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Silicic igneous provinces have important implications for geodynamic processes. In this study, we show that the
predominantly Early Permian (ca. 280Ma) granitoids in the Alxa Block correspond to an important silicic igneous
province with areal distribution in Northwest (NW) China. We present zircon U–Pb age and Hf–O isotopic, and
whole-rock geochemical and Sr–Nd isotopic data for the newly identified I- and A-type granites and high Sr/Y
granodiorites in the Bayannuoergong batholith, and gabbros, diorites and quartz diorites in the Bijiertai Complex,
Alxa Block. The I-type monzogranites, granodiorites and A-type granites of the Bayannuoergong batholith were
probably generated by mixing between crust- and mantle-derived magmas, partial melting of a thickened
eclogitic lower crust and underplated mantle-derived mafic rocks, respectively. The gabbros, quartz diorites
and diorites of the Bijiertai Complexwere likely generated by partial melting of the lithosphericmantle, differen-
tiation frombasalticmagmas and partialmelting of themiddle crust, respectively. Despite pronounced geochem-
ical and isotopic heterogeneity of these rocks, new SIMS and LA–ICP-MS U–Pb zircon dating indicates that they
were formed over a very short time interval at ca. 280 Ma. Thus, the mantle, lower crust and middle crust
underwent widespread melting at this time. Given that these magmatic rocks have no spatial or temporal zona-
tion, andwere probably formed in an extensional setting, we suggest that the ca. 280Ma Tarimmantle plume in
NW China may have triggered the magmatic flare-up of the Alxa silicic igneous province.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Silicic large igneous provinces (SLIP), composed of predominantly silic-
ic extrusive and intrusive rocks with areal extents N0.1 Mkm2 and vol-
umes N0.25 Mkm3 (Bryan, 2007; Bryan and Ernst, 2008; Bryan et al.,
2002), are a recently recognized type of large igneous province (LIP) de-
fined by Bryan et al. (2002). They have potentially important implications
for geodynamic processes, economic resources (Bryan, 2007; Bryan and
Ferrari, 2013; Pankhurst et al., 2011a), and the environment (Bryan, 2007).

During the last two decades, a significant number of SLIPs have
been recognized including the Tertiary Sierra Madre Occidental of
Mexico (Bryan et al., 2002), the Early Cretaceous Whitsunday igneous
province (Bryan, 2007; Bryan et al., 1997, 2000), the Jurassic Chon Aike
Province (Pankhurst et al., 1998, 2000), the Paleozoic Kennedy–
Connors–Auburn province, northeast Australia (Bryan et al., 2003) and
the Mesoproterozoic Gawler SLIP, southern Australia (Allen et al., 2008;
Pankhurst et al., 2011b). These SLIPs are characterized by large volumes
(N105 km3), of predominantly rhyodacite–rhyolite compositions, long
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periods of magmatic evolution (b40 myr) and were located along
paleo- or active continental margins (Bryan, 2007; Bryan et al., 2002).
Unlike the mafic LIPs commonly related to mantle plumes (e.g.,
Bryan and Ernst, 2008; Chung et al., 1998; Coffin and Eldholm, 1994;
Ernst and Buchan, 2001, 2003), the mechanisms for the formation of
the SLIPs are not as clear and the generation of SLIPs may be related
to continental rifting, mantle plumes or back arc extension (Betts
et al., 2009; Bryan, 2007; Bryan and Ferrari, 2013; Bryan et al., 2002;
Pankhurst et al., 2000, 2011b).

Early Permian (ca. 280Ma) igneous rocks with predominantly ultra-
mafic–mafic rocks are widespread in the Tarim Craton and the Central
Asian Orogenic Belt (CAOB) (e.g., Li et al., 2011; Wei et al., 2014; Xia
et al., 2012; Xu et al., 2013; Yang et al., 2007, 2013; Zhang et al., 2010;
Zhou et al., 2004, 2009), and correspond to the Tarim LIP (e.g., Qin
et al., 2011; Su et al., 2011, 2012). Recent dating of rocks on the Alxa
Block, adjacent to the Tarim Craton and the CAOB, reveals that a
large area of Early Permian (ca. 280 Ma) granitoids occur in the Block
(e.g., Geng and Zhou, 2012; Li, 2006; Shi et al., 2012). Thus, although
they may represent a silicic igneous province, its area (0.05 Mkm2) is
smaller than a SLIP as defined by Bryan (2007) (N0.1 Mkm2). However,
the petrogenesis and the tectonic setting of these granitoids, and their
relationship to the broadly contemporaneous Tarim LIP are unclear. In
this contribution, we present in situ zircon U–Pb age and Hf–O isotope
data and whole-rock element and Nd–Sr isotope data for two newly
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identified rock associations from the Alxa Block: Early Permian I-type
and A-type granites plus high Sr/Y granodiorites in the Bayannuoergong
area, and gabbros, diorites and quartz diorites in Bijiertai Complex. Our
work shows that a silicic igneous province corresponding to a ca.
280 Ma magmatic flare-up can be found in the Alxa Block, and suggest
that the magmatic event was probably triggered by the contemporane-
ous Tarim mantle plume.

2. Geological setting

The Alxa Block, located in westernmost North China, connects the
North China Craton, the Tarim Craton, the CAOB and the Qilian Block
(Fig. 1a). It has recently been interpreted as an independent block by
Dan et al. (2012, 2013, 2014), although it was previously thought
to be a part of the North China Craton (NCC) (e.g., NMBGMR (Nei
Mongol Bureau of Geology and Mineral Resources), 1991; Zhao et al.,
2005). The Alxa Block is bounded by the Late Paleozoic Enger Us
Ophiolite Belt in the north, the western margin fault of Bayanwulashan
in the east and the southern margin fault of Longshoushan in the south
(Fig. 1b). It is largely covered by deserts, and outcrops of pre-
Neoproterozoic crystalline basement rocks are only seen in the south-
western parts of the block. The oldest rocks are the newly discovered
~2.5 Ga tonalite–trondhjemite–granodiorite (TTG) exposed in the
Beidashan Complex (Gong et al., 2012; Zhang et al., 2013a) and
Paleoproterozoic rocks with ages of ~2.3–1.9 Ga exposed in the
Longshoushan Complex that were metamorphosed at ~1.9 Ga and
Fig. 1. (a) Tectonic subdivision of China, (b) geological map showing the distribution of Phane
Tarim large igneous province; SFL, southern margin fault of Longshoushan; WFB, western mar
Age sources in b: Li (2006); Lai et al. (2007); Li et al. (2010a, b);Wu (2011); Ran et al. (2012); Sh
(2013).
~1.8 Ga (Gong et al., 2011; Tung et al., 2007). The Mesoproterozoic
medium- to low-metamorphic grade Alxa Group (Geng et al., 2007)
was unconformably covered by Neoproterozoic un-metamorphosed to
very low-grade metamorphosed sedimentary sequences (NMBGMR
(Nei Mongol Bureau of Geology and Mineral Resources), 1991; Chen
et al., 2004). In the Neoproterozoic, a few S-type granites with ages of
930–910 Ma were intruded in the central Alxa Block (Dan et al., 2014;
Geng et al., 2002).

A large volume of Phanerozoic granitoids are exposed in the
Alxa Block (NMBGMR(Nei Mongol Bureau of Geology and Mineral
Resources), 1991). Granitoids with ages N320 Ma are rare, however,
and only a few are exposed near the eastern margin of the Alxa Block
(Dan et al., 2013; Li, 2006). Recent studies suggest that theyweremain-
ly formed at 300–260 Ma (Fig. 1b) (Geng and Zhou, 2012; Lai et al.,
2007; Li, 2006, 2012; Li et al., 2010a,2010b; Pi et al., 2010; Shi et al.,
2012; Wu, 2011). However, the corresponding geochemical data are
relatively scarce, and the petrogenesis and tectonic setting remain
unclear.

Late Carboniferous–Early Permian volcanic rocks were discovered in
the Upper Carboniferous–Lower Permian Amushan Formation. The for-
mation is the oldest stratum in the Alxa Block and its age was
established by LA–ICP-MS zircon dates of 320–302 Ma from the lower
part of the formation (Lu et al., 2012). The lower and middle sections
of the Amushan Formation consist of volcanic (mainly acid rocks and
subordinate basic rocks), clastic, and carbonate rocks; the upper section
is a molasse composed of silty shale, sandstone, gravel-bearing
rozoic granitoids and Amushan Formation in the Alxa Block and adjacent areas, Tarim LIP,
gin fault of Bayanwulashan; EUOB, Enger Us Ophiolite Belt.
i et al. (2012); Geng and Zhou (2012); Feng et al. (2013); Zhang et al. (2013b); Zheng et al.
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sandstone and conglomerate (Lu et al., 2012). The basic rocks show af-
finities with intraplate magmatism, indicating that this formation was
formed in a continental rifting setting (Dang et al., 2011; Jiang et al.,
2011).

3. Regional geology

3.1. Bayannuoergong batholith

The Bayannuoergong batholith is one of the largest in the Alxa Block,
and outcrops over 2000 km2. It intruded into Precambrian strata and
contains a few Precambrian xenoliths (Fig. 2a). The batholith consists
mainly of coarse monzogranites and granodiorites, along with a few di-
orites and A-type granites (Fig. 2a), and some later felsic dykes (Fig. 2a).
Mafic microgranular enclaves are commonly observed within the
monzogranites, especially at pluton margins, and also occur within
granodiorites. Recent LA–ICP-MS zircon U–Pb dating indicates that the
emplacement ages of the monzogranites and granodiorites are
285–273 Ma (Li, 2012; Wu, 2011) and 265 Ma (Li, 2012), respectively.

The monzogranites and A-type granites consist of quartz
(20–30 vol.%), alkali feldspar (20–30 vol.%), plagioclase (20–30 vol.%),
biotite (0–10 vol.%), rare hornblende and accessory minerals (b1 vol.%),
including zircon and apatite. The granodiorites consist of quartz
(20–25 vol.%), alkali feldspar (10–20 vol.%), plagioclase (50–60 vol.%),
biotite (5–15 vol.%), hornblende (3–5 vol.%) and accessory minerals,
including zircon and apatite.

3.2. Bijiertai Complex

The Bijiertai Complex, about 35 km to the north of Bayannuoergong
batholith, is composed mainly of Early Paleozoic gabbros, diorites,
quartz diorites, granodiorites, granites and twomafic–ultramafic lenses
within these rocks (Fig. 2b) (Feng et al., 2013; Geng and Zhou, 2012).
Abundant gneissic sedimentary xenoliths with unknown-ages occur in
the complex (Geng and Zhou, 2012). Recent LA–ICP-MS zircon U–Pb
dating indicates that the diorites and granodiorites were formed at
288–276 Ma (Geng and Zhou, 2012), and the gabbro at 274 Ma (Feng
et al., 2013).

The gabbros, diorites, and quartz diorites are studied in this paper.
The gabbros are composedmainly of clinopyxene (60–65 vol.%), plagio-
clase (30–40 vol.%) and minor biotite (2 vol.%), the diorites consist
mainly of hornblende (30–40 vol.%), plagioclase (45–55 vol.%) and
quartz (b5 vol.%), and the quartz diorites consist of hornblende
Fig. 2. (a) Geological sketch-map of the Bayannuoergong batholith (NMBGMR(Nei Mongol Bur
dating samples.
(10–20 vol.%), plagioclase (60–75 vol.%) and quartz (5–10 vol.%). In
contrast to the medium-grained gabbros and diorites, the quartz dio-
rites are coarse-grained, and the plagioclases show cumulative texture.

4. Analytical procedures

4.1. Zircon U–Pb dating

Measurements of U, Th and Pb for samples 09AL22-1, 09AL27,
09AL33 and 09AL70 were conducted using the Cameca IMS-1280
SIMS at the Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGG-CAS), Beijing. U–Th–Pb ratios and their absolute abun-
dances were determined relative to the standard zircon Plešovice
(Sláma et al., 2008) and 91500 (Wiedenbeck et al., 1995), respectively,
using operating and data processing procedures similar to those
described by Li et al. (2009, 2010c). Uncertainties on individual analyses
in the data tables are reported at a 1σ level. Mean ages for pooled U/Pb
and Pb/Pb analyses are quotedwith 2σ and/or 95% confidence intervals.
The weighted mean U–Pb ages and Concordia plots were processed
using an Isoplot/Ex v.3.0 program (Ludwig, 2003). SIMS zircon U–Pb
isotopic data are presented in Supplementary Table A.1.

The LA–ICP-MS U–Pb dating for samples 09AL12-3, 09AL37 and
09AL73was conducted using an Agilent 7500a ICP-MSwith an attached
193 nm excimer ArF laser-ablation system (GeoLas Plus) at IGG-CAS.
The analytical procedures are similar to those described by Xie et al.
(2008). 207Pb/206Pb and 206Pb/238U ratios were calculated using the
ICPMSDataCal software (Liu et al., 2010a, 2010b), using the zircon stan-
dard 91500 as an external standard. Common Pb was corrected accord-
ing to the method proposed by Andersen (2002). The weighted mean
U–Pb ages and Concordia plots were processed using the Isoplot/Ex
v.3.0 program (Ludwig, 2003). Analyses of the zircon standard GJ-1 as
an unknown yielded a weighted mean 206Pb/238U age of 606 ± 4 Ma
(2σ, n = 25), which is in good agreement with the recommended
value (Jackson et al., 2004). LA–ICP-MS zircon U–Pb isotopic data are
presented in Supplementary Table A.1.

4.2. Zircon oxygen isotopes

Zircon oxygen isotopesweremeasured using the same Cameca IMS-
1280 SIMS at IGG-CAS. The detailed analytical procedures were similar
to those described by Li et al. (2010d). The measured oxygen isotopic
data were corrected for instrumental mass fractionation (IMF) using
the Penglai zircon standard (δ18OVSMOW = 5.3‰) (Li et al., 2010e).
eau of Geology and Mineral Resources), 1991) and (b) Bijiertai Complex, with locations of

image of Fig.�2
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The internal precision of a single analysis generally was better than
0.2‰ (1σ standard error) for the 18O/16O ratio. The external precision,
measured by the reproducibility of repeated analyses of the Penglai
standard, is 0.41‰ (2SD, n= 120). Tenmeasurements of the 91500 zir-
con standard during the course of this study yielded aweightedmean of
δ18O = 10.2 ± 0.5‰ (2SD), which is consistent within errors with the
reported value of 9.9 ± 0.3‰ (Wiedenbeck et al., 2004). Zircon oxygen
isotopic data are listed in Supplementary Table A.2.

4.3. Zircon Lu–Hf isotopes

In situ zircon Lu–Hf isotopic analyses were carried out on a Neptune
multi-collector ICP-MS equippedwith a Geolas-193 Geolas 2005 excimer
ArF laser ablation system at the State Key Laboratory of Geological Pro-
cesses and Mineral Resources, China University of Geosciences in
Wuhan. Lu–Hf isotopic analyses were conducted on the same zircon
grains that were previously analyzed for U–Pb and O isotopes. Detailed
analytical procedures were similar to those described by Hu et al.
(2012). Measured 176Hf/177Hf ratios were normalized to 179Hf/177Hf =
0.7325. Further external adjustment was not applied for the unknowns
because our determined 176Hf/177Hf ratios for zircon standards 91500
(0.282308 ± 0.000004) and GJ-1 (0.282021 ± 0.000011) were in good
agreement within errors with the reported values (Griffin et al., 2006;
Wu et al., 2006; Zeh et al., 2007). Zircon Hf isotopic data are listed in
Supplementary Table A.2.

4.4. Major and trace elements

Sixteen powdered rock samples of ~200-mesh size were used for
geochemical analyses. Major element oxides were analyzed on fused
glass beads using a Rigaku RIX 2000 X-ray fluorescence spectrometer
at the State Key Laboratory of Isotope Geochemistry, the Guangzhou In-
stitute of Geochemistry, Chinese Academy of Sciences (SKLaBIG GIG
CAS). Calibration lines used in quantification were produced by bivari-
ate regression of data from 36 reference materials encompassing a
wide range of silicate compositions (Li et al., 2005). Analytical uncer-
tainties are between 1% and 5%. Trace elements were analyzed using
an Agilent 7500a ICP-MS at GIG CAS. Analytical procedureswere similar
to those described by Li et al. (2000). A set of USGS and Chinese national
rock standards, including BHVO-2, GSR-1, GSR-2, GSR-3, AGV-2, W-2
and SARM-4 were chosen for calibration. Analytical precision typically
is better than 5%. Geochemical results are listed in Supplementary
Table A.3.

4.5. Sr and Nd isotopic compositions

Sixteen samples were selected for whole rock Rb–Sr and Sm–Nd iso-
topic analyses (Supplementary Table A.4). Sr–Nd isotopic compositions
were determined using aMicromass Isoprobemulti-collector ICP-MS at
SKLIG GIG CAS, and analytical procedures described by Li et al. (2004).
Sr and Nd were separated using cation columns, and Nd fractions
were further separated by HDEHP-coated Kef columns. The measured
87Sr/86Sr ratio of the NBS 987 standard and 143Nd/144Nd ratio of the
JNdi-1 standard were 0.710274 ± 18 (n = 11, 2σ) and 0.512093 ± 11
(n = 11, 2σ), respectively. All measured Nd and Sr isotope ratios
were normalized to 146Nd/144Nd = 0.7219 and 86Sr/88Sr = 0.1194,
respectively. The Sr–Nd isotope results are listed in Supplementary
Table A.4.

5. Results

5.1. Zircon U–Pb dating results

Zircon grains separated for dating are mostly euhedral to subhedral,
with lengths of ~100–250 μm, and length to width ratios of 2:1 to 4:1.
The oscillatory zoning cathodoluminescence images in most grains
and high Th/U ratios (0.12–1.04) (Supplementary Table A.1), suggest
magmatic origins (Belousova et al., 2002). SIMS was used to date all
samples except for samples 09AL12-3, 09AL37 and 09AL73, which
were dated by LA–ICP-MS. U–Pb concordia diagrams of analyzed zircons
are shown in Fig. 3, and the U–Pb age data are given in Supplementary
Table A.1.

Seven samples were selected for dating. Samples 09AL22-1 and
09AL27 are monzogranites and give weighted mean 206Pb/238U ages of
278 ± 2 and 284 ± 3 Ma, respectively (Fig. 3a, b). Sample 09AL12-3 is
an A-type granite and produces a weighted mean 206Pb/238U age of
279 ± 2 Ma (Fig. 3c). Samples 09AL33 and 09AL37 are granodiorites
and have weighted mean 206Pb/238U ages of 281 ± 2 Ma and 283 ±
2Ma, respectively (Fig. 3d, e). Samples 09AL70 and 09AL73 are diorites
and quartz diorites, respectively. They give weighted mean 206Pb/238U
ages of 280 ± 2 Ma (Fig. 3f) and 282 ± 2 Ma (Fig. 3 g), respectively.

In summary, the zircon U–Pb age data indicate that the granitoids in
the Bayannuoergong batholith and the diorites and quartz diorites in
the Bijiertai Complex were all formed at ca. 280 Ma (284–278 Ma).

5.2. Whole-rock major and trace element compositions

5.2.1. The granitoids from Bayannuoergong batholith
Themonzogranites fromBayannuoergong batholith are high in silica

and alkalis, with SiO2 ranging from 69.5 to 78.6 wt.% (volatile-free) and
total K2O+Na2O contents varying from 7.0 to 8.7 wt.% (Supplementary
Table A.3). The granodiorites have slightly lower silica and alkali con-
tents with SiO2 ranging from 63.6 to 66.6 wt.% and total K2O + Na2O
varying from 5.3 to 6.0 wt.% (Supplementary Table A.3). The
monzogranites and granodiorites are subalkaline on the alkali versus
silica diagram (Fig. 4a). They have lower TiO2, Fe2O3

T, MnO, MgO, CaO,
and P2O5 contents (Supplementary Table A.3), but higher Th and
(Na2O + K2O)/CaO than the gabbro, diorite and quartz diorite from
the Bijiertai Complex (Fig. 5). The A-type granites (09AL12-1, 09AL12-2
and 09AL12-3) have high SiO2 (78.5–78.6 wt.%), alkalis (Na2O +
K2O= 8.2–8.5 wt.%) and FeOT/MgO ratios, and low CaO, MgO contents
(Fig. 5; Supplementary Table A.3).

Chondrite-normalized REE patterns of the monzogranites and grano-
diorites (Fig. 4b) show relative enrichment of light rare earth elements
(LREEs), with variable (La/Yb)N ratios (3–58). The monzogranites are
characterized by significant negative Eu anomalies, whereas the granodi-
orites display negligible Eu anomalies. Five monzogranites (09AL18-1,
09AL18-2, 09AL19-1, 09AL19-2, 09AL21) show heavy rare earth element
(HREE) depletion, with high (La/Yb)N ratios (16–58). Three samples
(09AL12-1, 09AL12-2, 09AL12-3) show negative anomalies in Ba, Nb,
Ta, Sr, P, Eu and Ti (Fig. 4c), characteristics of A-type granites (e.g., Eby,
1990, 1992; Yang et al., 2006). The HREE abundances of the granodiorites
are lower than those of the monzogranites. Furthermore, the granodio-
rites are characterized by relatively high Sr but low Yb and Y contents
with high Sr/Y ratios of 22–71, similar to those of modern adakites and
Archean TTG suites (Fig. 4d) (e.g., Defant and Drummond, 1990; Martin
et al., 2005).

5.2.2. Bijiertai Complex: gabbro, diorite and quartz diorite
The gabbros, diorites and quartz diorites have SiO2 contents of

43.0–45.3 wt.%, 50.3–56.5 wt.% and 57.6–62.2 wt.%, respectively. The
gabbros have high Mg# values of 64.5–66.4, but the diorites and quartz
diorites have lowerMg# values of 47.1–52.1 and 38.1–40.1, respectively.
All three rock types plot in the subalkaline field on the alkali versus silica
diagram (Fig. 4a).

All of these rocks are enriched in LREE. The gabbros anddiorites have
negligible Eu anomalies, whereas quartz diorites have significant posi-
tive Eu anomalies. Gabbros show nearly flat LREE and fractionated
HREE patterns with significant negative Ta and Nb anomalies. The
quartz diorites are characterized by high Sr but low Yb and Y contents
with high Sr/Y ratios of 53–155 (Supplementary Table A. 3).



Fig. 3. In situU–Pb dating results for the Early Permian rocks in Alxa Block. (a, b) Monzogranites (09AL22-1 and 09AL27), (c) A-type granite (09AL12-3), (d, e) granodiorites (09AL33 and
09AL37), (f) diorite (09AL70) and (g) quartz diorite (09AL73). Data-point error ellipses are 2σ.
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Fig. 4. (a) SiO2 vs. K2O+Na2O diagram for intrusive rocks (Middlemost, 1994); (b) chondrite-normalized REE diagrams and (c) primitivemantle- normalized incompatible trace element
diagrams for the Early Permian rocks, and the normalization values are from Sun andMcDonough (1989); (d) Sr/Y vs. Y diagram (after Defant et al., 2002); (e) SiO2 vs.MgO diagram. The
field of metabasaltic and eclogite experimentalmelts (1–4.0 GPa) is from the following references: Sen and Dunn (1994); Rapp andWatson (1995); Springer and Seck (1997); Rapp et al.
(1999); Skjerlie and PatiñoDouce (2002), and references therein. Fields of adakites inferred to be derived from subducting oceanic crust is afterWang et al. (2006).Melts formed by partial
melting of the lower mafic crust are from the following references: Atherton and Petford (1993); Chung et al. (2003); Johnson et al. (1997); Muir et al. (1995); Petford and Atherton
(1996); Wang et al. (2005). (f) Nd–Sr isotope composition for the Early Permian igneous rocks. EMI, I-type enriched mantle, EMII, II-type enriched mantle (Zindler and Hart, 1986).
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5.3. Whole rock Sr–Nd isotopic compositions

The monzogranites exhibit the lowest and most variable
initial 87Sr/86Sr isotopic ratios and highly variable εNd(t)values
(Fig. 4f), corresponding to two-stage Nd model ages (T2DM) of
2.27–1.72 Ga. The granodiorites have higher initial 87Sr/86Sr isotopic
ratios (0.70889–0.70948) and εNd(t) values of −14.3 to −13.8,
corresponding to a T2DM of 2.21–2.17 Ga. The A-type granite has the
highest εNd(t) value of −8.4, corresponding to a T2DM of 1.74 Ga. The
gabbros, diorites and quartz diorites from the Bijiertai Complex have
initial 87Sr/86Sr isotopic ratios ranging from 0.7086 to 0.7098, and
εNd(t) values ranging from −12.0 to −9.5. The monzogranites exhibit
a significant negative correlation between εNd(t) values and (87Sr/86Sr)i
ratios (Fig. 4f).

image of Fig.�4


Fig. 5. Selected major oxide (wt.%) and trace elements (ppm) vs. SiO2 (wt.%) for the Early Permian rocks.
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Fig. 6. Plots of (a) εHf(t) values vs. δ18O values and (b) εHf(t) values vs. crystallization ages
for the magmatic zircons from the Early Permian igneous rocks. The shaded field depicts
the δ18O value (5.3 ± 0.6‰, 2SD) of the mantle-derived zircons.

151W. Dan et al. / Lithos 204 (2014) 144–158
5.4. Zircon Hf–O isotopic compositions

In situ LA–MC–ICP-MS Lu–Hf isotopic analyses were conducted on
the zircon grains that were previously analyzed for U–Pb and/or O iso-
topes. Their results are presented in Supplementary Table A.2 and
Fig. 6. The monzogranites (samples 09AL22-1 and 09AL27) and grano-
diorites (09AL33 and 09AL37) have a large range of εHf(t) values of
−17.8 to−3.3 (one point is−20.0), corresponding to two-stage zircon
Hf model ages (TDMC ) of 2.43–1.51 Ga (one point is 2.56 Ga). The diorite
(09AL70), quartz diorite (09AL73) and A-type granite (09AL12-3) have
a smaller range of age-corrected εHf(t) values (Fig. 6b, Supplementary
Table A.2), corresponding to TDMC of 2.08–1.90 Ga, 1.95–1.67 Ga and
1.55–1.37 Ga, respectively. Most of the two-stage zircon Hf model
ages are 2.2–1.8 Ga, but samples 09AL12-3 (A-type granite) and
09AL22-1 (monzogranite) give ages between 1.6 and 1.4 Ga. It is
noted that the A-type granites have the highest εHf(t) values among
these rocks.

Zircon O isotopes were analyzed on the diorite, granodiorite and
monzogranite. The measured δ18O values for zircons from the diorite
(09AL70) and granodiorite (09AL33) show similar and limited ranges
forming normal Gaussian distributions, with averaged values of 6.80
± 0.21‰ (1SD) and 6.61 ± 0.21‰ (1SD), respectively (Fig. 7). Mea-
sured zircon δ18O values for the monzogranites show a few anomalous
spots. For sample 09AL22-1, spots show a limited range of 5.5–6.4‰,
with a peak of 6.2‰, except for two anomalous spots at 4.9 and 5.0‰
(Fig. 7). For sample 09AL27, most spots show a slightly large range of
5.0–6.4‰, with a peak of 6.2‰, apart from two spots with anomalous
values of 4.0‰ and 7.4‰ (Fig. 7).
6. Discussion

6.1. Ca. 280 Ma magmatic flare-up in the Alxa Block

To better understand the petrogenesis and tectonic significance of the
Permianmagmatic rocks in the Alxa Block, we carried out a regional data
compilation (Supplementary Table A.5). Fig. 1b shows the representative
Permian igneous rocks in the Alxa Block, marked with representative
ages. Fig. 8 shows the frequency distribution of the knownPaleozoic igne-
ous ages from the Alxa Block and adjacent areas using Isoplot (Ludwig,
2003), highlighting peak activities at ~278Ma. The Paleozoicmagmatism
can be broadly divided into three main episodes encompassing the
Silurian to Early Carboniferous (424–337 Ma), the Late Carboniferous
(320–300 Ma) and the Permian (290–250 Ma). The Silurian to Early
Carboniferous igneous rocks are distributed in the eastern margin of the
Alxa Block and adjacent areas (Fig. 1b) and are probably caused by Paleo-
zoic orogenesis in the eastern Alxa Block (Dan et al., 2013). The Late
Carboniferous magmatic rocks consist mainly of volcanic rocks and are
distributed in the northern Alxa Block and adjacent areas (Fig. 1b) and
were possibly generated in an intraplate setting (Dang et al., 2011;
Jiang et al., 2011).

The Permian igneous rocks are largely distributed in the Alxa Block
and adjacent areas. Most of them were formed at ca. 290–270 Ma,
with a peak age of ~278 Ma (Fig. 8). This period of igneous activity is
characterized by voluminous granites rather than mafic rocks (Supple-
mentary Table A.5). Although the rocks are distributed over an area of
0.15 Mkm2, the total area of outcrop (0.05 Mkm2) does not meet the
0.10 Mkm2 threshold required for classification as a SLIP (Bryan, 2007;
Bryan et al., 2002). Therefore, they cannot be classified as a SLIP at pres-
ent. However, it is significant that the adjacent and areally extensive
Upper Carboniferous–Lower Permian Amushan Formation in the north-
ern Alxa Block contains large exposures of andesitic to rhyolitic volcanic
rocks (Dang et al., 2011). Establishing whether or not they are a part of
the Alxa silicic igneous province requires more high-precision geochro-
nological data.

6.2. Petrogenesis of the ca. 280 Ma magmatic rocks

6.2.1. Bayannuoergong batholith

6.2.1.1. The monzogranites. Two end-member mixing may have played
an important role in the generation of the monzogranites, based on
the following lines of evidence. Their Nd isotopes negatively correlate
with (87Sr/86Sr)i (Fig. 4f), and there is a negative correlation between
Ba/La and εNd(t) (Fig. 9a). Sample 09AL27 has the most enriched isoto-
pic compositions (εNd(t) = −15.1 and (87Sr/86Sr)i = 0.7090) and the
highest Ba/La value (41.8), which is likely to be most representative of
a lower crustal end-member component. The sample 09AL10-1 has
the most depleted isotopic compositions (εNd(t) = −8.2 and (87Sr/
86Sr)i = 0.7045) and the lowest Ba/La value (16.2), indicating that it
likely corresponds closely to the other end-member component.
Considering the relatively high Nd and low Sr isotopic values, this
end-member component is proposed to be the lithospheric mantle.
The fact that many zircons havemantle-like oxygen values is consistent
with this suggestion (Fig. 6a). However, no coeval basaltic rocks were
reported in the Bayannuoergong batholith, and therefore more data is
required in order to constrain the proportion of the mantle component
in the Bayannuoergong monzogranites.

A few anomalous values of zircon oxygen isotopes obtained from
samples 09AL22-1 and 09AL27 suggest that some other materials
were added to their sources or that their magmas underwent contami-
nation. The low zircon oxygen isotopic value (4.0‰) (Fig. 7a), confirmed
by duplicate analyses, is obviously lower than mantle zircon O values
(5.3 ± 0.6‰) (Valley, 2003). Thus, one or more components that have
undergone high-temperate water–rock interaction were added to the
source of the monzogranites or contaminated their magmas. This
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Fig. 7. Probability plots of zircon δ18O values for the Early Permian igneous rocks.
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material is the most plausibly basalt that had undergone high-
temperature alteration in an oceanic setting. A high zircon O value
(7.4‰) indicates that some other material was also added to the
I-type monzogranite. These materials were probably Precambrian
sedimentary rocks, as these are found as xenoliths in the monzogranites.
This suggestion is consistentwith the highHfmantlemodel age (2.56Ga)
of this zircon grain (Supplementary Table A.2).

A fewmonzogranite samples displaymiddle REE depletion (Fig. 4b).
The concave REE patterns indicate that amphibolites may have been
retained in their sources or were removed by crystal fractionation
during magma evolution. These monzogranites have Sr–Nd isotopic
compositions similar to the other monzogranites (Fig. 4f), suggesting
that they have similar sources.
Fig. 8. Cumulative age spectra of the Paleozoic igneous rocks in Alxa Block. Data sources
are in Supplementary Table A.5.
6.2.1.2. Occurrence of A-type granite in the Bayannuoergong batholith.
Although many ~280 Ma granitoids have been reported in the Alxa
Block, no A-type granitoids have been identified in previous studies. In
general, A-type granites are comparatively enriched in high field
strength elements (HFSEs), such as Zr, Nb, Y, REE and Ga (e.g., Collins
et al., 1982; Eby, 1992; King et al., 1997, 2001; Sylvester, 1989;
Whalen et al., 1987; Yang et al., 2006). In this study, a few granites in
the Bayannuoergong batholith have the characteristics of A-type gran-
ites. Samples 09AL12-1, 09AL12-2 and 09AL12-3 have high K2O +
Na2O, Zr, FeOT/MgO and Ga/Al ratios. On discrimination diagrams
(Fig. 10a, b), they plot in the A-type granite field. Moreover, they
show zircon saturation temperatures (849–854 °C) higher than those
(683–833 °C) of other monzogranites (Fig. 10c). We therefore conclude
that the three samples described in this study are A-type granites.

The origins of A-type granites have been attributed to: (1) direct frac-
tionation of mantle-derived alkaline basalts (e.g., Mushkin et al., 2003;
Turner and Rushmer, 2009; Turner et al., 1992); (2) partial melting of
crustal materials at high temperature (e.g., Collins et al., 1982; King
et al., 1997; Wang et al., 2010a) and (3) hybridization between anatectic
crust-derived felsic and mantle-derived mafic magmas (e.g., Kerr and
Fryer, 1993; Mingram et al., 2000; Yang et al., 2006). The absence of
any mafic microgranular enclaves in the A-type pluton does not support
the generation of these A-type granites by mixing of mantle-derived
mafic magma and crustal-derived silicic melts. The A-type granite has
a high εNd(t) value, similar to the end-member component of the
monzogranites with the highest εNd(t) values (Fig. 4f). Thus, it is difficult
to distinguish a potential mantle-derived origin from the alternative
origin via partial melting of crustal materials. The lack of coeval, proximal
mafic rocks or rocks with intermediate compositions, their high SiO2

contents relative to other ~280 Ma magmatic rocks, and their relatively
low zircon saturation temperatures (~850 °C) compared to the 900–
1100 °C temperatures calculated for mantle-derived A-type granites
(e.g., Pankhurst et al., 2011a; Turner and Rushmer, 2009; Turner et al.,
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Fig. 9. Plots of (a) Ba/La vs. εNd(t) values, (b) Eu/Eu* vs. Sr/Y from the Early Permian igne-
ous rocks.
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1992) do not support a mantle-derived origin for the A-type granites.
Therefore, their A2 group affinities (Fig. 10d) imply that the magmas
were derived from continental crust or underplated basaltic protoliths
(Eby, 1992). The fact that the A-type granites have high zircon εHf(t)
and whole rock εNd(t) values, similar to the high εHf(t) of I-type
monzogranite end-member (Fig. 4f), indicates that the A-type granites
were most plausibly generated by partial melting of the underplated
mafic rocks.
6.2.1.3. High Sr/Y granodiorites. Although the granodiorites show some
geochemical affinities with the “classical” adakites defined by Defant
and Drummond (1990) (Fig. 4d), their K2O/Na2O ratios (0.58-0.80)
are higher than those of typical adakites (K2O/Na2O ratios = 0.42)
(Richards and Kerrich, 2007). Thus, they should be classed as high Sr/Y
granites (Moyen, 2009). Several models have been proposed for the
generation of high Sr/Y granitoids, including (a) melting of subducted
young and hot oceanic crust (Defant and Drummond, 1990; Kay et al.,
1993; Martin et al., 2005; Stern and Kilian, 1996; Tang et al., 2010a;
Wang et al., 2007a, 2008); (b) assimilation and fractional crystallization
(AFC) or fractional crystallization (FC) from parental basaltic magmas
(Castillo et al., 1999; Macpherson et al., 2006; Richards and Kerrich,
2007; Rooney et al., 2011); (c)magmamixing between felsic and basaltic
magmas (Guo et al., 2007; Streck et al., 2007); and (d) partial melting of
thickened lower crust (Atherton and Petford, 1993; Chung et al., 2003;
Petford and Atherton, 1996; Wang et al., 2005, 2007b).

In the case of the Alxa Block, the first three models cannot account
for the petrogenesis of the granodiorites. Oceanic slab melting is
unlikely to have generated these high Sr/Y granitoids because of the ap-
parent lack of contemporaneous subduction in the eastern Alxa Block
and a slab source is inconsistent with their evolved Sr–Nd–Hf isotopic
compositions (Figs. 3f and 5b). In addition, they have lower Mg#

(42–47) values than those (47–56) of metabasaltic rock-derived exper-
imental melts contaminated by mantle peridotites (e.g., Rapp et al.,
1999), indicating that the interaction between felsic magmas and man-
tle peridotites was unlikely. Additionally, their high δ18O values of zir-
con (6.61 ± 0.21‰ (1SD)) (corresponding to a calculated whole-rock
magmatic δ18O value of 8.2‰) are not consistent with the mantle-like
δ18O values of the best global examples of slab-derived adakites
(Bindeman et al., 2005). Mantle-derived magmatic suites generated by
FC processes generally exhibit a continuous compositional trend from
basaltic rocks to felsic rocks derived from residual magmas (e.g.,
Castillo et al., 1999; Macpherson et al., 2006; Richards and Kerrich,
2007). The absence of contemporaneous basaltic rocks associated with
these granitoids rules out this mechanism. Rocks formed by magma
mixing are usually intermediate in composition and have high Mg
(e.g., adakitic high-Mg andesites) (Guo et al., 2007; Streck et al., 2007)
rather than acidic adakitic compositions in this study. Additionally, the
homogenousO andHf isotope characteristics of these high Sr/Y samples
are also inconsistentwith amagmamixingmodel. Consequently, the re-
maining scenario of partial melting of a thickened lower crust is
discussed below.

Partial melting of a thickened garnet-bearing mafic lower crust due
to heat flux from the mantle (e.g., Atherton and Petford, 1993; Wang
et al., 2005, 2007b) is a plausible mechanism for the generation of the
high Sr/Y granodiorites. If the high Sr/Y magmas are actually derived
from the mafic lower crust, then they should have relatively low MgO
contents and be compositionally similar to 1–4.0 GPa experimental
melts of metabasalts. In Fig. 4e, the samples display linear trends that
are parallel to the fields of melts formed by partial melting of the thick-
ened lower crust. This process is also consistent with the relatively low
zircon δ18O values (6.3–7.0‰) (Fig. 7a), which are within and slightly
higher than the upper limit value of previously reported mantle-
derived magma (6.5‰) (e.g., Valley et al., 2005). Additionally, the cur-
rent crustal thickness of the Alxa Block is N45 km based on seismic
data (Li, 2010).
6.2.2. Bijiertai Complex
The Bijiertai Complex contains many types of rocks, such as perido-

tites, gabbros, diorites, quartz diorites and newly discovered norites
(Wang, 2012). However, the gabbros are cumulate rocks with REE pat-
terns similar to other cumulate rocks (e.g., Ma et al., 2013a), thus, whole
rock geochemical data cannot be used to constrain their sources. The
low εNd(t) values (−9.9 to −9.5) of the gabbros, however, suggests
that theywere probably generated by partialmelting of the lithospheric
mantle.

The quartz diorites from the Bijiertai Complex have high Sr/Y ratios
and the positive correlation between Sr/Y and Eu/Eu* (Fig. 9b) suggests
that the plagioclase accumulation elevated the Sr/Y ratios (e.g., Ma et al.,
2013b). The quartz diorites have εNd(t) values similar to the gabbros, in-
dicating that they were probably generated by fractional crystallization
from mafic magmas. Given that the quartz diorites have higher ISr, it is
likely that they also assimilated small amounts of supracrustal materials.

The diorite εNd(t) value of−12.0 is lower than those of the gabbros
and quartz diorites but similar to Bayannuoergong batholith granodio-
rites, indicating that they may have been generated by the partial melt-
ing of the crustal materials, although the involvement of mantle-
derivedmaterials cannot be excluded. The diorites have low Sr/Y ratios,
suggesting that they were produced at mid-crustal depths. The diorites
have zircon δ18O values (6.80 ± 0.21‰) that are distinctly higher than
those of Bayannuoergong batholith rocks derived by magma mixing
(6.2–6.3‰) and slightly higher than those (6.61 ± 0.21‰) of the high
Sr/Y granodiorites, consistent with a predominantly mid-crustal source.
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Fig. 10. (a) Zr vs. 104Ga/Al and (b) (Na2O+ K2O)/CaO vs. (Zr + Nb+ Ce+ Y) discrimination diagrams of Whalen et al. (1987), showing the A-type nature of a few granites; (c) temper-
ature vs. SiO2 for the Early Permian granitoids; (d) A1 and A2 subgroup discrimination of A-type granites after Eby (1992). I, S & M, unfractionated M-, I- and S-type granites (OGT); FG,
fractionated felsic granites.
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6.3. Geodynamics of the ca. 280 Ma magmatic flare-up

6.3.1. An extensional setting for the ca. 280 Ma magmatic rocks
The ~280 Ma granitoids were thought to have formed at an active

continental margin based on geochemical discrimination diagrams (Li,
2006; Shi et al., 2012). However, these diagrams could instead reflect
the tectonic settings in which the protoliths were formed, or reflect
the melting of mixed sources (e.g., Li et al., 2003). The tectonic setting
of the ~280 Ma granitoids can be constrained, however, by the timing
of ocean closure between the CAOB and Alxa Block (i.e., Paleo-Asian
Ocean), although this timing is itself highly disputed (e.g., Wang et al.,
2010b; Wilhem et al., 2012; Xiao et al., 2009, 2010). Numerous Early
Permian (ca. 280 Ma) A-type granites have been identified in the west-
ern CAOB (Tianshan, Junggar, and Altai) (Tang et al., 2010b; Zhang and
Zou, 2013a and references therein) and are commonly attributed to the
Permian Tarimmantle plume (e.g., Zhang and Zou, 2013a). This scenario
implies that the Paleo-Asian Ocean was probably closed by this time.
Recently, the Alxa Block has been invoked as a critical area to constrain
the timing of Paleo-Asian Ocean closure, and subduction was proposed
to extend into the Early Permian in the northern Alxa Block (Feng et al.,
2013; Zhang et al., 2013b). However, this suggestion is not consistent
with the spatial distribution and tectonic setting for the Upper Carbon-
iferous–Lower Permian Amushan Formation. The Amushan Formation
contains the only sedimentary stratum deposited in the Alxa Block
during the Paleozoic. Moreover, the Amushan Formation occurs on
both sides of the suture as adopted in this paper (Fig. 1b) but also to
the north and south of the two sutures proposed by Feng et al. (2013).
This distribution indicates that the tectonic setting of the northern
Alxa Block had changed before the formation of the Amushan Forma-
tion. Indeed, themafic rocks from the Amushan Formationwere formed
in a continental rifting setting (Dang et al., 2011; Jiang et al., 2011). Thus,
the ocean represented by the Enger Us Ophiolite must have been closed
before the deposition of the Amushan Formation (Late Carboniferous–
Early Permian).

Based on this evidence, the ca. 280 Ma magmatic rocks in the Alxa
Block are likely to have been formed in a post-orogenic extensional
setting. The proposed tectonic setting is also supported by the charac-
teristics of the ca. 280 Ma magmatic rocks themselves. Although the I-
and A-type granites and high Sr/Y rocks are very widespread globally,
these three types of granitoids rarely occur synchronously together,
except in a ridge subduction-related slab window (Tang et al., 2010a,
2012). However, the ca. 280 granitoids have evolved Sr–Nd isotopic
compositions that are distinct from the depleted compositions found
in their ridge subduction counterparts (Tang et al., 2010a, 2012). More-
over, no spatial or temporal zonation is apparent in the distribution of
Alxa Block examples (Fig. 1b). Additionally, none of the magmatic
rocks are significantly metamorphosed and no contemporaneousmeta-
morphism occurred in the region. Thus, the ~280 Ma magmatic rocks
must have formed in a post-collision extension or intraplate setting
rather than in a ridge subduction environment.

6.3.2. An Early Permian mantle plume trigged the ca. 280 Ma magmatic
flare-up?

The wide distribution and lack of zonation exhibited by the ca. 280
Ma Alxa Block magmatic rocks also argue against a slab break-off
model (e.g., von Blanckenburg and Davis, 1995; Whalen et al., 2006,
2010). This model predicts a relatively narrow, linear zone of
magmatism and uplift that is located along a suture zone. Two models
could be proposed to account for intense post-collisional magmatism
and the tectonic evolution, including (a) the detachment of an orogenic
root zone or lithospheric delamination (e.g., Aydin et al., 2008;
Whalen et al., 2006, 2010; Zhang et al., 2007), and (b) a mantle plume
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(e.g., Bryan et al., 2002; Li et al., 2003). Both processes may cause an up-
welling of the asthenosphere and partial melting of various sources
(Bonin, 2004), and yield similar magma evolution trends.

The model of lithospheric delamination seems feasible because of
the distribution of ca. 280 granitoids in the Alxa Block (Fig. 1b). In this
scenario, the post-collisional A-type granites occurred in lithospheric
extensional regimes due to the upwelling of the asthenosphere caused
by the lithospheric delamination (e.g., Ilbeyli et al., 2004; Wu et al.,
2002; Zhang et al., 2007). The association of coeval voluminous granites
andminormafic rocks in the Alxa Block is also similar to other proposed
examples of lithospheric delamination, such as Mesozoic South China
(e.g., Li and Li, 2007), Mesozoic North China (e.g., Wu et al., 2008) and
the Late Paleozoic Iberia (e.g., Gutiérrez-Alonso et al., 2011). However,
these examples are accompanied by contemporaneous subduction
systems, which did not exist in the Alxa Block and adjacent areas. More-
over, the current lithospheric thickness of the Alxa Block is about
200 km (Zhang et al., 2012), reducing the plausibility of lithospheric
delamination. The thick (~200 km) lithosphere and thick (N45 km)
crust also reduces the plausibility of lithospheric extension as a mecha-
nism for generating the ca. 280 Ma granitoids.

A mantle plume model does not share the weaknesses of the previ-
ously described scenarios (e.g., Bryan et al., 2002; Li et al., 2003). Early
Permian igneous rocks are widely distributed in NW China (e.g., Qin
et al., 2011; Su et al., 2011; Xia et al., 2012; Xu et al., 2013; Zhang and
Zou, 2013a, 2013b; Zhang et al., 2010), including the Tarim, Tianshan
and CAOB, and constitute a large igneous province referred to as the
Tarim or the Tianshan. A mantle plume has been invoked to explain
the characteristics of these rocks (e.g., Qin et al., 2011; Su et al., 2011;
Xu et al., 2013; Zhang et al., 2010; Zhou et al., 2004), e.g., widely distrib-
uted basaltic rocks (e.g., Zhang et al., 2010), extremely highmagma tem-
peratures estimated to be in the range of 1100–1600 °C (Qin et al.,
2011), and widely distributed mafic–ultramafic complexes (e.g., Qin
et al., 2011). The Early Permian mantle plume was recently proposed
to be situated closer to the Beishan Rift than the Eastern Tianshan and
the western Tarim (Su et al., 2012). The ca. 280 Ma granitoids in the
Alxa Block are coeval with the ca. 280 Ma Tarim mantle plume. Thus,
the heat required to generate these crust-derived granitoids was likely
supplied by the Tarim mantle plume given that the Alxa Block was
probably near its margin. A similar example is the Chon Aike SLIP
(188–153 Ma) (Pankhurst et al., 1998, 2000), which is adjacent to the
Karoo–Ferrar LIP (Pankhurst et al., 2000).

Generating these large volume granitoids probably required the
involvement of underplated mafic rocks in the lower crust, similar to
other Phanerozoic SLIPs (e.g., Bryan et al., 2002). The rare mafic rocks
in the Alxa Block support the possibility of mafic underplating. More-
over, the cumulus characteristics of the gabbro and quartz diorite
imply the presence of magma chambers in the lower and upper crust.
The main requirement for the generation of these large volume felsic
melts is that their protoliths are hydrous (e.g., Bryan et al., 2002),
which is consistent with the fact that reported Phanerozoic SLIPs
are all restricted to continental margins that acquire fertile, hydrous
lower-crustal materials by long-lived subduction (e.g., Bryan and
Ferrari, 2013; Bryan et al., 2002). Although there is no contemporaneous
subduction around the Alxa silicic igneous province, the hydrous lower-
crust would have been created by Paleo-subduction in the southern
(e.g., Song et al., 2013), eastern (Dan et al., 2013) and northern (Zheng
et al., 2013) part of the Alxa Block.

7. Conclusions

Most of the Phanerozoic igneous rocks in the Alxa Block were
formed during a short period (290–250 Ma) with a magmatic flare-up
at ca. 280Ma and their large areal extent is similar to that of other silicic
large igneous provinces. The A-type granite, I-type monzogranites and
high Sr/Y granodiorites from the Bayannuoergong batholith were prob-
ably generated by partial melting of underplated basalts, by the mixing
of lithospheric mantle-derived and lower crust-derived melts and by
the remelting of the thickened lower crust, respectively. The gabbros,
quartz diorites and diorites from the Bijiertai Complex were likely gen-
erated by partialmelting of the lithosphericmantle, differentiation from
basaltic magmas and partial melting of themiddle crust. The ca. 280Ma
magmatic event was probably formed in a post-orogenic extensional
setting, and triggered by the adjacent ca. 280 Ma Tarim mantle plume.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2014.01.018.
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