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Assessment of the synchroneity between the Siberian Traps and the Permo-Triassic boundary (PTB)mass extinc-
tion has led to the proposition that the Siberian flood volcanism was responsible for the severest biotic crisis in
the Phanerozoic. However, recent studies suggest that the Siberian Trapsmay have postdated themain extinction
horizon. In this paper, we demonstrate, using stratigraphy, a time and intensity coincidence between PTB volca-
nic ash and the main extinction horizon. Geochemistry of the PTB volcanic ashes in five sections in South China
indicates that they were derived from continental magmatic arc. Zircons extracted from the PTB volcanic ashes
have negative εHf(t) (−12.9 to −2.0) and δ18O (6.8 to 10.9‰), consistent with an acidic volcanism and a
crustal-derived origin, and therefore exclude a genetic link between the PTB mass extinction and the Siberian
Traps. On the basis of spatial variation in the number of the PTB volcanic ash layers and the thickness of the
ash layers in South China, we propose that the PTB volcanic ash may be related to Paleo-Tethys continental arc
magmatism in the Kunlun area. Ignimbrite flare-up related to rapid plate subduction during the final assemblage
of the Pangea super-continent may have generated a volcanic winter, which eventually triggered the collapse of
ecosystem and ultimately mass extinction at the end of the Permian. The Siberian Traps may have been respon-
sible for a greenhouse effect and so have been responsible for both a second pulse of the extinction event and
Early Triassic ecological evolution.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Permo-Triassic boundary (PTB) mass extinction was the sever-
est biotic crisis in Phanerozoic, affecting over 90% marine species,
70% land vertebrate genera and most land vegetation (Erwin, 1994).
Although no consensus has been reached so far on the causal mecha-
nisms, the ~250Ma Siberian Traps is widely believed to be the ultimate
cause of PTBmass extinction due to the coincidence of these two events
(e.g., Campbell et al., 1992; Courtillot, 1994; Courtillot and Renne, 2003;
Kamo et al., 2003, 2006; Racki andWignall, 2005; Reichow et al., 2002;
Renne et al., 1995). However, two potential pitfalls are associated with
this methodology/reasoning:

(a) If the two events took place at the same time, they are possibly
but not necessarily related to each other. In the PTB case, the
role of volcanism as the cause of mass extinction is considered
important given the presence of numerous volcanic ash layers
around the PTB. If this volcanic ash has the same age and compo-
sition as those of the Siberian Traps, a consanguineous associa-
tion between them can thus be established. The PTB volcanic
ash was previously considered to be felsic rather than mafic
and be related to plate subduction or a magmatic arc (e.g., Clark
et al., 1986; Yang et al., 1991; Yin et al., 1992, 2007; Zhou and
Kyte, 1988). Thus, the provenance of the PTB volcanic ash and
its genetic relationship related to the Siberian Traps deserve fur-
ther investigation.

(b) The link between the Siberian Traps and the PTBmass extinction
was initially established based on the synchroneity of these two
events. However, the dating techniques used in the early studies
on PTB (SHRIMP and Ar–Ar dating) generally have the analytical
precision of ~1%, which corresponds to an uncertainty of 2–3Ma
(Campbell et al., 1992; Renne et al., 1995). Such an uncertainty is
insufficient to constrain the temporal relationship of the PTB and
the mass extinction which is believed to have occurred within
0.2 Myr (Shen et al., 2011). A newly developed zircon U–Pb dat-
ing technique, chemical abrasion-thermal ionization mass spec-
trometry (CA-TIMS), can improve the precision up to 0.1% on
the analyses for individual zircon grains, and is therefore suitable
for the accurate age constraints of PTB (Shen et al., 2011). TheCA-
TIMS zircon U–Pb ages for the Siberian Traps indicate that the
eruption of the flood basalts mainly occurred between 251.7 ±
0.4 and 251.3 ± 0.3 Ma (Kamo et al., 2003), which significantly
postdate the main PTB extinction horizon (252.28 ± 0.08 Ma)
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Fig. 2. Field photographs of the PTB volcanic ashes at (a) Meishan, (b) Chaotian,
(c) Shangsi, and (d) Dongpan sections. Note: The length of the yellow notebook in (b) is
18 cm.
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(Shen et al., 2011) (Fig. 1). This result is consistent with the ob-
servation that the transition from Permian to Triassic fossil as-
semblages in Russia had started before the eruption of the
Siberian Traps (Sadovnikov, 2008). Therefore, the model involv-
ing the Siberian Traps as the most significant cause of the PTB
mass extinction needs to be re-evaluated.

In this study, we carried out an integrated investigation of geology,
mineralogy, whole-rock geochemistry and zircon Hf–O isotopes of the
PTB volcanic ash in South China, in order to define the relationship be-
tween the volcanic ash and the PTB mass extinction, and to unravel
the provenance of volcanic ashes around the PTB. Our results show
that (1) the main PTB extinction horizon rests on a layer of volcanic
ash, consistent with a causal link between the volcanism and mass ex-
tinction, and (2) a crustal origin of the PTB volcanic ash layers, which
rules out a genetic link to the Siberian Traps. Finally, we propose that
the PTB volcanic ash in South China may be related to ignimbrite
flare-up caused by rapid plate subduction during Pangea assembly.

2. Geological background and sampling

The Permian–Triassic boundary Global Stratotype Section and Point
(GSSP) was established at D section of Meishan, Changxing, Zhejiang
Province in South China (Yin et al., 2001). The well-established strati-
graphic columns of a number of the PTB sections in South China show
that abundant volcanic ash occurs around PTB (Fig. 2). These ash layers
have been extensively studied in the past 30 years (e.g., Bowring et al.,
1998; Clark et al., 1986; Metcalfe et al., 1999; Mundil et al., 2001, 2004;
Shen et al., 2011, 2012, 2013; Zhou and Kyte, 1988). It is widely accept-
ed that the PTB volcanic ash layers may have been deposited during
the latest Permian and the earliest Triassic, and that they are felsic in
composition andmay have been formed in a subduction-related setting
(Clark et al., 1986; Gao et al., 2013; Isozaki et al., 2007; Shen et al., 2012;
Yang et al., 2012; Yin et al., 2007; Zhou and Kyte, 1988).

Five typical PTB sections (Meishan, Shangsi, Chaotian, Dongpan and
Rencunping) in South China (Fig. 3) are targeted in this study forminer-
al and whole-rock compositions and zircon Hf–O isotopic analyses.
Using our own field observations with those reported in the in
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literature, the main characteristics of the PTB volcanic ash layers in
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the thickness of each ash layer are highly variable from one sec-
tion to another (e.g., Gao et al., 2013; Isozaki et al., 2004, 2007; Li
et al., 1986; Shen et al., 2012, 2013). In South China, the PTB
volcanic ashes are divided into three zones, Zones A, B and C, in
terms of the numbers and total thickness of ash layers (Fig. 3a).
25–35 ash layers are present in Zone A in the northwest part of
South China with a total thickness varying from 10 to 20 cm in
different sections, whereas 15–25 ash layers in Zone B in the cen-
tral part of South China have a total thickness of 5–15 cm and 5–
12 ash layers in Zone C have a total thickness of 4–12 cm. The de-
crease in the layer number and thickness from Zone A to Zone C
indicates that the PTB volcanic ash may have had their prove-
nance in West China.

(2) Two layers of volcanic ash (Beds 25 and 28) in theMeishan GSSP
section are exactly on the PTB extinction horizons (Figs. 1 and
3b) (e.g., Shen et al., 2011; Song et al., 2013; Xie et al., 2007;
Yin et al., 2007, 2012). Overall Bed 25 and its equivalent layer
in other sections aremuchbetter correlated than other ash layers
around PTB in South China. The 4–20 cm-thick Bed 25 can be
found in the same stratigraphic level in all the PTB sections in
South China, except in a few sections where Bed 25was deposit-
ed above the storm wave base and the PTB is unconformity.

(3) The CA-TIMS zircon U–Pb dating results for the ash layers in the
Meishan and Shangsi sections show that the Late Permian volca-
nism started at 254.3 Ma and ended at 251.3 Ma, with a main
peak at 252.2 Ma (e.g., Bowring et al., 1998; Galfetti et al., 2007;
Mundil et al., 2004; Shen et al., 2011).

(4) As revealed by the temporal variation in the thickness of the ash
layers from Zone A to Zone C (Fig. 3), the volcanism intensified
during the Changsingian and reached its climax in the latest
Permian. The ash layers were initially thought to represent re-
gional eruptive activity associated with a volcanic arc along the
margin of the South China craton (Shen et al., 2013; Yin et al.,
1989, 1992), but later were linked to the Siberian Traps
due to the temporal coincidence between these two events
(Shen et al., 2012). Recent studies have focused on the spatial
and the temporal distribution of the ash layers and their relation-
ship to contemporaneous biotic and environmental changes (Xie
et al., 2010; Shen et al., 2012, 2013).

3. Analytical techniques

3.1. Mineralogical and whole-rock compositions

Identification of bulk and clay minerals was carried out on un-
oriented powder mounts by X-ray diffraction (XRD) (BRUKER D8
ADVANGE in German) at the Guangzhou Institute of Geochemistry, Chi-
nese Academy of Sciences (GIGCAS). Qualitative characterization and
semi-quantitative characterization of mineralogy are based on peak in-
tensity measurements on X-ray patterns. The diagnostic peak and the
corrective intensity factor are indicated for each mineral. Semi-
quantitative determination of the main clay species was based on the
height of specific reflections, generally measured on ethylene glycol
runs. The intensity of the 10 Å peak was taken as a reference, the
other intensities were divided by a weight factor and all identified
clay species values were summed to 100%. Corrective factors were de-
termined by long-term empirical experiments at GIGCAS.

Whole-rock major elements were analyzed at the GIGCAS using
wave-length X-ray fluorescence (XRF) spectrometry. A pre-ignition
was used to determine the loss on ignition (LOI) prior tomajor element
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analyses. Accuracy is within 1% for major elements.Whole-rock trace
elements were analyzed using PerkinElmer Sciex ELAN 6000 Induc-
tively Coupled Plasma-Mass Spectrometer (ICP-MS), following the
techniques described by Liu et al. (1996). The USGS and Chinese Na-
tional standards AGV-1, AGV-2, BHVO-2, GSR-1, GSR-2, GSR-3 and
W-2 were chosen for calibrating element concentrations of the ana-
lyzed samples. Analytical uncertainties of REE and other incompati-
ble element analyses are generally better than 5% (Supplementary
Table 1).

3.2. Zircon U–Pb dating and Hf–O isotopic compositions

Zircon crystals were separated from ~3-kg crushed samples using
conventional magnetic and density separation techniques and purified
by hand-picking under a binocular microscope. All zircons were docu-
mented with transmitted and reflected light micrographs, as well as
cathodoluminescence (CL) images to reveal the external and internal
structures prior to U–Pb dating and Hf and O isotopic analyses and to
choose potential target sites. The mount was vacuum-coated with
high-purity gold prior to SIMS U–Pb and O isotopic analyses.

Measurements of U, Th and Pb isotopes and O isotopes were con-
ducted using the Cameca IMS-1280 SIMS at the Institute of Geology
and Geophysics, Chinese Academy of Sciences (IGGCAS). Analytical
procedures for U–Pb dating are the same as those described by Li
et al. (2009). After U–Pb dating, the sample mounts were re-ground
for ~5 μm to ensure that any oxygen implanted in the zircon surface
from the O2

− beam used for U–Pb analysis is completely removed.
Some grains have obtained CA-TIMS U–Pb ages in previous work
(Shen et al., 2011). Analytical procedures are similar to those reported
by Li et al. (2009).

In-situ zircon Lu–Hf isotopic analyseswere carried out on a Neptune
multi-collector ICP-MS equipped with a Geolas-193 laser-ablation sys-
tem (LA-MC-ICPMS) at the IGGCAS. Lu–Hf isotopic analyses were ob-
tained on the same zircon grains that were previously analyzed for U–
Pb and O isotope. The detailed analytical technique and data correction
procedures are described by Wu et al. (2006).

4. Results

4.1. Mineral compositions

Eleven PTB samples were selected for XRD analyses and the results
are listed in Supplementary Table 2. The samples are mainly composed
of a mixture of clay minerals including mixed-layer illite and smectite
(47.3–93.3%), quartz (3.2–21.9%), feldspar (1.3–22.9%) and minor ana-
tase and pyrite.

4.2. Whole-rock major and trace elements

The samples of the PTB volcanic ashes have high LOI contents (8–
16%) (Table 1), consistent with the presence of large amounts of clay
minerals. The samples have 16.5–28.2% Al2O3, 2.0–5.9% K2O and 46–
58% SiO2 (Table 1). By usingweight fractions ofmajor oxides, the chem-
ical index of alternation (CIA = Al2O3/(Al2O3 + CaO⁎ + Na2O + K2O);
Nesbitt andYoung, 1982) and the chemical index ofweathering (CIW=
Al2O3/(Al2O3 + CaO+ Na2O); Harnois, 1988) were calculated. The CIA
and CIW values of the PTB volcanic ashes in South China are 77–86
and 63–96, respectively, indicating that all the samples have experi-
enced intensive alteration and weathering. The Al2O3/TiO2 of the PTB
volcanic ashes are 22–151, similar to those reported by Zhou and
Kyte (1988).

Total rare earth element (REE) concentrations of the samples vary
from 135 to 603 ppm (Table 1). All the samples show negative Eu
anomalies (δEu=0.36 to 0.57; δEu=EuCN / (SmCN+GdCN)1/2, the sub-
script CN denotes chondrite-normalized; normalization values are
after Sun and McDonough (1989)) on chondrite-normalized REE
diagrams (Fig. 4a) and pronounced negative Nb, Ta and Ti anomalies
in their primitive mantle-normalized trace element patterns
(Fig. 4b).
4.3. Zircon U–Pb ages and Hf–O isotopic compositions

The SIMSU–Pb ages for the zircon crystals from four samples (MS-A-
25, MS-A-28, SS-24 and DP10-5-13) in the Meishan A, Shangsi and
Dongpan sections are listed in Supplementary Table 3. The zircons dis-
play well-developed tetragonal dipyramids and magmatic zoning,
none of them has core–rim structure. They have 36–775 ppm U and
18–488 ppm Th with Th/U of 0.36 to 2.11, which, together with the ex-
ternal morphology, is suggestive of a magmatic origin (Hoskin and
Schaltegger, 2003). Theweightedmean 206Pb/238U ages of the four sam-
ples are 252.2 ± 1.0 Ma (1σ, MSWD= 1.3), 251.7 ± 1.0 Ma (MSWD=
0.2), 253.5 ± 1.2 Ma (MSWD= 0.58) and 249.0 ± 0.82 Ma (MSWD=
0.75), respectively (Fig. 5). The ages are interpreted to be the crystalliza-
tion age of the source materials.

Six samples from the Meishan, Shangsi, Chaotian and Dongpan sec-
tions were selected for Hf isotopic analyses, and five of them were se-
lected for O isotopic analyses. The results are listed in Supplementary
Tables 4 and 5. Zircons from the Meishan section have high δ18O values
(6.8 to 9.1‰), and negative εHf(t) values (−12.1 to −2.7) and the Hf
two-stage model ages range from 1.45 to 2.04 Ga (Fig. 6 and Supple-
mentary Table 4). Similar results are observed for zircons from other
sections (δ18O = 6.9 to 10.9‰, εHf(t) = −12.9 to −2.0, Hf two-stage
model ages = 1.4 to 2.1 Ga) (Supplementary Table 4).
5. Discussion

5.1. The PTB volcanic ash layers and biological context

5.1.1. Temporal coincidence between the ash layer and the main extinction
horizon

In the GSSP Meishan section, the decline of bio-diversity started in
the limestone of the uppermost Permian, whereas the most dramatic
decline occurred at the base of Bed 25 and at the base of Bed 28 (Song
et al., 2013; Fig. 1). Consequently, the volcanic ash layers of Beds 25
and 28 are considered as the main extinction horizon (MEH) of the
latest Permian and the second-order extinction (SOE) of the earliest
Triassic, respectively (Song et al., 2013; Yin et al., 2007, 2012). The se-
verest bio-decline is coincident with the most intense volcanism
(Figs. 1 and 7). Irrespective of the exact ages of the volcanic ash, this
can be taken as the direct evidence for the temporal coincidence be-
tween the PTB volcanism and the mass extinction event.
5.1.2. Volcanic intensity variation with biological context
Beforemaking interpretations on apparent age coincidence, we once

again need to assess the intensity of the PTB volcanism with particular
reference to the frequent felsic ash fall events in the Late Permian. Tak-
ing the Shangsi section as an example, the duration of the volcanism
that deposited the PTB volcanic ash (Mundil et al., 2004; Shen et al.,
2011), in combination with the thickness of the ash layers, can be
used to delineate the temporal variation in volcanic intensity (Fig. 7a).
The Late Permian volcanism in the Shangsi section started at 254.8 Ma,
and progressively reached its climax in the latest Permian, then declined
gradually above the PTB, and ended at ~251.8 Ma. Similar temporal
variations in volcanic intensity are observed in the Changsingian sec-
tions in the Meishan, Chaotian, Rencunping and Dongpan regions
(Fig. 7b), assuming the same sedimentation rate for each section during
Lopingian. We consider that the variation of the intensity of the late
Permian volcanismmay indicate a causal link between volcanic intensi-
ty and biological evolution.



Table 1
Major and trace elements of the PTB volcanic ashes in South China.

MS-A-25 MS-A-28 CT-60 CT-61 SS-24 SS-25 DP10-2-16 DP10-5-13 RCP-10 RCP-11 RCP-12

Major elements
SiO2 50.88 57.85 50.10 46.14 45.96 52.10 53.78 53.02 51.01 53.11 51.03
TiO2 0.45 0.74 0.45 0.44 0.25 0.49 0.31 0.74 0.51 0.17 0.54
Al2O3 26.36 16.45 25.13 24.05 19.15 23.94 24.34 28.22 25.90 26.11 26.57
Fe2O3 3.07 5.05 2.49 2.56 1.83 2.21 3.98 0.95 3.09 1.91 2.16
MgO 3.31 2.54 1.59 2.31 2.76 3.52 2.45 2.52 3.15 2.92 3.14
MnO 0.00 0.03 0.01 0.02 0.02 0.00 0.03 0.02 0.00 0.02 0.01
CaO 0.94 4.41 4.26 6.31 11.06 2.69 1.54 0.64 0.92 0.78 0.97
Na2O 0.07 0.19 1.12 0.28 0.41 0.07 1.43 0.18 0.37 0.72 0.23
K2O 5.23 4.46 4.13 4.67 2.82 3.65 2.01 5.85 5.49 5.65 5.79
P2O5 0.10 0.06 0.40 0.18 0.07 0.11 0.11 0.02 0.05 0.05 0.10
LOI 9.91 8.49 10.19 12.57 16.05 10.57 10.28 8.16 9.33 8.12 9.19
Total 100.31 100.27 99.87 99.53 100.38 99.36 100.28 100.33 99.82 99.57 99.73

Trace elements
Sc 17.49 12.86 3.38 12.32 8.37 9.38 7.53 14.17 18.58 14.56 14.64
V 17.15 84.78 65.45 51.04 46.71 15.90 17.32 35.50 27.20 84.56 20.53
Cr 1.27 72.69 16.43 10.86 31.90 17.95 19.04 12.22 9.62 13.51 10.29
Co 0.60 9.68 10.99 16.80 7.13 2.39 5.95 10.37 2.59 4.33 2.75
Ni 4.79 26.50 27.54 34.58 16.80 23.93 28.56 39.32 11.06 36.56 21.51
Cu 9.35 25.00 44.61 93.89 40.72 5.29 63.13 18.57 18.16 12.72 7.97
Zn 138.20 44.72 68.26 71.99 29.03 46.48 81.71 60.46 147.50 77.47 48.90
Ga 31.31 21.61 23.25 26.97 7.12 9.09 25.97 31.63 31.28 28.15 34.28
Ge 1.13 1.55 0.64 1.11 0.65 0.96 1.53 1.44 1.37 1.37 1.77
Rb 106.40 146.50 128.10 157.50 55.01 72.86 90.28 173.00 151.20 168.90 180.10
Sr 168.90 212.20 972.20 644.50 447.70 75.99 129.70 54.06 40.59 50.43 42.74
Y 51.22 26.14 25.22 63.85 24.90 37.16 26.45 95.31 57.56 26.03 80.75
Zr 341.70 181.50 287.10 484.30 183.30 436.90 209.50 441.20 467.30 174.10 600.10
Nb 21.24 18.59 10.58 10.76 5.64 15.20 14.10 27.58 18.94 8.27 21.91
Cs 31.83 12.32 7.98 10.02 5.28 5.50 10.97 21.67 12.60 10.70 11.29
Ba 116.00 306.10 76.05 54.20 60.04 26.28 467.80 325.20 173.10 149.40 161.50
La 82.13 34.86 77.47 102.30 26.97 56.50 73.75 79.18 70.36 27.21 99.37
Ce 174.40 66.84 157.30 210.90 54.56 124.70 146.00 165.20 229.40 76.13 285.60
Pr 22.89 7.07 18.85 25.78 6.44 13.96 18.29 20.89 25.53 8.47 28.99
Nd 78.39 24.18 62.10 86.08 23.55 50.39 69.70 73.37 102.70 30.47 103.80
Sm 14.50 4.41 10.78 16.22 5.00 9.95 13.73 14.44 23.06 6.20 20.19
Eu 1.60 0.80 1.43 1.93 0.63 1.16 1.90 2.46 2.88 0.93 2.73
Gd 11.64 4.01 7.57 14.26 4.94 8.68 10.32 13.74 16.19 4.89 16.44
Tb 1.87 0.66 1.14 2.26 0.83 1.40 1.27 2.56 2.35 0.83 2.80
Dy 10.66 4.23 6.02 12.14 4.90 8.38 5.74 16.69 13.03 5.10 17.05
Ho 2.06 0.93 1.12 2.39 0.98 1.64 0.92 3.50 2.59 1.08 3.58
Er 5.64 2.83 2.85 6.14 2.77 4.48 2.33 10.37 7.12 3.23 10.12
Tm 0.78 0.43 0.44 0.87 0.40 0.63 0.32 1.52 1.02 0.52 1.52
Yb 4.72 2.68 2.76 5.26 2.50 3.81 2.00 9.22 6.27 3.45 9.57
Lu 0.67 0.41 0.38 0.77 0.38 0.53 0.30 1.32 0.92 0.53 1.45
Hf 14.98 4.92 8.52 13.68 7.02 12.74 6.39 18.93 17.61 8.32 20.38
Ta 2.75 1.13 2.15 2.75 1.48 2.14 2.22 2.67 2.91 2.27 3.33
Pb 27.11 24.90 35.11 42.49 19.91 36.32 21.21 13.65 20.29 34.46 21.08
Th 61.29 14.95 45.94 60.07 27.04 38.00 33.37 53.79 60.62 42.43 61.25
U 6.76 3.33 9.02 12.68 3.17 8.42 7.65 12.26 11.41 8.59 14.98
δEu 0.36 0.57 0.46 0.38 0.38 0.37 0.47 0.53 0.43 0.50 0.44
∑REE 411.94 154.32 350.20 487.30 134.84 286.21 346.57 414.46 503.41 169.03 603.21

Note: δEu = EuCN / (SmCN + GdCN)1/2, the subscript CN denotes chondrite-normalized, normalization values are after Sun and McDonough (1989).
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5.2. Compositions of the PTB volcanic ashes in South China

The PTB volcanic ash layers in South China have Al2O3/TiO2 of 22 to
151with an average of 62. They are enriched in Cs, Zr, Hf, Ta and Th and
depleted in Cr and Co (Table 1). They have negative Eu anomalies with
δEu of 0.36 to 0.57 and an average value of 0.45. The PTB volcanic ashes
classify as felsic on the Zr versus Ti, Al2O3 versus TiO2 and Nb/Y versus
Zr/TiO2 diagrams (Fig. 8).
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The PTB volcanic ashes have REE patterns identical to those of felsic
volcanic rocks derived from volcanic arcs (Fig. 4a), indicating that the
volcanic ash may have formed along a continental-plate margin during
collision. On the basis of tectonomagmatic discrimination diagrams
(Figs. 4 and 8), it is possible that the PTB volcanic ashes in South China
record a transformation from calc-alkaline to peraluminous source
rocks, consistent with a model of progressively evolving magmatism
during the closure of the Paleo-Tethys.
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The zircon grains from the PTB volcanic ashes have δ18O values (6.8
to 10.9‰) higher than themantle value (5.3± 0.3‰; Valley et al., 1998)
and negative εHf(t) values (−12.9 to−2.0), consistent with a crustal or-
igin. The Hf two-stage model ages of the zircons (1.4 to 2.1 Ga) further
suggest that the PTB volcanic ash in South China was likely derived
from melting of the Proterozoic basement.

5.3. Source and tectonic background of the PTB volcanic ashes in South
China

The source rocks of the MEH and the PTB volcanic ashes have been
proposed to be the Siberian Traps (e.g., Shen et al., 2012; Xu et al.,
2007), or the volcanic rocks related to convergent plate tectonics in
the western Panthalassa margin and Gondwana (Gao et al., 2013; Yin
et al., 1989, 2007). The Siberian Traps hypothesis is problematic in
that the Traps are mainly composed of mafic basalts, with tuff in the
lowermost parts and minor felsic extrusives at the upper part, whereas
the PTB volcanic ashes are felsic in composition. In addition, negative
εHf(t) and high δ18O isotope values of the zircons from the PTB volcanic
ashes are consistent with a crustal origin, but at odds with the mantle
origin of the Siberian Traps. Moreover, the oldest age of the Siberian
Traps (251.7 Ma, Kamo et al., 2003) is younger than that of the MEH
ashes at Meishan GSSP section (252.28 Ma, Shen et al., 2011). Rigorous
comparison of zircon U–Pb ages between two laboratories shows that
the youngest sequence of the Siberian Traps is ~300–500 Kyr younger
than the major pulse of the PTB biotic extinction (Kamo et al., 2006).
The whole duration of the PTB volcanic ash event in South China is
254.3 to 251.3 Ma (Bowring et al., 1998; Galfetti et al., 2007; Mundil
et al., 2004; Shen et al., 2011), indicating that the 251.7–251.2 Ma
flood basalts of the Siberian Traps are unlikely to be the source of the
PTB volcanic ash.

While the genetic link of the PTBvolcanic ashwith the Siberian Traps
can be ruled out, the exact source of the ash is difficult to determine.
Spatial variation in the thickness and numbers of the PTB ash layers in
South China (Fig. 3a) likely indicates that they may have originated
from the west part of South China, where a Permian–Triassic continen-
tal magmatic arc (including gigantic intrusions and volcanics such as
ignimbrite) is well documented east of Kunlun mountain. This conti-
nental magmatic arc was located in the Paleo-Tethys during Permian–
Triassic transition (Gu et al., 1996; Guo et al., 1998; Ni, 2010). Zircons
from the ignimbrites in the Hongshishan and Wubalebei regions are
dated at 251.8 ± 2.3 Ma and 248.8 ± 1.7 Ma, respectively (Ni, 2010).
Granodiorites in the Halagatu and Chulutaohai regions are dated at
255 ± 3.6 Ma (Sun et al., 2009) and 256.0 ± 9.6 Ma (Guo et al., 1998),
respectively. In addition, Hf model ages (1.0–1.8 Ga) of the basement
underlain the East Kunlun magmatic arcs (Ni, 2010), are in agreement
with the Hf model ages for the PTB volcanic ash in South China.

A review of large volcanic ash events in the history of the Earth can
help elucidate the tectonic setting of the PTB volcanic ashes. For exam-
ple, Ordovician volcanic ashes in the eastern North America and West-
ern Europe represent one of the largest eruptions in Phanerozoic. This
eruption produced a total of 1140 km3 of dense-rock-equivalent with
dispersal over several million square kilometers (Huff et al., 1992).
Most of the voluminous silicic rocks associated with ignimbrite flare-
up eruptions display high (87Sr/86Sr)i with an average of 0.7075 and
negative εNd values (Ducea and Barton, 2007), consistent with signifi-
cant involvement of continental crust in arc magmatism. This contrasts
with the dominant mantle signature in flood volcanic episodes or in
steady-state arc magmatism where basaltic triggers account for the
low (87Sr/86Sr)i and high εNd values. Toba Tuffs in Sumatra, Indonesia,
which are the largest eruption in Quaternary, cover an area of at least
4,000,000 km2 and erupted ~2500 km3 dense-rock-equivalent of ignim-
brite (Chesner, 2012). The Toba Tuffswere considered to have formed in
a destructive platemargin at fast subduction rate (Chesner, 2012). Their
high initial 86Sr/87Sr of 0.71355–0.71502 and high δ18O values (+8.7 to
+10.3‰) (Chesner, 2012) are similar to those of the PTB volcanic ashes
in South China.

Ignimbrite flare-up, in contrast to normal continental magmatic arc,
may produce massive magmas in several millions or a few tens of mil-
lions of years. For example, 80–90% of the arc magmatic additions
occur within a period of 10–15 Myr in North American continental arc
(Ducea and Barton, 2007). The PTB volcanic ashes cover an area of
N1,000,000 km2 in South China, and possibly elsewhere in the Tethys
region (Yin et al., 1992). However, the original extent of the volcanic
ashes remains unknown because the PTB in most regions in the world
is an unconformity (Yang et al., 1991). The extent of ignimbrite flare-
up at PTB in the Paleo-Tethys may be much larger than what we esti-
mated from the records of the PTB volcanic ashes in South China. Ignim-
brite flare-up is considered to have been formed at continental
magmatic arc at high convergence rates, where a relatively thick, old
continental crust experienced regional shortening (de Silva and
Gosnold, 2007; Hughes and Mahood, 2008). Paleomagnetic analysis
shows that the southern margins of the Paleo-Tethys, Cimmerian
continent such as the Qingtang, Sibumasu and Baoshan blocks and
Indochina drift rapidly northwards in the Late Permian to Early Triassic,
indicating a sudden, rapid convergence rate of the Paleo-Tethy during
the Permian–Triassic transition (Li et al., 2004). Paleogeographic recon-
struction also shows that the Paleo-Tethys was closed by the Indosinian
orogenesis at the Early Triassic (~240Ma, Li et al., 2004). Given the com-
positions of the PTB volcanic ashes and the rapid convergence rate
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during the P–T transition, we tentatively suggest that the PTB volcanic
ashes in South China are part of ignimbrite flare-up products derived
from continental magmatic arc related to rapid subduction during the
assemblage of Pangea.

5.4. Triggers of the PTB mass extinction: ignimbrite flare-up of
Paleo-Tethys?

Potential cause of the PTB mass extinction has been debated on
(1) bolide impacts (Becker et al., 2010; Becker et al., 2004; Kaiho et al.,
2006; Retallack and Jahren, 2008); (2) rapid anoxia in deep water
(e.g., Wignall and Twitchett, 1996, 2002); (3) a major sea-level
fall or regression (Kozur, 2007); (4) large-scale continental flood volca-
nism (Campbell et al., 1992; Racki and Wignall, 2005; Renne et al.,
1995) and (5) regional acidic volcanism of South China (Isozaki et al.,
2007; Xie et al., 2010; Yin et al., 1989). The bolide impact model is not
favored, given the absences of Ir anomaly, shock mineral assemblage
and meteor crater around PTB sections in the world, and prolonged
two-episode mass extinction pattern (Song et al., 2013; Xie et al.,
2005; Yin et al., 2007, 2012). There are evidences for sea-level changes
and super-anoxia across the PTB, but whether they are ultimate causes
formass extinction or by-product of large-scale volcanism (Isozaki et al.,
2004) remains unclear.

The Siberian Traps is widely believed as the trigger of the PTB mass
extinction. However, high-resolution geochronological and detailed pa-
leontological studies show that the Siberian Traps may postdate to the
MEH of the PTB. The role of the Siberian Traps could be negated because
the PTB volcanic ashes are felsic and crustally-derived but showno com-
positional affinity to mantle-derived flood basalts in the Siberian Traps.
However, the Siberian flood volcanismmay have caused the substantial
increase of the temperature the sea-water across PTB (above the MEH)
(Fig. 1) as documented by the oxygen isotopes of the conodonts in
South China (Joachimski et al., 2012). The rise of temperature in sea
water is similar to the global warming due to the Deccan Trap eruption
(Keller et al., 2011; Li and Keller, 1998;) and the Emeishan LIP eruption
(Chen et al., 2012). However, the global warming began after the MEH
(Joachimski et al., 2012) (Fig. 1), thus ruling out the possibility of the
Siberian Traps as the cause of the main extinction event of PTB.

The direct temporal coincidence of the PTB volcanic ashes and MEH
and volcanic intensity cognation with biological context (Fig. 7) collec-
tively highlight the role of volcanism on the PTB mass extinction event.
A few recent studies documented the spatio-temporal distribution of
the PTB ash layers and their relationship to contemporaneous biotic
and environmental changes (Gao et al., 2013; Shen et al., 2012,
2013; Xie et al., 2010). Particularly, a close relationship between PTB
volcanic ashes and carbon cycle perturbations during the P–T transition
in the Xiakou and Xinmin sections is examined by Shen et al. (2012).
These studies indicate that the PTB volcanism in South China have pro-
found influences on biotic and environmental changes during the P–T
transition. Thus, we tentatively suggest the PTB volcanic ashes in
South China or Paleo-Tethys ignimbrite flare-up the most likely trigger
of the main extinction event at the Permo-Triassic interval.

The PTB mass extinction pattern is the key for the understanding of
its trigger. Two-pulse or -stage patterns of the extinction were docu-
mented by a number of studies (e.g., Song et al., 2013; Xie et al., 2005,
2007; Xie et al., 2010; Yin et al., 2007, 2012). The first pulse of extinction
happened at MEH, and is denoted as the main extinction event or the
Latest Permian mass extinction, which was marked by the extinction
of 57% of species. The first crisis started at Bed 24, peaked at Bed 25,
and recovered immediately above the extinction horizon (Song et al.,
2013). The ignimbriteflare-up scenario accordswith timing and pattern
of the main extinction event or first-pulse mass extinction. Anoxia is
clearly related to the second-pulse extinction in the earliest Triassic.
Marine temperature proxies indicate that the spread of anoxia coincid-
ed with severe global warming, a stressor expected to affect shallow
rather than deep-water taxa and high latitude rather than low latitude
organisms (Song et al., 2013). The first-pulse extinction was not follow-
ed by subsequent rapid radiation, indicating that the stressful condi-
tions persisted at least into the Griesbachian Stage (Song et al., 2013).
If the global warming in the Early Triassic is related to the Siberian
Traps, the second-pulse ofmass extinctionmay be caused by the Siberian
Traps although actual killingmechanisms should be scrutinized in detail.

The Paleo-Tethys ignimbrite flare-up model suggests that the erup-
tion of felsic volcanic ashes is a trigger for the main extinction event of
the PTB mass extinction. Major ignimbrites have volumes of 102–
104 km3 in American Andes. Ultraplinian eruption columns and co-
ignimbrite ash clouds are commonly tens of kilometers in height and
can inject large volumes of volcanic ash into the stratosphere, where it
could persist for years and distribute in a hemispherical or global scale
(Cather et al., 2009). Ultraplinian-type eruptions of felsic volcanoes at
multiple sites in swarmmay have driven severe environmental changes
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in the biosphere through volcanic hazards; e.g., toxic gas emissions, de-
veloping dust/aerosol screens in the stratosphere (blocking sunlight),
and pouring acid rain. Their cascading effects on the environments,
such as temperature drop, dim daylight, cessation of photosynthesis,
and shortage in food, may have led to the decline in biodiversity both
in the ocean and on land; i.e., a scenario called ‘volcanic ash winter’
(Isozaki, 2009). All the responsible mechanisms likely became effective
by the global development of ‘volcanic ash winter’ conditions.

6. Conclusions

The stratigraphic coincidence between the PTB volcanic ashes and
themass extinction event highlights the catastrophic effect of acidic vol-
canism on the biological evolution on Earth. The PTB volcanic ashes
have no genetic link to the Siberian Traps. Instead they may have been
derived from ignimbrite flare-up due to rapid subduction in the assem-
bly of the Pangea Supercontinent. The Paleo-Tethys ignimbrite flare-up
may have triggered the main PTB extinction event, with a possible sce-
nario described by a ‘volcanic ash winter’ model, whereas the Siberian
Traps may have been responsible for the second-order extinction
event and Early Triassic ecological evolution, as a consequence of the
greenhouse effect.
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