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Mafic dike–granitoid associations are common in extensional tectonic settings and provide important opportu-
nities for understandingmantle and crustmelting during the tectonic evolution of host orogenic belts.We report
results of petrologic, whole rock geochemical, Sr–Nd isotopic data and in situ zircon U–Pb and Hf isotopes for a
mafic dike–granitoid association from the Zhongyangchang pluton in thewestern Tianshan, in order to constrain
their petrogenesis and tectonic significance. The intrusive rocks are mainly composed of granodiorite,
monzogranite, and minor granitic dikes, with mafic dikes intruded into the pluton. Zircon LA-ICP-MS U–Pb
ages indicate that the Zhongyangchang intrusive rocks were all emplaced during a short interval in the Late
Carboniferous (317–310 Ma), establishing that the mafic and felsic magmas were coeval. The mafic rocks have
low SiO2 and high MgO concentrations, with low 87Sr/86Sr ratios from 0.7048 to 0.7053 and positive εNd(t) and
zircon εHf(t) values from +2.9 to +3.8 and +12.2 to +13.6, respectively. They are enriched in large ion
lithophile elements (LILEs) and depleted in high field strength elements (HFSEs), which can be explained by
an origin from melting of a depleted lithospheric mantle source and source fluxing by fluids derived from the
down-going slab. Granitoids from the pluton have high SiO2 contents and low MgO concentrations, suggesting
that they were mainly derived from crustal sources. They also have positive whole rock εNd(t) and zircon
εHf(t) values ranging from +0.2 to +2.8 and +6.6 to +15.3, respectively, similar to those of the mafic dikes.
They were generated by partial melting of juvenile basaltic lower crust as a result of magma underplating. The
Late Carboniferous mafic dike–granitoid association was not related to a post-collisional setting, but rather
formed in an arc environment related to oceanic subduction. The most likely tectonic model accounting for the
genesis of these rocks involves an extensional environment in the western Tianshan during the Late Carbonifer-
ous as a tectonic response to the roll-back of subducted Junggar oceanic lithosphere, which could also account for
the “flare-up” of Late Carboniferous magmatism.

© 2014 Published by Elsevier B.V.
1. Introduction

Mafic dike–granitoid associations are common in extensional tec-
tonic settings and provide important opportunities for understanding
the sources of mantle magmas, crust–mantle interaction processes,
crustal melting, and the tectonic evolution of orogenic belts. It is gener-
ally accepted that mafic dike–granite associations were emplaced in
extensional tectonic regimes linked to post-collisional or intraplate
extensional settings (Eby, 1992; Said and Kerrich, 2010; Xu et al.,
2008; Yang et al., 2007b). However, the genetic relationship between
granites and mafic rocks is a matter of much current debate. Three
tope Geochemistry, Guangzhou
uangzhou, 510640.
very different processes proposed for the generation of granites include:
(1) fractional crystallization of parental basic melts of mantle-derived
magmaswith a range of pressures and compositions; (2) partialmelting
(anatexis) of pre-existing lower crust mafic sources such as basaltic
rocks or amphibolites, or a protolith of hornblende-rich diorite to grano-
diorite in the mid- to upper crust; (3) mixing between mafic and felsic
magmas derived from mantle and crustal sources, respectively, where
mafic dikes represent the mafic magma.

The Tianshan Orogen extends from west to east for over 2400 km
through Uzbekistan, Tajikistan, Kyrgyzstan, and Kazakhstan to Xinjiang
in northwestern China and developed by multiple subduction events in
the Junggar–Balkhash and South Tianshan Oceans (Paleo-Asian Ocean)
for the north and south parts of Tianshan, respectively (Charvet et al.,
2011; Gao et al., 2009; Xiao et al., 2010, 2013) (Fig. 1a). An extensive
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Fig. 1. (a) Tectonic sketchmap of the Central Asia Orogenic Belt and the location of the Tianshan orogen (modified after Jahn et al., 2000). (b) Digital topography of the Tianshan Orogenic
Belt (original data fromU.S. Geological Survey [http://eros.usgs.gov/products/elevation/gtopo30.html]) showing the Awulalemountains in the core of the Tianshan, the tectonic elements
are after Gao et al. (2009). (c) Geological map of the west part of the Awulale mountains (after Zhao et al., 2008). (d) Simplified geological map of the Zhongyangchang area.
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belt of Paleozoic magmatic rocks was associated with subduction of oce-
anic lithosphere beneath continental lithosphere, corresponding to a
major part of the southwestern Central Asian Orogenic Belt (CAOB)
(Jahn et al., 2000; Xiao et al., 2004, 2013; Windley et al., 2007; Gao
et al., 2011). There is a debate, however, on the timing of final closure of
the Junggar Ocean, with estimates ranging from Early Carboniferous to
Late Permian (Allen et al., 1993; Carroll et al., 1995; Gao et al., 1998;
Han et al., 2010; Tang et al., 2010; Wang et al., 2007; Xiao et al., 2008,
2013). Furthermore, the tectonic settings andmagma sources of Late Car-
boniferous mafic and felsic rocks of the western Tianshan remain contro-
versial, although they potentially can provide important information
concerning the tectonic evolution of the Tianshan Orogen. Most research
in the region has focused on the petrogenesis of Late Carboniferous gra-
nitic rocks (Long et al., 2011; Tang et al., 2010). However, little is known
concerning the geodynamic and genetic relationships between the
temporally and spatially related Late Carboniferous mafic and granitic
rocks.

In this contributionwe report newwhole rock geochemical and Sr–Nd
isotopic data and zirconU–Pb age and in-situHf isotopic compositions for
a representative Late Carboniferous batholith (the Zhongyangchang
batholith) in the western Tianshan, consisting of coexisting mafic dikes
and granitoids, in order to constrain the sources and genetic relationship
between them and to resolve the geodynamic environment at the time of
emplacement.

http://eros.usgs.gov/products/elevation/gtopo30.html
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2. Geological setting and petrography

The Chinese Tianshan, located between the Junggar plate to the
north and the Tarim Block to the south, is a ca. 300 km-wide Paleozo-
ic collisional orogenic collage (Fig. 1a). It experienced a complex evo-
lutionary history involving Paleozoic subduction and collision,
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Fig. 3. Back-scattered electron images of representative phenocrysts found in the Zhongyangch
(d) Variation in plagioclase XAn from rim to core.
Mesozoic erosion, and Cenozoic thrusting and uplift as a conse-
quence of the India–Eurasia collision that has continued to the
present (Gao et al., 2009; Windley et al., 1990; Xiao et al., 2013).
The west part of Chinese Tianshan is subdivided into the north and
south domains that are separated by the Kazakhstan–Yili Block,
which is a microcontinent with a Precambrian basement (Allen
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Table 1
Major (wt.%) and trace elements (ppm) and Sr–Nd isotope compositions of the rocks from the Zhongyangchang pluton.

Sample 06XJ68 06XJ70 06XJ73 06XJ76 06XJ77 06XJ80 06XJ69 06XJ71 06XJ72 06XJ-79-1 06XJ-78 06XJ-74 06XJ-75

Rock type Gabbro dike Granitic intrusive Granitic dike

SiO2 56.13 54.52 51.61 57.56 55.61 51.81 68.92 72.19 69.56 73.80 70.40 76.58 65.20
TiO2 1.60 1.50 1.14 1.13 1.36 0.74 0.32 0.24 0.34 0.22 0.24 0.07 0.67
Al2O3 13.32 13.83 17.20 14.66 14.14 17.14 15.08 14.30 15.49 14.61 15.38 12.96 17.24
Fe2O3 13.93 13.59 11.60 11.70 12.35 10.38 3.62 2.71 2.24 1.08 2.39 1.07 1.97
MnO 0.06 0.07 0.06 0.05 0.14 0.13 0.03 0.02 0.02 0.02 0.04 0.02 0.04
MgO 2.90 3.16 3.54 2.79 3.18 5.29 1.01 0.57 1.31 0.54 0.62 0.03 1.52
CaO 5.66 6.31 8.48 5.52 6.92 8.77 4.79 2.09 6.34 7.92 3.01 3.36 8.90
Na2O 2.76 2.62 2.76 2.75 2.95 3.27 3.35 3.38 3.63 1.55 5.08 3.21 2.68
K2O 2.01 2.21 1.50 1.63 1.60 0.90 0.96 3.76 0.34 0.18 0.89 1.13 0.31
P2O5 0.18 0.09 0.09 0.11 0.18 0.03 0.03 0.01 0.03 0.04 0.01 0.00 0.22
LOI 1.15 1.67 1.74 1.68 1.04 1.23 1.50 0.88 0.77 0.53 1.45 1.10 1.57
Total 99.70 99.56 99.71 99.57 99.46 99.68 99.60 100.15 100.06 100.47 99.49 99.52 100.31
Sc 35.8 21.4 29.7 28.9 32.1 30.6 6.92 4.22 9.37 3.06 4.31 2.07 13.8
V 246 343 320 285 304 248 62.7 37.9 54.9 21.9 39.5 6.70 28.8
Cr 2.86 15.7 46.1 8.26 7.49 68.3 15.2 10.8 7.98 8.13 10.4 14.4 16.3
Co 25.4 27.3 24.0 20.9 26.2 25.2 6.11 4.31 3.60 1.47 3.77 1.19 2.47
Ni 9.06 14.0 25.3 7.58 12.4 32.1 5.49 3.22 4.81 6.13 4.70 3.34 6.25
Ga 17.1 16.6 17.2 18.1 17.0 16.2 12.6 11.8 13.0 10.4 12.4 9.40 14.9
Cs 2.25 0.72 0.23 0.95 1.90 0.63 0.99 1.04 0.31 0.30 0.21 0.44 0.42
Rb 68.9 41.9 38.8 51.5 43.4 25.0 35.6 98.1 8.19 4.90 29.4 32.3 6.87
Ba 199 340 218 227 345 209 104 706 72.9 50.4 136 166 108
Th 4.14 2.27 2.33 3.29 3.43 1.34 8.11 7.09 6.72 4.41 9.94 21.0 2.30
U 2.15 1.01 0.75 3.00 0.99 0.39 2.14 1.37 1.04 0.58 2.76 2.02 1.06
Pb 2.02 1.90 1.53 1.98 3.91 3.26 2.45 7.60 2.34 1.19 4.65 3.29 2.03
Nb 5.53 4.71 3.58 4.44 4.83 2.10 4.57 4.67 5.78 4.84 5.71 9.00 4.06
Ta 0.41 0.33 0.26 0.34 0.34 0.15 0.35 0.60 0.49 0.44 0.68 1.28 0.28
Sr 234 253 345 267 319 357 323 177 356 263 204 161 374
Y 38.3 30.3 26.5 51.1 32.1 17.0 22.2 17.8 22.7 26.1 24.0 19.6 39.1
Zr 154 140 102 128 134 60.6 138 105 89.9 122 108 119 105
Hf 4.69 4.03 3.00 3.98 3.92 1.70 4.10 3.89 3.00 3.91 3.67 5.02 3.26
La 8.27 12.5 10.8 9.72 13.0 7.18 18.5 9.50 11.6 7.69 24.8 6.82 23.7
Ce 21.7 32.1 25.6 24.0 30.1 16.7 36.7 18.3 26.2 19.5 52.3 17.1 49.9
Pr 3.56 4.53 3.68 3.66 4.38 2.35 4.53 2.12 3.25 2.45 5.73 1.86 6.59
Nd 17.4 20.9 16.5 17.2 19.3 10.6 16.5 7.65 12.8 10.1 20.1 6.90 26.6
Sm 5.41 5.30 3.99 5.50 4.98 2.63 3.43 1.70 2.83 2.70 3.77 1.78 6.05
Eu 1.22 1.21 1.01 1.22 1.26 0.81 0.79 0.57 0.56 0.31 0.70 0.09 1.15
Gd 5.93 5.75 4.24 6.45 5.22 2.69 3.39 1.90 3.03 3.05 3.72 2.14 5.78
Tb 1.14 1.03 0.76 1.34 0.94 0.49 0.62 0.40 0.56 0.63 0.61 0.41 1.07
Dy 7.07 6.28 4.65 8.45 5.84 2.96 3.73 2.81 3.55 4.12 3.83 2.77 6.61
Ho 1.47 1.32 1.00 1.88 1.21 0.65 0.81 0.63 0.79 0.93 0.80 0.62 1.41
Er 4.13 3.63 2.77 5.49 3.44 1.82 2.33 1.93 2.27 2.77 2.44 1.94 3.99
Tm 0.60 0.53 0.40 0.84 0.51 0.27 0.35 0.33 0.37 0.44 0.40 0.33 0.62
Yb 4.00 3.38 2.68 5.98 3.21 1.73 2.43 2.28 2.52 2.90 2.69 2.39 4.17
Lu 0.63 0.52 0.40 1.04 0.50 0.28 0.39 0.35 0.41 0.44 0.43 0.40 0.64
87Rb/86Sr 0.479 0.325 0.393 0.203 0.319 1.607 0.066 0.054 0.416 0.581
87Sr/86Sr 0.707492 0.706233 0.706762 0.705774 0.706329 0.711852 0.705345 0.705799 0.706921 0.707110
2σm 0.000014 0.000017 0.000017 0.000014 0.000016 0.000011 0.000017 0.000014 0.000016 0.000020
(87Sr/86Sr)i 0.7053 0.7048 0.7050 0.7049 0.7049 0.7046 0.7050 0.7056 0.7051 0.7045
147Sm/144Nd 0.154 0.146 0.137 0.135 0.125 0.134 0.134 0.147 0.172 0.156
143Nd/144Nd 0.512697 0.512695 0.512689 0.512702 0.512619 0.512631 0.512635 0.512681 0.152598 0.512668
2σm 0.000005 0.000004 0.000003 0.000004 0.000003 0.000003 0.000004 0.000005 0.000003 0.000005
εNd(t) 2.9 3.2 3.4 3.8 2.5 2.4 2.5 2.8 0.2 2.2
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et al., 1993; Gao et al., 1998; Xia et al., 2004, 2008). Unambiguous
crystalline Precambrian basement (~0.9 Ga) is sporadically distrib-
uted in the Tianshan orogen (Hu et al., 2010). Voluminous Late
Paleozoic granitoids and volcanic rocks formed during the Late
Devonian to Late Carboniferous, the latter consisting of basalt, trachyte,
trachyandesite, andesite and rhyolite, occur in the Tianshan orogen.
These rocks show typical subduction zone magmatism characteris-
tics and were generated in a continental arc, induced by subduction
of the Paleo-Tianshan and Paleo-Junggar Ocean (Wang et al., 2007;
Zhu et al., 2009).

In the core of Tianshan Orogen, the west–east trending Awulale
Mountains are located in the northeast part of the Yili block. The
Paleozoic geology of the mountains is dominated by Carboniferous
and Permian volcanic–sedimentary formations (Fig. 1b). The Carbonif-
erous strata consist of sandstones, limestone and tuff, and mainly crop
out in the south margin of the Awulale Mountains. Permian rocks
include sandstones, breccia and intercalated basalts, andesites and
dacites. Small plutons of granitoid and albite porphyry intruded into
the Carboniferous–Permian formations.

The Zhongyangchang pluton, located on the southwest margin of the
AwulaleMountains, intrudes into the Carboniferous volcanic–sedimenta-
ry formation. The body consists of granodiorite, monzogranite, mafic dike
and minor felsic dike (Fig. 2). The mafic dikes are 0.4 m to 5 m in width
and several hundred meters to several kilometers in length. They dip
steeply and occurmainly in an E–Wtrend of 95°. They are gabbro to gab-
broic diorite in composition and generally havemedium-grained granular
textures. The main minerals are plagioclase (~45–50 vol.%), amphibole
(~40–45 vol.%), with minor clinopyroxene, biotite, epidote and Fe–Ti ox-
ides (~5 vol.%) (Fig. 2d). Most clinopyroxene is replaced by igneous am-
phibole. Fe–Ti oxides mainly consist of ilmenite. Compositional zoning
has not been recognized in plagioclase from the gabbro dikes, which has
high An contents ranging from 34 to 55 mol% (Fig. 3, Appendix 1).
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Granodiorite and monzogranite have medium- to coarse-grained
texture (Fig. 2e). They are composed of plagioclase (~45–50 vol.%),
alkali-feldspar (20–30 vol.%), quartz (20–25 vol.%), and amphibole
(5–10 vol.%). Plagioclase shows normal-zoning (Fig. 3). Accessory
minerals include apatite, zircon, titanite and Fe–Ti oxides.

Felsic dikes have granodiorite and monzogranite composition, with
a medium- to fine-grained ophitic texture. The main minerals are pla-
gioclase (45–50 vol.%), K-feldspar (10–20 vol.%), quartz (20–25 vol.%),
amphibole (5–10 vol.%), and clinopyroxene (5%). Accessory minerals
include Fe–Ti oxides, zircon, and apatite.

3. Analytical methods

Mineral major element analyses were carried out at the College of
Earth Sciences, Guilin University of Technology using a JEOL JXA-8200
electronmicroprobe. An accelerating voltage of 15 kV, a specimen current
of 3.0 × 10−8 A, and a beam size of 1–2 μmwere employed. The analytical
errors are generally less than 2%. Results are listed in Appendix 1.

Zircons were separated using conventional heavy liquid and
magnetic separation techniques. Cathodoluminescence (CL) images
were obtained for zircons prior to analysis, using a JEOL JXA-8100
Superprobe at the State Key Laboratory of Isotope Geochemistry,
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
(GIG—CAS), in order to characterize internal structures and choose po-
tential target sites for U–Pb dating. LA-ICP-MS zircon U–Pb analyses
were conducted on an Agilent 7500 ICP-MS equipped with a 193-nm
laser, housed at the State Key Laboratory of Geological Processes and
Mineral Resources, Faculty of Earth Sciences, China University of
Geosciences (Wuhan). Zircon 91500 was used as the standard
(Wiedenbeck et al., 1995) and the standard silicate glass NIST 610 was
used to optimize the machine, with a beam diameter of 30 μm. Raw
count rates for 29Si, 204Pb, 206Pb, 207Pb, 208Pb, 232Th and 238U were col-
lected, and U, Th, and Pb concentrations were calibrated using 29Si as
the internal calibration and NIST 610 as the reference material. 207Pb/
206Pb and 206Pb/238U ratios were calculated using the GLITTER program
(Jackson et al., 2004).Measured 207Pb/206Pb, 206Pb/238U and 208Pb/232Th
ratios in zircon 91500 were averaged over the course of the analytical
session and used to calculate correction factors. These correction factors
were then applied to each sample to correct for both instrumental mass
bias and depth-dependent elemental and isotopic fractionation.
Common Pb was corrected by ComPbCorr#3 151 (Andersen, 2002)
for those samples with common 206Pb N 1%. Further detailed
descriptions of the instrumentation and analytical procedure for the
LA-ICP-MS zircon U–Pb technique can be found in Liu et al. (2010).
Uncertainties in the ages listed in Appendix 2 are cited as 1σ, and the
weighted mean ages are quoted at the 95% confidence level. The age
calculations and Concordia plots were made using Isoplot (ver 3.0)
(Ludwig, 2003).

Major element oxides were determined by standard X-ray fluores-
cence (XRF) methods as described by Li et al. (2006). Trace elements
were analyzed by inductively coupled plasma mass spectrometry
(ICP-MS), using a Perkin-Elmer Sciex ELAN 6000 instrument at GIGCAS.
Analytical procedures are similar to those described by Li et al. (2006).
Analytical precision for most elements is better than 5%.

Sr and Nd isotopic analyses were performed on a Micromass
Isoprobe multi-collector ICP-MS at the GIGCAS, using analytical proce-
dures described by Li et al. (2006). Sr and REE were separated using
cation columns, and Nd fractions were further separated with HDEHP-
coated Kef columns. Measured 87Sr/86Sr and 143Nd/144Nd ratios were
normalized to 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respec-
tively. The reported 87Sr/86Sr and 143Nd/144Nd ratios were adjusted to
the NBS SRM 987 standard 87Sr/86Sr = 0.71025 and the Shin Etsu
JNdi-1 standard 143Nd/144Nd = 0.512115. Major and trace elements
and Sr–Nd isotope results are listed in Table 1.

In situ zircon Hf isotopic analyses were conducted using a Neptune
MC-ICP-MS, equipped with a 193-nm laser, at the Institute of Geology
and Geophysics, Chinese Academy of Sciences in Beijing, China. During
analyses, spot sizes of 32 and 63 μm, with a laser repetition rate of
10 Hz at 100 mJ, were used and raw count rates for 172Yb, 173Yb, 175Lu,
176(Hf + Yb + Lu), 177Hf, 178Hf, 179Hf, 180Hf and 182 W were collected.
During laser ablation analyses, the isobaric interference of 176Lu on
176Hf is negligible due to the extremely low 176Lu/177Hf in zircon (nor-
mally b0.002). However, the interference of 176Yb on 176Hf must be
carefully corrected since the contribution of 176Yb to 176Hf could pro-
foundly affect the accuracy of the measured 176Hf/177Hf ratio. In this
project, the mean 173Yb/171Yb ratio of the individual spots was used to
calculate the fractionation coefficient (βYb), and then to calculate the
contribution of 176Yb to 176Hf. During analysis, an isotopic ratio of
176Yb/172Yb = 0.5887 was applied. The detailed analytical technique
is described in Wu et al. (2006). During the analytical period, the
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176Hf/177Hf and 176Lu/177Hf ratios of the standard zircon (91500) were
0.282294 ± 15 (2σn, n = 20) and 0.00031, similar to the low peaks of
176Hf/177Hf ratios of 0.282284 ± 22 measured by Griffin et al. (2006),
also using the laser method. Results are listed in Appendix 3.

4. Results

4.1. Zircon U–Pb geochronology

Zircons in the gabbro dike sample (06XJ80) have crystal lengths of
~100–300 μm and length-to-width ratios from 1:1 to 2:1 and show os-
cillatory zoning structures in cathodoluminescence (CL) images, which
are similar to those from typical gabbros. The analyzed zircon grains
have variable Th (26.8-1199 ppm) and U (69.1–902 ppm and
64–9338 ppm, respectively) contents, with Th/U ratios ranging from
0.3 to 1.3, indicating a magmatic origin (Belousova et al., 2002). Twenty
one spots were analyzed from 20 zircon grains and give 206Pb/238U
dates ranging between 303 ± 5 Ma and 316 ± 4 Ma (Appendix 2).
They plot on and near Concordia with a weighted mean 206Pb/238U
age of 310 ± 4 Ma (MSWD = 0.64) (Fig. 4c).

Most zircons in monzogranite (06XJ71) and monzogranite dike
(06XJ74) have a size of 60–280 μm a with a length/width ratios of 1:1
to 5:1, and show oscillatory growth zoning. The analyzed zircon grains
from samples 06XJ71 and 06XJ74 have variable Th (36.1–368 ppm
and 67.6–526 ppm, respectively) and U (60–5310 ppm and 76–6595
ppm, respectively) contents, with Th/U ratios ranging from 0.41 to
0.75 and 0.61 to 0.90, respectively, also indicating a magmatic origin.
Nineteen and twenty two U–Pb analyzed spots from samples 06XJ71
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and 06XJ74 yielded concordant 206Pb/238U dates of 314 ± 3 Ma to
320 ± 4 Ma and 305 ± 4 Ma to 318 ± 4 Ma, with the mean ages of
317 ± 3 Ma (MSWD = 0.23) and 310 ± 4 Ma a (MSWD = 0.64),
respectively (Fig. 4a, b; Appendix 2). Therefore, the consistent zircon
U–Pb age data for three samples suggest that the Zhongyangchang in-
trusive rocks were emplaced in the Late Carboniferous (317–310 Ma).

4.2. Major and trace elements

Major and trace element data for the studied mafic dike, granitic in-
trusion and dike samples are listed in Table 1. These rocks plot in the
subalkaline field on the total alkali silica (TAS) diagram. The mafic dikes
have low to intermediate contents of SiO2 (51.61–57.56 wt.%). They are
metaluminous with A/CNK ratios [molar Al2O3/(CaO + Na2O + K2O)] of
0.7–0.9, and are medium-K to high-K tholeiitic rocks (Fig. 5). They have
a large range of MgO (2.79–5.29 wt.%), Al2O3 (13.32–17.20 wt.%), CaO
(5.52–8.77 wt.%), Cr (2.86–68.3 ppm), Ni (7.58–32.1 ppm), and rela-
tively high total Fe2O3 (10.38–13.93 wt.%) and TiO2 (0.74–1.60 wt.%)
abundances (Fig. 6). The mafic dikes are slightly enriched in light rare
earth elements (LREEs) with (La/Yb)N (where ‘N’ indicates chondrite-
normalized) ratios of 1.2–3.0. They show slightly negative Eu anomalies
(Eu/Eu*= 0.66–0.94) in the chondrite-normalized diagrams. The prim-
itive mantle-normalized trace-element distribution patterns of the
Zhongyangchang mafic rocks are characterized by the enrichment of
large ion lithophile elements (LILEs), such as Rb, Ba, U and K. They are
depleted in high field strength elements with strong negative Nb, Ta, P
and Ti anomalies (HFSEs) (Fig. 7). The granitoids and granitoid dikes
have high SiO2 contents (65.20–76.58 wt.%) and are metaluminous to
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weakly peraluminous with A/CNK of 0.8–1.1 (Fig. 5). With the excep-
tion of one sample, they belong to the low-K suite,with Na2O/K2O ratios
greater than l. They have relatively lowMgO, TiO2, total Fe2O3, Cr and Ni
concentrations. They are enriched in LREEs relative to heavy REEs with
(La/Yb)N ratios of 1.9–6.6. They have weak to strong negative Eu anom-
alies, with Eu/Eu* values of 0.1–1.0. On primitive mantle-normalized
trace element diagrams, they are enriched in LILEs, such as Rb, Ba, Th
and U and depleted in HFSEs with negative Nb, Ta, P and Ti anomalies
(Fig. 7).
4.3. Sr–Nd–Hf isotopic compositions

Thewhole rock initial 87Sr/86Sr ratios, εNd(t) and zircon εHf(t) values
have been calculated at 317–310 Ma on the basis of the zircon U–Pb
ages for these rocks. The mafic dikes have low 87Rb/86Sr ratios of
0.20–0.48, and have a low and narrow range of initial 87Sr/86Sr ratios
from 0.7048 to 0.7053, with relatively high εNd(t) values from +2.9 to
+3.8. The granitoids and granitoid dikes also have low 87Rb/86Sr ratios
of 0.05–0.58, with the exception of one sample of monzogranite that
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shows high 87Rb/86Sr ratios of 1.61. All of these rocks have Sr andNd iso-
topic compositions lying within a narrow range of initial 87Sr/86Sr and
εNd(t) values, from 0.7045 to 0.7056, and from +0.2 to +2.8, respec-
tively. The felsic rocks have slightly lower εNd(t) values than the mafic
rocks, although they have identical initial 87Sr/86Sr values (Fig. 8).

Two zircons from mafic dike sample of 06XJ80 were analyzed for Hf
isotopic compositions, giving identical initial 176Hf/177Hf ratios from
0.292922 to 0.282960 and depleted εHf(t) values from +12.2 to +13.6.
The monzogranite and monzogranite dike (06XJ71 and 06XJ74) have
variable zircon Hf isotopic compositions, with initial 176Hf/177Hf ratios of
0.282762–0.283011, εHf(t) values of +6.6 to +15.3 and TDM values of
0.36–0.77 Ga (Fig. 8, Appendix 3).

5. Discussion

5.1. Petrogenetic characteristics of the mafic dike

The mafic dikes of the Zhongyangchang pluton show low SiO2

(51.81–57.56 wt.%), relative to continental crust (Rudnick and Gao,
2003) or crust-derived melts (Patiño Douce and Beard, 1995), indicat-
ing that they were derived from a mantle source. However, the mafic
dikes have relatively low MgO (less than 5.29 wt.%), Cr (2.86–68.3
ppm) and Ni (7.28–32.1 ppm) contents relative to the melts derived
from partial melting of peridotites, indicating that their parental
magmas experienced crystal fractionation of olivine, pyroxene, amphi-
bole and plagioclase. The strong depletion of Nb and Ta for the
Zhongyangchangmafic dikes may suggest involvement of a continental
crust component in themagmas (Fig. 7b), because the continental crust
is typically depleted in these elements (Rudnick, 1995). Therefore,
fractional crystallization and crustal contamination need to be assessed
for the mafic dikes prior to further petrogenetic analysis.

The εNd(t) values of the Zhongyangchang dikes correlate positively
with MgO, indicating that crustal contamination processes may have
acted on their parental magmas (Fig. 9a). Country rocks in the studied
area include Carboniferous granitoids. They are characterized by
positive εNd(t) values in this study, however, which indicates that they
do not represent a suitable contaminant (Fig. 8a). In addition, εNd(t)
values of the mafic dikes are negatively correlated with variable Nb/La
ratios (Fig. 9b), which is inconsistent with crustal contamination pro-
cesses given that continental crust is typically characterized by low
εNd(t) and low Nb/La ratio relative to that of the mantle (Rudnick,
1995). The positive correlation between Nb/La and SiO2 and the nega-
tive correlation between Nb/La and MgO are also inconsistent with
crustal contamination processes (Fig. 9c–d). Thus, the Nb–Ta deficits
in the Zhongyangchang mafic dikes were inherited from their source,
rather than from crustal contamination.

Ratios involving HFSE and REE are commonly used to assess theman-
tle sources of mafic rocks. Amphibole fractionation, however, can change
HFSE and REE ratios because Nb, Ta, Ti and MREE are all compatible in
amphibole (Klein et al., 1997; Tiepolo and Tribuzio, 2008). In addition,
primary amphibole phenocrysts are present in the Zhongyangchang
mafic dikes (Fig. 2d). A useful approach to estimate the effect of
amphibole fractionation employs a plot of Dy/Dy* vs Dy/Yb (Fig. 10a)
(Davidson et al., 2013). With the exception of two samples with the
highest SiO2 content (06XJ68 and 76), the mafic dikes show clear trends
parallel to the amphibole fractionation curve, indicating that amphibole
fractionation has occurred. At the same time, however, these low SiO2

mafic dike samples all fall within the MORB array and therefore they
are used to investigate the mantle source.

The Nb–Ta depletions, relative to the LREE, in the Zhongyangchang
mafic dikes may reflect the contribution of fluids and/or melts derived
from the subducting slab. The log–log Nb/Y–Zr/Y plot has proven to be
a robust discriminant between basalts derived from DMM source re-
gions and from mantle plumes (oceanic island and plateau basalts)
and Zr/Y and Nb/Y ratios display only small variations with low-pres-
sure crystal fractionation and partial melting processes (Fitton et al.,
1997). The plot defines a mantle array that is also insensitive to the ef-
fects of hydrous fluid metasomatism (Fig. 10b). All of the mafic dikes
fall along the mantle array, suggesting that slab-derived fluids, and not
melts, contributed to the mantle sources. The analogous Zr/Yb vs Nb/
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Yb plot (Fig. 10c) indicates that the Zhongyangchang mafic dikes were
derived entirely from depleted MORB-source mantle. The depleted
Nd–Hf isotopic compositions also argue against a scenario where isoto-
pically enriched slab-derived sediments were introduced into mantle
sources through partial melting or bulk addition. The Zhongyangchang
mafic dikes are q–hy-normative, indicating a pressure of magma segre-
gation of 15–20 kbar, based on the experimental results for the partial
melting of anhydrous mantle peridotites (Hirose and Kushiro, 1993;
Takahashi and Kushiro, 1983). Flat Chondrite-normalized HREE pat-
terns also suggest that melting took place within the spinel stability
field. This relatively shallow depth of melt extraction is further
supported by REE modeling. The Gd/Yb ratio can effectively discrimi-
nate the fingerprint of spinel from garnet in the mantle source. Ytterbi-
um is compatible in garnet with a higher phase/melt partition
coefficient for Yb than Gd, whereas spinel has similar phase/melt parti-
tion coefficients for both of these elements. The Zhongyangchang mafic
dikes have low Dy/Yb and Gd/Yb ratios (Fig. 10d), which plot on the
melting curve of spinel peridotite with no garnet in the source, suggest-
ing that the magmas were generated at a relatively shallow depth,
mostly within the spinel stability field with variable degrees (5–10%)
of batch melting of an upper mantle source.

5.2. Petrogenesis of the granitoids

The granitoid plutonic and dike samples have identical geochemical
and Sr–Nd and zircon Hf isotopic compositions (Fig. 8), indicating a
common source or petrogenetic process. They have relatively low
MgO, Cr and Ni contents at high silica concentrations. These calc-
alkaline and metaluminous geochemical features are considered to be
the products of mixing between mantle- and crust-derived magmas
(Barbarin, 2005; Tang et al., 2012b; Yang et al., 2007a), fractional
crystallization of mantle derived basaltic magma (Barth et al., 1995),
or partial melting of juvenile sub-alkaline metabasaltic rocks (Patiño
Douce and Beard, 1995; Rapp, 1995; Rapp et al., 1999).

The physical and geochemical characteristics of the Zhongyangchang
granitoids are inconsistent with mixing of mantle- and crust-derived
melts. No mafic microgranular mafic enclaves (MME) have been found
in the pluton and plagioclases from the granitoids all show simple normal
zoning (Fig. 4) with no evidence for magma mixing. Furthermore, these
granitoids have a narrow range of Nd–Hf isotopic compositions (Fig. 8),
which is also inconsistent with magma mixing that generally results in
a wide range of isotopic compositions. Based on several lines of evidence
below, fractional crystallization of basaltic magma can also be excluded,
although the mafic dikes and granitoids have similar Sr–Nd–Hf isotopic
compositions (Fig. 8). We attempted to model the fractionation history
of the basaltic rocks using MELTS (Ghiorso and Sack, 1995; Smith and
Asimow, 2005). We use 3 kbar pressure, water content of 3 wt.% and
ƒO2 = NNO + 1 and a starting composition of basaltic rocks (06XJ80)
to test the fractionation hypothesis (Fig. 6a–e). Modeling results show
that fractionation did not generate major element compositions similar
to the granitoids. In addition, Brophy (2008) suggested that a crystal
fractionation origin for felsic magmas will generate positive trends
between SiO2 and REE concentrations, whereas dehydration melting of
amphibolite crust leads to negative SiO2–REE correlations. The granitoids
have lower REE levels than themafic dikes (Fig. 6f), which is inconsistent
with an origin via differentiation of the basaltic magma. Furthermore, no
rocks compositionally intermediate between the mafic dikes and the
granitoids have been identified in the area.

The Zhongyangchang granitoids have low initial 87Sr/86Sr ratios
(0.7045–0.7056), positive whole rock εNd(t) (+0.2 to+2.8) and zircon
εHf(t) (+6.6 to +15.3) values with young Nd (0.85–1.1 Ga) and Hf
(0.36–0.77 Ga) model ages, indicating that they may have been derived
from a crustal source formed by underplating of depleted mantle-
derived mafic magmas during the Late Carboniferous. The Sr–Nd–Hf
isotopic data for the mafic dikes are similar to those of the granitoids,
which suggests that the hypothesized underplated basaltic magmas
correspond to the parental magmas of the Zhongyangchang mafic
dikes. Experimental results can provide insight into the melt composi-
tions produced fromdifferent sources and P–T conditions ofmelt gener-
ation (Fig. 11a–b). The Zhongyangchang granitoids have intermediate
Na2O and low K2O contents at high silica contents, identical to the com-
positions of melts produced by partial melting of amphibolites (Beard
and Lofgren, 1991). In order to evaluate this process we use REE data
to model batch partial melting (Fig. 11c). Mafic dike of 06XJ80 was se-
lected as a proxy of juvenile lower crust beneath the study area. We as-
sume that the partial melting took place under an amphibolite-facies
condition and the initial mineralogical assemblages were Amph
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(amphibole):Plag (plagioclase):Cpx (clinopyroxene) = 50:25:25. The
chondrite-normalized REE pattern for the Zhongyangchang granitoids
is reproduced by 15% batch melting (Fig. 11c).

In summary, themafic dikeswith low initial 87Sr/86Sr ratios and pos-
itive εNd(t) and εHf(t) valueswere formed by partial melting of depleted
lithospheric mantle source, fluxed by fluids derived from the down-
going slab. The granitoids in the Zhongyangchang pluton also have
low initial 87Sr/86Sr ratios and positive εNd(t) and εHf(t) values with
young Nd and Hf model age, indicating a juvenile crustal origin. Collec-
tively, the geochronological, chemical and isotopic evidence require
that the granitoidswere generated bypartialmelting of juvenile basaltic
lower crust as a result of magma underplating.

5.3. Tectonic implications

Mafic dike–granitoid associations are common in extensional
tectonic regimes that are usually interpreted as post-collisional or intra-
plate extensional settings (Said and Kerrich, 2010; Xu et al., 2008; Yang
et al., 2007b). Most recently, amantle plumemodel has been invoked to
account for the Tianshan and Junggar mafic dikes, because the mafic
dikes purportedly formed in the Early Permian (290–260 Ma), coeval
with the Tarim large igneous province (Zhang and Zou, 2013). However,
numerous zircon U–Pb and whole rock or amphibole 40Ar/39Ar dating
results indicate that mafic dikes in the west Junggar and Tianshan re-
gions formed during the Late Carboniferous (~320–305 Ma) (Feng
et al., 2012; Tang et al., 2012b; Yin et al., 2010, 2013) and are unequiv-
ocally older than the Early Permian (275Ma) Tarim large igneous prov-
ince (Wei et al., 2014). In addition, the geochemical characteristics of
the Zhongyangchang mafic dikes are distinct from those of the Tarim
Early Permian basalts and mafic dikes (Fig. 7a–b). Zhongyangchang
mafic dikes have low LREE contents with flat chondrite-normalized pat-
terns, and show strongly negativeNb, Ta, Ti and P anomalies. In contrast,
Tarim Early Permian basalts and mafic dikes display more fractionated
REE patterns, without pronounced peaks at Nb, Ta and Ti. Thus, these
Late Carboniferous mafic dikes are unlikely to have originated from
the Tarim mantle plume.

The Late Carboniferous Zhongyangchang mafic dikes and granitoids
are also unlikely to have formed in a post-collisional setting. There is
growing evidence for the Junggar oceanic crust subducted south
beneath the western Tianshan during the Late Carboniferous, forming
a northwest Tianshan Carboniferous arc along the northern margin of
the Yili Block (An et al., 2013; Long et al., 2011; Zhu et al., 2009). Their
geochemical characteristics are also inconsistent with an origin during
post-collisional events. Themafic dikes are enriched in LILE and deplet-
ed in HFSE, with strongly negative Nb–Ta anomalies, indicating an arc
origin. All mafic dikes fall into the area of arc-basalts on a Hf/3–Th–
Nb/16 tectonic discriminant diagram (Fig. 12a). The Zhongyangchang
Late Carboniferous granitoids also all plot in the volcanic arc field on
the Yb–Ta tectonic discrimination diagram. They are distinct from
Early Permian (285 Ma) strongly peraluminous leucogranite dikes
from the South TianshanOrogen that all fall into thewithin plate granite
field, which formed as a result of exhumation of over-thickened crusts
in a post-collisional setting (Figs. 7c–d, 12b) (Gao et al., 2011). In addi-
tion, the other Late Carboniferous basaltic rocks from the western
Tianshan all show typical island arc type geochemical characteristics,
suggesting that their origin was related to oceanic subduction (Tang
et al., 2012a). Furthermore, Carboniferous ophiolites have recently
been identified in the area, e.g., the 344 ± 3 Ma Bayingou ophiolite in
the western Tianshan (Xu et al., 2006). This ophiolite is only slightly
older than the Zhongyangchang intrusive rocks. Therefore, diverse
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types of evidence overwhelmingly indicate that the Late Carboniferous
Zhongyangchang mafic dike–granitoids association was not related to
a post-collisional setting, but rather formed at an arc setting related to
oceanic subduction.

The Late Paleozoicmagmatism in the TianshanOrogen can be rough-
ly divided into threemain episodes encompassing the Late Devonian to
Early Carboniferous, Late Carboniferous and Early Permian, as suggested
by a histogram of zircon U–Pb age data (Fig. 13). The Late Devonian to
Early Carboniferous magmatic rocks consist mainly of calc-alkaline
granitoids, and volcanic rocks including basalt, trachyte, trachyandesite,
andesite and rhyolite (An et al., 2013; Long et al., 2011; Tang et al., 2010;
Zhu et al., 2009). All of these rocks show typical arc-like geochemical
characteristics (e.g., enrichment of large ion lithophile elements (LILE)
and strongnegative anomalies of Ta, Nb, P and Ti). A significant Late Car-
boniferous magmatic “flare-up” event occurred in the Tianshan orogen.
The resulting magmatic rocks ranged from basaltic to rhyolitic in com-
position similar to the Late Devonian to Early Carboniferous magmatic
rocks. At the same time, many Late Carboniferous mafic rocks were
emplaced in the western Tianshan, e.g., the Luotuogou gabbroic pluton
(312Ma, Tang et al., 2012a) and Haladala gabbroic pluton (306Ma, Zhu
et al., 2010). Recent studies suggested that these Late Carboniferous
mafic rocks were derived from a depleted mantle source containing
an asthenospheric component. It is noteworthy that a magmatic gap
or quiescent period existed between the Late Carboniferous and Early
Carboniferous (Fig. 13). The Early Permian magmatic rocks consist
mainly of A-type granites (Tang et al., 2010). Early Permian strongly
peraluminous leucogranite dike, crosscutting the high pressure-low
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temperature Tianshan metamorphic belt, also indicates the Tianshan
Orogen entered into a post-collision setting during that time (Gao
et al., 2011).

Taking into account all available data from Late Paleozoic magmatic
rocks in the western Tianshan region, we prefer a slab roll-back model
during the Late Carboniferous (Fig. 13) because it can readily account
for the Late Carboniferousmagmatic “flare-up” and the presence of sub-
ordinate mafic rocks, which required an asthenospheric component
(Fig. 14). It is most likely that normal subduction produced the Late De-
vonian to Early Carboniferous magmatic rocks, but was followed by a
period of “flat-subduction” that resulted in an interval of magmatic qui-
escence. Finally, the oceanic slabwas likely to have undergone roll-back
to normal, steeper, angles of subduction during the Late Carboniferous.
A descending slab migrating backwards in the asthenospheric mantle
(roll-back) would cause asthenosphere upwelling. On the one hand,
this process provides heat tomelt overlyingmetasomatized lithospheric
mantle and on the other hand, it provides an upwelling asthenospheric
mantle component for mafic magmas. Sustained mafic magma under-
plating eventually leads to partial melting of juvenile basaltic lower
crust, producing felsic rocks.

6. Conclusions

The Zhongyangchang intrusive rocks in the western Tianshan are
mainly composed ofmafic dikes, plutonic granodiorite andmonzogranite,
and minor granitic dikes. New zircon U–Pb ages indicate that the
Zhongyangchang intrusive rocks were all emplaced in the Late
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Carboniferous (317–310 Ma), establishing that the mafic and felsic
magmas were coeval. The petrographic and geochemical data, Sr–
Nd isotopic and zircon Hf isotopic compositions indicate that the
parental magma of the Late Carboniferous Zhongyangchang mafic
rocks was derived from a depleted lithospheric mantle source,
fluxed by fluids derived from the down-going slab. The granitoids
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in the Zhongyangchang pluton also have low initial 87Sr/86Sr ratios
and positive εNd(t) and εHf(t) values similar to those of mafic rocks,
with young Nd and Hf model ages. The granitoids were generated
by partial melting of juvenile basaltic lower crust as a result of
magma underplating. The Late Carboniferous mafic dike–granitoid
association was not related to a post-collisional setting, but rather
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formed at an arc setting related to oceanic subduction. The most likely
tectonic model accounting for the genesis of these rocks involves an ex-
tensional environment in thewestern Tianshan during the Late Carbon-
iferous as a tectonic response to the roll-back of subducted Junggar
oceanic lithosphere, which could accounts for the “flare-up” of Late
Carboniferous magmatism.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2014.04.010.
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