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Granitoids near the Bayan Obo giant rare earth element (REE) deposit at the north margin of the North China
Craton (NCC), the world's largest light REE (LREE) deposit, have been taken by some authors as the key factors
that controlled themineralization. In contrast, others proposed that the REE deposit has been partially destructed
by these granitoids. Here we report systematic studies on geochronology and geochemical characteristics of
granitoids of different distances from the orebodies, to investigate the genesis and their relationship to the
giant Bayan Obo deposit. Granitoids studied here, including granites and quartz monzonites, are peraluminous
with A/CNK = 0.99–1.11, LREE enriched and heavy REE (HREE) depleted, with variable REE concentrations
(total REE = 54–330 ppm) and large negative Eu anomaly (δEu = 0.19–0.70). The REE patterns are distinct
from those of ore-bearing dolomites. Some samples have slightly higher LREE concentrations, which may have
been contaminated by the orebodies during intrusion. Trace elements of the granitoids are characterized by pos-
itive Pb anomaly, strong negative Ti anomaly andNb, Ta and Sr anomalies. The granites exhibit negative Ba anom-
aly. The granitoids plot within the post-collision granite field in the Pearce diagram, which is consistent with the
tectonic regime. The quartz monzonites and one granite have A-type granite characteristics and belong to the A2

subgroup. Zircons in these granitoids have high Th/U values, which are typical for magmatic zircons. High preci-
sion U–Pb dating for these zircons by secondary ion mass spectrometry (SIMS) and laser ablation inductively
coupled plasma mass spectrometry (LA–ICP-MS) yields Permian–Triassic 206Pb/238U ages ranging from 243.2
to 293.8 Ma. The formation of the granitoids is N55 Ma later than the latest ore forming age. The zircons have
low La concentrations (0.02–12 ppm), high (Sm/La)N (0.8–685) and Ce/Ce⁎ (1.4–80). The Ti-in-zircon tempera-
ture of the granitoids ranges from 590 to 770 °C. All these evidences suggest that the granitoids have no contri-
bution to the formation of the Bayan Obo deposit. Granitoids that are close to the orebodies had limited
interactionwith it and gained someLREE-enriched characteristics duringmagmatisms.Nevertheless, their effects
to the orebodies are subtle. All the granitoids formed in a post-collisional tectonic regime at convergent margins,
which is consistent with plate subduction during the closure of the Palaeo-Asian Ocean, which started in the
Neoproterozoic and lasted until the Carboniferous/Permian.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

BayanObo, located at the northernmargin of theNorth China Craton
(NCC) (Fig. 1), is the largest light rare earth element (REE) deposit in the
world, the largest niobium (Nb) and thorium (Th) deposit, and a major
iron (Fe) deposit in China (Chao et al., 1992; Kynicky et al., 2012; Lai and
Yang, 2013; Ling et al., 2013; Y.L. Liu et al., 2008; Tu, 1998; Yang and Le
Bas, 2004; Yang et al., 2009; Yuan et al., 1992). Granitoids are
ongsun@gig.ac.cn (W. Sun).
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widespread near the Bayan Obo deposit (Fig. 1), which have been stud-
ied by several groups (Chao et al., 1997; Fan et al., 2009; Ling et al., 2013;
Wang, 1980; Wang et al., 1973, 1994; Yang et al., 2000; Yuan et al.,
1992). These granitoids were taken by some authors as the key factors
that controlled the mineralization (IGCAS, 1988; Wang et al., 1973),
while others proposed that the REE deposit has been partially trans-
formed and further metasomatized by the granitoid intrusion (Yuan
et al., 1992), but little REE ore-forming material was brought into the
orebodies (Yuan et al., 1992). Recent studies favor that there is no con-
nection between the granitoids and the formation of the REE deposit
(Fan et al., 2009; Ling et al., 2013; Yang et al., 2000). Nevertheless,
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Fig. 1. Geological setting in Bayan Obo, North China Craton. (a) Simplifiedmap showing the location of Bayan Obo, the North China Craton, and the Central Asian Orogenic Belt, modified
after Jahnet al. (2000) (b) Sketch geologicalmapof BayanObo, showing the Triassic–Permian granitoids and the sample locations,modified after Y.L. Liu et al. (2008) and Ling et al. (2013).
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granitoids contacting with the orebodies do have higher REE content
than others (Wang, 1980). Given that most previous dating of the gran-
itoids gives Permian ages, e.g., K–Ar age 246–270 Ma (IGCAS, 1988),
Rb–Sr isochron age 264 ± 91 Ma or 249 ± 35 Ma (Zhang et al.,
2003), Rb–Sr isochron age 255.2 ± 8.2 Ma (Wang et al., 1994, and ref-
erences therein), 263–273 Ma by LA–ICP-MS zircon U–Pb dating (Fan
et al., 2009), and 267.4 ± 2.2 Ma by SIMS zircon U–Pb dating (Ling
et al., 2013), it has been argued that the granitoidsmade no contribution
to the mineralization (Ling et al., 2013). Nevertheless, there are large
volumes of granitoid intrusions near the Bayan Obo region. Only a few
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Fig. 2. Cross-polarized microscopic photos of the granitoids. Qtz
have been dated, and there is no systematic geochemical data yet
reported. In addition, many of the previously reported ages were not
done using suitable methods, and the ages varied dramatically with
large uncertainties. Moreover, these granitoids may have negative
effects in the form of remobilization and grade reduction on the Bayan
Obo deposit, which have not been previously studied.

To test these possibilities, we sampled a granitoid profile of ~800 m
from the southeast boundary of the BayanObo deposit outward, and car-
ried out a detailed geochemical study, aiming at better constraints on the
genesis of these granitoids and their relation to the Bayan Obo deposit.
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= quartz, Pl = plagioclase, Or = orthoclase, Bt = biotite.



Table 1
Major and trace element compositions of the granitoids from Bayan Obo (major elements: %; trace elements: ppm).

Sample 10-110-1 10-110-2 10-110-3 10-110-4 10-110-5 10-110-6 10-110-7 10-110-8 07.110-3.1

Rock type Quartz monzonite Granite Granite Granite Quartz monzonite Quartz monzonite Quartz monzonite Granite Granite

SiO2 69.70 76.32 72.78 76.50 66.48 65.75 68.65 73.83 73.02
TiO2 0.34 0.04 0.17 0.02 0.36 0.38 0.28 0.15 0.24
Al2O3 15.18 12.93 13.76 13.21 16.21 16.67 15.68 13.40 13.82
Fe2O3

T 2.72 0.70 1.98 0.68 3.35 3.64 2.92 1.73 1.92
MnO 0.11 0.11 0.07 0.06 0.09 0.10 0.08 0.04 0.04
MgO 0.55 0.09 0.30 0.09 0.61 0.62 0.47 0.27 0.48
CaO 1.63 0.46 0.94 0.57 2.01 2.12 1.44 0.78 1.15
Na2O 4.23 3.84 3.46 4.10 4.08 3.93 3.91 3.52 3.57
K2O 5.03 4.79 5.05 4.48 5.01 5.15 5.05 4.48 4.76
P2O5 0.11 0.01 0.08 0.01 0.10 0.15 0.08 0.08 0.06
LOI 0.35 0.39 0.40 0.25 0.46 0.52 0.52 0.59 0.35
Total 100.15 99.69 99.07 100.00 98.99 99.28 99.27 98.94 99.42
A/CNK 0.99 1.05 1.07 1.05 1.03 1.05 1.08 1.11 1.05
Cs 4.85 6.42 5.50 2.20 3.50 3.18 4.13 3.95 4.90
Rb 189 249 187 164 137 132 154 185 136
Ba 1275 91 692 181 1765 1855 1380 568 567
Th 21.2 33.0 22.1 28.9 16.1 16.9 17.7 30.7 11.9
U 3.49 2.36 2.62 1.30 2.33 1.57 2.09 5.78 2.53
Nb 24.4 18.1 13.5 18.1 16.8 15.6 16.4 17.6 12.2
Ta 2.10 4.10 1.20 4.10 0.80 0.70 0.90 1.40 0.77
La 42.7 10.0 30.4 5.40 83.0 65.8 47.8 30.7 25.7
Ce 81.6 22.8 52.7 15.1 150 137 140 57.8 46.7
Pb 29.0 41.0 29.0 16.0 24.0 20.0 25.0 25.0 20.0
Pr 9.73 3.06 6.21 1.94 15.7 13.3 9.31 6.34 5.04
Sr 325 34.4 142 79.5 352 340 247 120 130
Nd 35.7 11.9 22.0 8.20 51.6 46.4 30.8 20.9 19.5
Sm 7.14 3.34 3.97 2.76 7.81 7.62 5.62 3.67 3.89
Zr 305 67 163 58 348 391 307 157 183
Hf 8.80 4.70 5.00 4.50 8.50 9.60 8.00 4.90 4.81
Eu 1.27 0.21 0.79 0.28 1.77 1.71 1.29 0.62 0.69
Ti 1902 224 951 112 2014 2126 1567 839 1220
Gd 6.71 3.36 3.82 3.11 7.71 7.32 5.73 3.54 3.43
Tb 1.06 0.63 0.57 0.69 0.99 0.96 0.83 0.50 0.50
Dy 6.05 4.17 3.14 4.70 4.88 4.96 4.44 2.74 3.03
Y 38.1 28.6 17.7 31.2 25.1 24.6 24.2 16.2 16.6
Ho 1.27 0.91 0.63 1.09 0.95 0.93 0.91 0.57 0.64
Er 4.03 3.15 2.00 3.79 2.82 2.80 2.69 1.88 1.74
Tm 0.62 0.53 0.31 0.66 0.37 0.34 0.36 0.29 0.27
Yb 4.38 4.19 2.16 5.20 2.48 2.46 2.54 2.17 1.85
Lu 0.69 0.67 0.35 0.77 0.38 0.38 0.40 0.35 0.29
LREE/HREE 10.2 3.84 13.1 2.18 24.7 21.7 19.8 14.5 12.6
δEu 0.56 0.19 0.62 0.29 0.70 0.70 0.69 0.53 0.58
Ce/Ce* 0.94 1.00 0.89 1.14 0.95 1.07 1.53 0.96 0.94
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Fig. 3. Total alkalis versus SiO2 (TAS) diagram. The samples fall in the quartz monzonite
and granite fields. The yellow filled circles and blue filled diamonds represent quartz
monzonite and granite, respectively.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Quartz monzonite
Granite

A/CNK

PeraluminousMetaluminous

Peralkaline

A
/N

K

Fig. 4. A/NK versus A/CNK diagram (Shand, 1943). A/NK = Al2O3/(Na2O + K2O) (molar
ratio), A/CNK = Al2O3/(CaO + Na2O + K2O) (molar ratio). The samples mainly fall in
the peraluminous field.

432 M.-X. Ling et al. / Lithos 190–191 (2014) 430–439



SiO2 SiO2

Quartz monzonite
Granite

0.0

0.1

0.2

0.3

0.4

0.5

TiO2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
TFeO

0.0

0.5

1.0

1.5

2.0

CaO

64 66 68 70 72 74 76 78 64 66 68 70 72 74 76 78
4.2

4.4

4.6

4.8

5.0

5.2
K O2

11

12

13

14

15

16

17

18

Al O2 3

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4
Na O2

P O2 5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MgO

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 5. Harker diagrams showing the major element variations of the granitoids in Bayan Obo. SiO2 has clear negative correlation with Al2O3, FeOT, TiO2, MgO, CaO and P2O5, but no
correlation with Na2O and K2O.
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2. Geological background and samples

The BayanObodistrict, InnerMongolia Autonomous Region, is locat-
ed at the northernmargin of theNorth China Craton (NCC), neighboring
the south edge of the Central AsianOrogenic Belt (Ling et al., 2013; Yang
et al., 2009) (Fig. 1). The giant Bayan Obo REE–Nb–Fe deposit is hosted
in Palaeo- toMesoproterozoic sediments of the BayanObo Groupwhich
consists of low-grade metamorphic sandstones, siltstones, limestones
and dolomites and has been classified into two series, a lower regressive
series (members H1–H10) and an upper transgressive series (H11–
H20) (IGCAS, 1988). The REE deposit is hosted in the H8 dolomite
(IGCAS, 1988; Lai et al., 2012; Ling et al., 2013; Y.L. Liu et al., 2008;
Yang et al., 2009) (Fig. 1). The Bayan Obo Group was deposited upon
an Archean basement of migmatites of the Wutai Group (Drew et al.,
1990). Later studies showed that the basement in the Bayan Obo region
is Early Proterozoic (Y.L. Liu et al., 2008). Large volumes of Palaeozoic
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granitoids intruded these rocks (Drew et al., 1990; Fan et al., 2009;
IGCAS, 1988; Yang et al., 2000), and mainly outcropped south and east
of the BayanObo ore deposit (Fig. 1). Four quartzmonzonite and 5 gran-
ite granitoids were studied in this contribution. The granitoids are
mainly composed of quartz (25–30 vol.%), plagioclase (20–25 vol.%),
orthoclase (35–45 vol.%) and biotite (6–8 vol.%) (Fig. 2), with accessory
minerals of magnetite, ilmenite, monazite, apatite and zircon.

3. Analytical methods

Fresh rocks were first ground to less than 200 mesh for major and
trace element analysis. Sample rock powder was fluxedwith lithium bo-
rate (sample/flux ratios 1:8) to make homogeneous glass disks for X-ray
fluorescence (XRF) analysis, at 1150–1200 °C using a V8C automatic fu-
sionmachine produced by the Analymate Company in China. Analyses of
major and trace elements were done at the State Key Laboratory of Iso-
tope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Acad-
emy of Sciences. Major elements were determined by Rigaku 100e XRF
with analytical precision better than 1% (Ma et al., 2007). About 40 mg
powders of each sample were accurately weighed and dissolved by a
HF and HNO3 mixture in screw-top Teflon beakers on a hot plate at the
temperature of 150 °C in a clean laboratory. Sample solutions were
dried and diluted to 3% HNO3 with a factor of 1/2000. Rh was used as
an internal standard for calibration. Trace elements were analyzed by
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Perkin-Elmer ELAN6000 ICP-MS. Analytical precisions for trace elements
are better than 5% (Liu et al., 1996).

Zirconswere separated from samples by traditional heavy liquid and
magnetic separation techniques, handpicked under a binocular micro-
scope, mounted with epoxy resin and then polished down to near half
sections to expose internal structures for SIMS and LA–ICP-MS analyses.
Cathodoluminescence (CL) and optical microscopy imageswere used to
inspect the zircon morphology and the clearest, least fractured rims of
the zircon crystals were selected as suitable targets for laser ablation.

Zircon U–Pb dating of the sample 07.110-3.1 was performed at the
State Key Lab of Lithospheric Evolution, Institute of Geology and Geo-
physics, Chinese Academy of Sciences, using a Cameca IMS 1280 SIMS
following the procedures reported by Li et al. (2009). Temora was
used as an external standard. The ellipsoidal spot is ~20–30 μm in
size. The O2

− primary ion beam was accelerated at −13 kV with an in-
tensity of ~10 nA and positive secondary ions were extracted with a
10 kV potential. Zircon U–Pb dating and trace element analysis of
other samples were conducted at the State Key Laboratory of Isotope
Geochemistry, Guangzhou Institute of Geochemistry, by using a LA–
ICP-MS system consisted of an Agilent 7500a ICP-MS coupled with a
Resonetics RESOLution M-50 ArF-Excimer laser source (λ = 193 nm).
The laser energy was 80 mJ, and the frequency was 6 Hz, with an abla-
tion spot of 31 μm in diameter. Both a double-volume sampling cell and
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ment spider diagram of the granitoids.
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a Squid smoothing device were used to improve the data quality. The
ablated aerosol was carried to the ICP sourcewith He gas. The detection
limits of ICP-MS for trace elements are mostly better than 10 ppb, with
uncertainties of 5–10%. Temora and NIST610 were used as external
calibration standards for U–Pb dating and trace element analysis, re-
spectively. 29Si was taken as an internal standard for trace element
(C.Y. Li et al., 2012; Liang et al., 2009; Tu et al., 2011). The data reduction
of U–Pb dating and trace element analyses was performed by
ICPMSDataCal (Y.S. Liu et al., 2008, 2010). Concordia diagrams and
MSWD calculation were made using Isoplot 4.1 (Ludwig, 2012).
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Fig. 10. A1 and A2 discrimination diagram for A-type granites.
4. Results

4.1. Whole rock major and trace elements

Whole rock major and trace element results of the samples in
this study are listed in Table 1. The samples have SiO2 = 65.75–
76.50 wt.% and total alkalis (Na2O + K2O = 8.00–9.26 wt.%) and fall
in the quartz monzonite and granite fields in the TAS diagram (Fig. 3).
The granitoids are peraluminous with aluminum saturation indices
A/CNK (Al2O3/(CaO + Na2O + K2O)) = 0.99–1.11 and A/NK (Al2O3/
(Na2O + K2O)) = 1.12–1.38 (Fig. 4). In the Harker diagrams, SiO2 has
an obviously negative correlation with Al2O3, FeOT, TiO2, MgO, CaO
and P2O5, but no correlation with Na2O and K2O (Fig. 5).

Chondrite-normalized REE patterns of these samples show LREE
enriched and HREE depleted characteristics, and quartz monzonites
have relatively higher LREE concentration than granite (Fig. 6). The gran-
itoids exhibit a large negative anomaly (δEu) = 0.19–0.70 (Table 1), indi-
cating removal of plagioclase by fractional crystallization during magma
evolution, which is consistent with the negative Ba and Sr anomalies
(Fig. 7). The Ce anomaly (Ce/Ce⁎) is small, except sample 10-110-7 with
positive Ce/Ce⁎ = 1.5 (Table 1). The samples have high and variable
REE concentrations (total REE = 54–330 ppm). Some of the granitoids
show variable LREE enrichment, which may have gained from the
Bayan Obo REE orebodies during granitoid intrusion. Trace elements of
the granitoids are characterized by positive Pb (16–41 ppm) anomaly
and negative Nb (14–24 ppm), Ta (0.7–4.1 ppm), Ti (112–2126 ppm)
and Sr (34–352 ppm) anomalies. The granites exhibit negative Ba anom-
aly (91–692 ppm) (Fig. 7, Table 1). All these granitoids plot within the
post-collision granite field in the Rb vs. Y + Nb diagram (Fig. 8). Quartz
monzonites and one granite have A-type granite characteristics (Fig. 9)
and belong to A2 subgroup (Fig. 10).
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Fig. 9. Zr versus 10,000*Ga/Al discrimination diagram for granites (Pearce, 1996). Quartz
monzonites and one granite have A-type granite characteristics.
4.2. Zircon U–Pb dating and trace element characteristics

Zircon U–Pb dating was conducted on all samples, SIMS dating for
sample 07.110–3.1, and LA–ICP-MS analysis for the other samples.
In total 116 zircon grains from 9 samples were analyzed. Zircon U–Pb
dating results by LA–ICP-MS are listed in Supplementary Table S1.

CL images of the zircons display tight oscillatory zoning, which is
typical of granitic zircons, consistent with high Th/U (0.4–1.0) (Fig. 11,
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Fig. 11. Zircon Th–U diagram. Th/U ratios, mainly between 0.5 and 1.0 ratios of zircons
indicate a magmatic origin. The yellow filled circles and blue filled diamonds represent
zircons of quartz monzonite and granite, respectively.
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Fig. 13. REE pattern of zircons in the granitoids.
Chondrite data are from Sun and McDonough (1989).
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Supplementary Table S1) (Hoskin and Schaltegger, 2003; Sun et al.,
2002). SIMS zircon U–Pb dating for sample 07.110-3.1 yields 206Pb/
238U age = 257.4–273.6 Ma (Ling et al., 2013). LA–ICP-MS analysis for
zircons of other samples yields Permian–Triassic 206Pb/238U ages rang-
ing from 243.2 to 293.8 Ma (Fig. 12, Supplementary Table S1), with a
wider age range than SIMS results. The dating results show no clear
age difference between granites and quartz monzonites. All these indi-
cate that post-collisional granitoid activities in the Bayan Obo region
lasted for ~50 Ma.
These zircons are LREE depleted andHREE enriched,with positive Ce
anomaly and negative Eu anomaly. The zircons show largely scattered
LREE concentrations, with much tighter HREE concentrations in
the same sample (Fig. 13). The zircons have low La concentrations
(0.02–12 ppm) (Supplementary Table S2), high (Sm/La)N (0.8–685)
and Ce/Ce* (1.4–80) (Fig. 14).

The temperature of zircon formation ranges from 590 to 770 °C
(Supplementary Table S2), based on Ti concentration in zircon
(Watson et al., 2006). This is relatively lower but close to the
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temperature of 640–870 °C of whole rock TiO2–SiO2 and P2O5–SiO2

thermometers (Bea et al., 1992; Green and Pearson, 1986; Harrison
and Watson, 1984).

5. Discussion

5.1. The geochemical characteristics of Permian–Triassic granitoids in
Bayan Obo

The strong negative anomaly of Ti coupledwith the less pronounced
negative Nb and Ta anomalies (Fig. 7), implies the influence of ilmenite
during fractional crystallization (H. Li et al., 2012). The zircon formation
temperatures were a little low, ranging from 590 to 770 °C according to
Ti-in-zircon thermometer (Supplementary Table S2) (Watson et al.,
2006). The oxygen fugacity of these granitoids is low as indicated by
Ce/Ce* (Table 1), which is consistent with post-collisional settings.

As mentioned above, the granitoids plot within the post-collision
granite field in the Rb vs. Y + Nb diagram (Fig. 8). Consistently, the A-
type granites belong to the A2 sub-group (Figs. 9 and 10). A-type
granites (where A stands for alkaline, anorogenic and anhydrous, and
aluminous) (Eby, 1992; H. Li et al., 2012) are characterized by
hypersolvus to transsolvus to subsolvus alkali feldspar textures, iron-
rich mafic mineralogy, bulk-rock compositions yielding ferroan alkali–
calcic to alkaline affinities, and enrichment of incompatible trace
elements, including LILE and HFSE (Bonin, 2007). A-type granite has
been further divided into A1 and A2 chemical subgroups (Eby, 1992).
A1 granites have chemical characteristics similar to those observed for
oceanic-island basalts. In contrast, A2 granites are similar to rocks of
continental crust or island-arc origins in chemical characteristics, and
are attributed to continental crust at convergent margins (Eby, 1992).
The A-type granites in this study are all classified as the A2 subgroup
(Fig. 10), which is consistent with their post-collisional characteristics.
It is also consistent with the previous studies on the Bayan Obo REE de-
posit (Ling et al., 2013), i.e., plate subduction during the closure of the
Palaeo-Asian Ocean started in the Neoproterozoic (Khain et al., 2003)
and lasted until the Carboniferous/Permian (Xiao et al., 2003).

5.2. Relationship to the formation of the Bayan Obo REE deposit

SIMS and LA–ICP-MS zircon dating yields Permian–Triassic 206Pb/
238U ages ranging from 243.2 to 293.8 Ma (Fig. 12). The Triassic ages
(243.2–249.9 Ma) have only been reported by K–Ar and Rb–Sr dating
methods (IGCAS, 1988; Zhang et al., 2003), but not by zircon U–Pb
dating. The large range of zircon ages reported here indicates a longer
period of magmatism than previously identified (Fan et al., 2009;
IGCAS, 1988; Ling et al., 2013; Wang et al., 1994; Zhang et al., 2003).
The ages are clearly later than the ore forming stage constrained from
monazite Th–Pb dating by sensitive high-resolution ion microprobe
(SHRIMP) (~750–350 Ma) (Ling et al., 2013) or by solution methods
(Chao et al., 1992, 1997; Wang et al., 1994), indicating no contribution
to formation of the REE deposit. This is also supported by the initial
Nd isotopic ratios of the granitoids, which are distinctively different
from those of ore-bearing dolomites (Zhang et al., 2003). However,
some of the granitoids show variable LREE enrichment, which may
have been gained from the Bayan Obo REE orebodies during granitoid
intrusion. All the evidences support that these granitoids have no
contribution to the formation of the Bayan Obo deposit. Some of
the granitoids have gained the LREE-enriched characteristics from
the Bayan Obo deposit, which have minor negative effects on the
orebodies.

6. Conclusion

A systematic study on geochronology and geochemistry has been
conducted on granitoids of different distances from the Bayan Obo
orebodies. The results indicate that these granitoids are peraluminous
with A/CNK = 0.99–1.11, LREE enriched and HREE depleted with posi-
tive Pb anomaly and negative Nb, Ta, Ti, Eu and Sr anomalies. SIMS and
LA–ICP-MS zircon U–Pb dating yield ages between 243.2 and 293.8 Ma.
The granitoids plot within the post-collision granite field in the Pearce
diagram. Quartz monzonites and one granite have A-type granite
characteristics and belong to the A2 subgroup, indicating a genesis of
convergent margins, i.e., plate subduction during the closure of the
Palaeo-Asian Ocean started in the Neoproterozoic and ended in the
Carboniferous/Permian. The REE patterns and other geochemical char-
acteristics of Bayan Obo granitoids are distinct from those of ore-
bearing dolomites, but some of the granitoids show variable LREE
enrichments. All the evidences support that these granitoids have
made no contribution to the formation of the BayanObo deposit. During
the Permian–Triassic granitoid intrusion, some of the granitoids have
gained the LREE-enriched characteristics from the Bayan Obo orebodies
with limited destruction to the orebodies.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.lithos.2014.01.002.
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