan
and Nanpanjiang basins have a maximum sediment thickness of about
4 and 2 km, respectively.

Next, we constructed the 3D density model for the sediments and
calculated its gravitational effect. This is a linear problem that involves
determining the vertical component of the gravity field caused by an
anomalous excess or defect of mass below surface (Li and Oldenburg,
1996, 1998). Fig. 5 (lower plot) shows the gravitational effect in this
case. The largest anomaly caused by the sediments is −80 mGal and
is located in the Sichuan basin.

2.2. Gravitational effect of the crystalline basement

Following the gravity-stripping process as applied through the pris-
matic cell model, we removed the effect of the undulated crystalline
basement, which is defined by the depth of the seismic velocity contour
of 6.0 km/s as measured from deep seismic sounding profiles (Nielsen
and Thybo, 2009). The spatial variation of the crystalline basement
was obtained from the data provided by 57 seismic profiles performed
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Fig. 4.Density measurements in three boreholes located in Sichuan Basin (Liu and Chang,
2003) and one borehole located in the Jianghan Basin (Wang et al., 2010): (a) Chunxiao 93
well; (b) Chuanfeng 131 well; (c) Chuanhe 100 well log data; (d) Jianghan Wb10-7 well.
Themeasured density was found to be between 2.4 g/cm3 and 2.6 g/cm3, so the density of
the sedimentary materials was set to 2.5 g/cm3.

Sichuan basin has the greatest sediment thickness, about 9 km, whereas the Jianghan
and Nanpanjiang basins have a sediment thickness of about 4 and 2 km, respectively, al-
though inmost of the study area the thickness hardly reaches 1 km. Lower panel: gravita-
tional effect of the undulated sediment cover. The tectonic units outlined by solid lines are
the same as in Fig. 1. The circular lines on the left half of the plot outline the inner, middle
and outer zones of Emeishan LIP. The biggest negative gravity anomaly caused by the sed-
iments is of about −80 mGal and is located in Sichuan basin.
in South China (Deng et al., 2011) and using kriging interpolation,
which is a robust estimator that permits us to model both regional
trends and local anomalies (Davis, 1986; Serón et al., 2001). The density
of the crystalline basement was assumed to be 2.67 g/cm3 (Wang et al.,
1997). Fig. 6 (upper plot) shows the crystalline basement thickness in
South China, with the smaller values distributed over the Emeishan
LIP. As before, we computed the gravitational effect caused by the undu-
lations of the crystalline basement and the corresponding anomalous
excess or deficit of mass. Fig. 6 (lower plot) shows the corresponding
gravitational effect on a map of the region. The gravity anomaly is
small everywhere, having a value close to zero in the Sichuan basin.
The largest value, about −30 mGal, is found to the west of the study
area.
2.3. Gravitational effect of upper crustal thickness variations and
Moho undulations

Thousands of experiments using a variety of seismic techniques
have confirmed the existence of a well-defined crust/mantle disconti-
nuity (Moho) on global scale, and furthermore, that the Moho depth
varies systematically beneath different tectonic blocks, depending on
their age and the particular tectonic environment (Christensen and
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Mooney, 1995;Mooney et al., 1998; Prodehl andMooney, 2012). Sever-
al seismological methods are commonly used to probe this discontinu-
ity between crust and mantle, including refraction/wide-angle
reflection surveys (Li et al., 2006; Teng et al., 2013; Z. Zhang et al.,
2011; Z.J. Zhang et al., 2011), near-vertical seismic reflection profiling
(Braile and Chiang, 1986; Mooney and Meissner, 1992), and P/S wave
receiver functions (Chen et al., 2006; Tian et al., 2011). Of these
methods controlled-source refraction/wide-angle reflection surveys
are the most accurate (Teng et al., 2013). Numerous deep seismic pro-
files have been carried out in South China, with a total length over
20,000 km (Deng et al., 2011; Li et al., 2006; Z. Zhang et al., 2011; Z.J.
Zhang et al., 2011). They provide the best resolution of the deep crustal
seismic velocity structure. In our case the Moho depth was resolved
from 57 deep seismic profiles carried out since 1970 (Deng et al.,
2011). In those areas where the information is not constrained by seis-
mic profiles, we refer to the Crust 2.0model (Bassin et al., 2000). Due to
the diverse geological features that make up South China, as such sedi-
mentary basins, orogenic belts, and ultra-high pressure metamorphic
rocks (Bai et al., 2007; Ratschbacher et al., 2000), theMoho depth varies
greatly, reaching values of about 60 km to the west and 30 km to the
east.

As to the crust as awhole, it is assumed that itmay be divided into an
upper crust and a lower crust. The former has a felsic bulk composition
that is similar to granite (Wedepohl, 1995); however, the latter has an
intermediate-to-mafic composition (Christensen and Mooney, 1995).
Because of this difference in composition, there is a sharp density con-
trast for the upper and lower crustal layers. Therefore, the undulations
of the boundary between the upper and lower crust should also be
taken into consideration. Although we cannot accurately assess the
thickness of the upper crust at all locations, measurements provided
by seismic deep profiles in South China (C. Wang et al., 2003; Xiong
et al., 1993; Zhu et al., 2005), indicate that the thickness of the upper
crust amounts to half the total crustal thickness.

Undulations due to variations in total crustal thickness are signifi-
cant. Fig. 7 (upper plot) shows the Moho depth in South China with
values decreasing toward the ocean. Fig. 7 (lower plot) shows the grav-
itational effect due to undulations of the Moho. The negative gravity
anomaly exceeds −100 mGal in the inner and middle zones of
Emeishan LIP, corresponding to the deeper Moho, while the positive
anomaly is about +160 mGal in the oceanic region.
2.4. Gravitational effect of the undulated mantle lithosphere

The undulations in the thickness of the sub-crustal lithosphere also
exert an influence on the measured gravity anomaly. The lithosphere
is defined as the cold and rigid outer shell of the Earth through which
heat is transmitted by conduction. High-resolution seismic tomography
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velocity models have been commonly used in defining the lithosphere.
The crust and the high-velocity layer of the uppermost mantle
(themantle lid) above the seismic low velocity zone (LVZ) are regarded
as the seismic lithosphere. Zhu et al. (2006) estimated the lithosphere
thickness in the entire China from seismic tomography. Because the
boundary between the ‘lid’ and the LVZ, that is, the low velocity channel
of the asthenosphere (Fig. 2), is not a sharp discontinuity, the different
definitions of this ‘boundary’ can cause variations of several tens of kilo-
meters in the estimated lithospheric thickness. Another important
question is whether the seismic lithosphere estimated from seismic
data, which have a time period measured in seconds is equivalent to
the geodynamical lithosphere, which is considered for time periods
many orders of magnitude longer.

Goes et al. (2000) developed amethod to estimate the upper mantle
temperature by inverting seismic velocities for temperature. Their work
is based on laboratory measurements of density and elastic moduli for a
variety of mantle minerals at high temperatures and pressures. This
method, which is distinct from but complements geothermal modeling
of heat flow data, provides a means to estimate the 3D upper-mantle
temperature structure from measured seismic velocities. This tempera-
ture estimation method has been successfully applied in the studies of
several continents (Cammarano et al., 2003; Goes and Van der Lee,
2002; Goes et al., 2000; Rohm et al., 2000; Shapiro and Ritzwoller,
2004). An and Shi (2006) calculated the 3D upper-mantle temperature
structure of theChinese continent from seismic velocitiesmeasurements
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Fig. 8.Upper panel: mapping of the lithosphere thickness in South China and surrounding
regions (An and Shi, 2006). Lower panel: gravitational effect of the undulated lithosphere.
The tectonic units outlined by solid lines are the same as in Fig. 1. The circular lines on the
left half of the plot outline the inner, middle and outer zones of Emeishan LIP. A positive
gravity anomaly of about +36 mGal appears mostly distributed in the northwest quad-
rant of the study area as consequence of the comparatively greater thickness of the sub-
crustal lithosphere; however, the anomaly becomes −20 mGal in the southeast part
where the lithosphere thickness is thinner.
in 3D, and used these results to estimate the lithospheric thickness on a
1° × 1° grid, as shown in Fig. 8 (upper plot). The Yangtze craton has the
greatest lithospheric thickness with a value about 180 km and more,
whereas the Cathaysia block has a thickness of about 90 km. Fig. 8
(lower plot) shows the gravitational effect of the undulations of
the deep lithosphere. A positive gravity anomaly, amounting to
over +36 mGal, appears mostly distributed in the northwest quad-
rant of the study area as a consequence of the comparatively greater
thickness of the lithosphere. The anomaly becomes−20 mGal in the
southeast part where the lithosphere is thinner.

3. Appraisal of model uncertainties

It is important to estimate the errors involved in the calculation of
the residual gravity anomaly. Some important aspects of such an error
analysis have been addressed by Panasyuk and Hager (2000) and
Kaban and Schwintzer (2001). The overall error derives from uncer-
tainties in: (1) the measured gravity and (2) the estimated thickness
and density of (a) the sediment; (b) the crystalline basement; (c) the
upper crust; (d) the lower crust; and (e) the mantle lid. Of all these fac-
tors, the error associated with the observed satellite gravity is the
smallest one, as it amounts to only 5 mGal (Pavlis et al., 2008, 2012).
However, the other factors may give rise to larger errors, with a magni-
tude of 10 mGal or more.

In our modeling we consider the density in the sediment, crystalline
basement, upper crust, lower crust and sub-crustal lithosphere to be a
constant, which is a simplification of the real conditions considering
the data supplied by the boreholes described in Section 2.1 (Fig. 4)
and the standard deviation of the average global crustal density struc-
ture (Christensen and Mooney, 1995). The uncertainty in density is es-
timated to be 0.1, 0.03, 0.1, 0.04 and 0.02 g/cm3, respectively. The
sediment thickness in our study can be estimated with an error around
1 km at a scale of 1° × 1° (Laske and Masters, 1997), and the resultant
error calculated for the gravity anomaly would be of about 10 mGal.
The depth of the crystalline basement can be estimated with an error
of some 3 km, which leads to an induced error in gravity of the order
of 10 mGal.

Seismic refraction/wide-angle reflection data provide the most reli-
able measurements of crustal seismic structure, and the measurement
error depends on the data quality and coverage. For example, if we
rely on seismic profiles recorded before the 1990s, the uncertainty in
the Moho depth could be up to 10% (4–5 km) (Mooney and Kaban,
2010; Mooney et al., 1998). However, when we consider a region suffi-
ciently explored bymore recent seismic profiles, the uncertainty can be
reduced to 5% (2 km). In those areas lacking seismic soundings or with
less coverage, the uncertainty could be of 3–5 km or more. These depth
uncertainties correspond to an error between 30 and 60 mGal. As de-
scribed in Section 2.3, the crust structure in some profiles in South
China can be equally divided into an upper crust and a lower crust.
However, there is an uncertainty in the thickness of the upper crust in
the regions where the crust structure may consist of three layers. Like-
wise there is a large uncertainty (~5 km) for the region lacking seismic
profile coverage (Jia et al., 2006; Yao et al., 2007). In such cases the un-
certainty in the gravity anomaly is 50 mGal.

Lastly, the uncertainty in the estimation of the thickness of the lith-
osphere is about 10% (An and Shi, 2006), which corresponds to an un-
certainty in depth of 20 km and error in gravity less than 5 mGal. All
these uncertainties are summarized in Table 1.

It should be noted that the relative weight of these factors depends
on the available data coverage, and, furthermore, since these uncer-
tainties are not correlated, the total uncertainty is usually less than the
total sum of them (Mooney and Kaban, 2010). For example, the areas
with a thick crust are generally characterized by a thin sedimentary
cover and a well-defined Moho. By combining all error sources, the cu-
mulated error inherent to the gravity anomaly varies between 195mGal
for thewell-studied regions of South Chinawith thin consolidated crust,



Table 1
Estimated uncertainties related to layer thickness, density and induced gravity anomaly.

Source Uncertainty in
thickness (km)

Uncertainty in
density (g/cm3)

Uncertainty in
anomaly (mGal)

Observed gravity Less than 5
Sedimentary cover 1 0.10 About 35
Crystalline basement 3 0.03 Less than 15
Upper crust 5 0.10 About 70
Undulation of the Moho 3–5 0.04 50–80
Mantle lithosphere 20 0.02 About 20
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and 225 mGal for the regions with thick crust and poor seismic cover-
age. As we shall see in the next section, the residual gravity anomaly
ranges from −280 to +240 mGal, yielding a signal-to-noise ratio sig-
nificantly higher than 1.

4. Residual gravity anomaly and 3D density model

The progressive step-by-step elimination of the gravitational effects
associatedwith the sediments, the crust andmantle lithosphere, allows
us to obtain the residual gravity anomaly in the Emeishan LIP as illus-
trated in Fig. 9. From the stripped, residual gravity map in Fig. 9d we
find a remarkable positive anomaly (up to +100 mGal) extending on
the inner, middle and outer zones of the igneous province, which in
turn decreases gradually and becomes a negative anomaly beyond the
Emeishan LIP. The residual gravity displayed in Fig. 9d has a close rela-
tionship with the spatial distribution of the Emeishan igneous province,
even though not all regions with volcanic rocks in the Emeishan LIP
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Fig. 9. Stripped residual gravity anomaly in South China after removing successively from the
mantle: (a) Bouguer gravity − Gsediment; (b) Bouguer gravity − Gsediment − Gcrystalline basement;
gravity − Gsediment − Gcrystalline basement − Gupper_lower − Gcrust − Glithosphere. In each case G m
The subscript upper_lower refers to the undulated layer between the upper and lower crust.
Emeishan LIP. A remarkable positive anomaly (up to +150 mGal) spreads over the inner, cent
show a positive anomaly. Taking account of the fact of the Permian
Emeishan LIP, we interpret this correlation as evidence of the cooled
remnants of the Late Permianmantle plume that generated this igneous
province. In particular, the inner zone presents a relatively higher value
anomaly (up to +150 mGal) than the middle zone and the outer zone,
which is consistent with the spatially varying thickness of the Maokou
Formation (He et al., 2003), and also is in good agreement with the pet-
rologic evidence that the melt production was higher in the inner zone
than in other zones (Xu et al., 2004, 2007).

Although the origin of the Emeishan LIP has long been debated, the
mantle plumemodel is strongly supported by petrologic and geochem-
ical evidence, and particularly the presence of high temperature basalts
in the area (Chung and Jahn, 1995; Xu et al., 2001, 2007; Zhang et al.,
2006). The magma must have intruded through the whole lithosphere
since the basalts have a sub-lithospheric mantle origin, and in some
cases would become contaminated by lithospheric material, thus alter-
ing its composition (Wu and Zhang, 2012), and showing coupled fea-
tures from the PmS and SKS splitting (Chen et al., 2013; Sun et al., 2013).

In order to locate and interpret the deep origin of the residual gravity
source, we inverted the available gravity data by using the conjugate
gradient method. We first constructed a rectangular mesh with dimen-
sions 0.25° × 0.25° × 500 m to produce cuboids as the initial density
model. The initial density structure is based on the constraints fromgeo-
physical surveys and geological data (e.g. measurements of high seismic
velocities in themantle lithosphere, lower crust and upper crust, and the
basalts exposed at the surface) (Liu et al., 2001; Xu et al., 2007).We then
adjusted the densities within the cuboids, calculate the resultant gravity
anomaly, and iteratively fit the observed residual anomaly. Fig. 10a
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ral and outer zones of the igneous province (plot (d) in the bottom right quadrant).
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Fig. 10. (a): 3Ddensity anomalymodel based on the residual gravity anomalymeasured in Emeishan LIP. The density anomaly decreases from+0.06 g/cm3 to+0.03 g/cm3 from the inner
zone to outer zone (delimited by circular lines drawn on surface). (b): Schematic diagram illustrating the origin of the Emeishan basalts as the result of hot upwellingmantlematerial, the
intrusion of melt into the crust and lithosphere, and the elevation of the ground surface, all by action of a mantle plume (modified from Shellnutt, 2013; Xu et al., 2004). LT: low-Ti basalt;
HT: high-Ti basalt; ALK: alkaline series.
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shows the final density model that extends to a depth of 120 km. This
model provides an excellent fit (±10 mGal) to the residual gravity
anomaly. The inner zone has a higher density anomaly (+0.06 g/cm3)
than the middle (+0.04 g/cm3) and outer (+0.03 g/cm3) zones. In
other words, the affected volume expands as it approaches the surface,
while its influence decreases radially away from the inner zone.

A mantle plume model has been illustrated by using literature geo-
physical and geochemical data (Xu and He, 2007; Xu et al., 2004). The
lithospheric density anomaly model presented here (Fig. 10a) not only
fits our observed residual gravity, but also agrees with what would be
expected for a plume model (Fig. 10b). The predominance of the thick
low-Ti intrusions in the inner zone suggests that the mantle beneath
the core of the domal structure underwentmore extensive partial melt-
ing as a result of a higher temperature than did the mantle beneath the
marginal area. This inference and the occurrence of picrites in the inner
zone, are consistent with a hotter mantle beneath the center of the
dome than beneath the dome periphery (Xu et al., 2004). We envision
the following scenario. As the Late Permian plume head invaded the
lithosphere mainly in the inner zone, the magma intruded divergently
into the mantle lithosphere and crust along existing faults. Abundant
basalts and ultramaficmelt with high temperatures intruded the crustal
rocks and the density of the rock mass gradually increased with time.
These remnants of intruded rock and cooled surrounding rock could ac-
count for the present positive residual gravity and density anomaly. The
inner zone was affected to a greater degree by the mantle plume than
the other zones, as indicated by: (1) sedimentologic evidence for
kilometer-scale, pre-volcanic uplift and/or doming, including thinning
of marine carbonates, a marine to subaerial transition, a local prove-
nance of clastic sediments, and a marked erosional unconformity, evi-
dent like paleo-karstic surfaces on the marine carbonates (He et al.,
2003, 2006; Xu et al., 2004); (2) variations in the flood-basalt geochem-
istry (Low-Ti basalt, High-Ti basalt and alkaline series rocks) from the
center to the edge of the dome-shaped structure (such that picrites
are restricted to the core of the dome) that are interpreted as high-
temperature melts in the center and lower temperature melts at the
edge (Xu et al., 2004); (3) the crustal thickness, which ranges from 43
to 55 km in the inner zone, but is thinner (about 40 km) in the middle
and outer zones (Deng et al., 2011; Liu et al., 2001; Xu and He, 2007);
(4) variations in the thickness of volcanic rocks across the dome-
shaped structure (Xu et al., 2004); (5) the spatial variation in residual
gravity and the density anomaly as obtained in this study.

5. Conclusions

We have calculated andmodeled the residual gravity anomaly asso-
ciated with the Emeishan LIP. The method applied follows a gravity
stripping process consisting of the progressive removal of the gravita-
tional effect due to the sediments, the crystalline basement, the undu-
lated crust and mantle lithosphere. The resultant residual gravity
reaches +100mGal in the Emeishan LIP, and the extent of the anomaly
is larger (up to +150 mGal) within the inner zone and then decreases
in themiddle and outer zones. There is a consistent correlation between
the mapped residual gravity and the extent of basaltic volcanic rocks
mapped in the area.
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We present a lithospheric density model to explain the residual
gravity in South China, and propose that this gravity anomaly is associ-
ated with the late Permian Emeishan LIP. The inner zone has a higher
density anomaly (+0.06 g/cm3) than the middle (+0.04 g/cm3) and
outer (+0.03 g/cm3) zones. The remnants of mafic/ultramafic rocks
and the cooled surrounding rock can account for the spatial variation
in density anomaly and residual gravity. This, along with the seismic
data and geochemical data, provides further support to the hypothesis
that a Late Permian mantle plume gave rise to the Emeishan LIP.
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