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a b s t r a c t

Organic acids as important constituents of organic aerosols not only influence the aerosols’ hygro-
scopic property, but also enhance the formation of new particles and secondary organic aerosols. This
study reported organic acids including C14–C32 fatty acids, C4–C9 dicarboxylic acids and aromatic
acids in PM2.5 collected during winter 2009 at six typical urban, suburban and rural sites in the
Pearl River Delta region. Averaged concentrations of C14–C32 fatty acids, aromatic acids and C4–
C9 dicarboxylic acids were 157, 72.5 and 50.7 ng/m3, respectively. They totally accounted for 1.7%
of measured organic carbon. C20–C32 fatty acids mainly deriving from higher plant wax showed the
highest concentration at the upwind rural site with more vegetation around, while C14–C18 fatty
acids were more abundant at urban and suburban sites, and dicarboxylic acids and aromatic acids
except 1,4-phthalic acid peaked at the downwind rural site. Succinic and azelaic acid were the most
abundant among C4–C9 dicarboxylic acids, and 1,2-phthalic and 1,4-phthalic acid were dominant
aromatic acids. Dicarboxylic acids and aromatic acids exhibited significant mutual correlations
except for 1,4-phthalic acid, which was probably primarily emitted from combustion of solid wastes
containing polyethylene terephthalate plastics. Spatial patterns and correlations with typical source
tracers suggested that C14–C32 fatty acids were mainly primary while dicarboxylic and aromatic acids
were largely secondary. Principal component analysis resolved six sources including biomass burning,
natural higher plant wax, two mixed anthropogenic and two secondary sources; further multiple linear
regression revealed their contributions to individual organic acids. It turned out that more than 70% of
C14–C18 fatty acids were attributed to anthropogenic sources, about 50%–85% of the C20–C32 fatty
acids were attributed to natural sources, 80%–95% of dicarboxylic acids and 1,2-phthalic acid were
secondary in contrast with that 81% of 1,4-phthalic acid was primary.

Introduction

Atmospheric aerosols negatively impact human health
(Pope et al., 2002), dramatically reduce visual range
(Hobbs, 2002) and strongly influence radioactive forcing
and climate (Penner et al., 1998). They are highly var-

∗Corresponding author. E-mail: wangxm@gig.ac.cn

ied in their spatiotemporal distribution and their health
and climate effects are largely attributed to their sizes
and/or chemical compositions (Dusek et al., 2006; Pope
et al., 2002; Xu et al., 2008), therefore it is necessary to
chemically characterize aerosols in different regions due to
increasing concern about aerosols’ role in environmental
health and climate change. As the fraction of atmospheric
particulates closely related to health endpoints than the
larger ones (Pope et al., 2002), fine particles or particles

http://www.jesc.ac.cn
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with dynamic diameter less than 2.5 µm (PM2.5) have been
regulated in many nations for the protection of human
health. Organic matters are major aerosol constituents in
both urban and rural areas (Alves et al., 2012; Wang et al.,
2012b), and organic acids, including low molecular weight
acids (e.g. oxalic acid) and high molecular weight acids
(e.g. fatty acids), are important atmospheric oxygenated
organic aerosols in PM2.5 (Rogge et al., 1993; Wang et
al., 2006). These acids are either directly emitted from
various natural and anthropogenic sources (Ho et al., 2010;
Oliveira et al., 2007) or secondarily formed from oxidation
of gas-phase precursors followed by gas/particle partition
(Wang et al., 2012a). Organic acids are involved in a
series of atmospheric chemical reactions occurring in the
gas, water and particle phases (Chebbi and Carlier, 1996);
they can reduce the surface tension of particles to form
cloud condensation nuclei (Facchini et al., 1999), and
laboratory experiments also indicate that nucleation of
sulfuric acid is considerably enhanced in the presence of
organic acids like aromatic acids (Zhang et al., 2004). As
recently reported by Chan and Chan (2011), the presence
of oleic acid in particles would enhance the reactive uptake
of nonanal. Therefore, investigation of organic acids in
particles would be helpful in understanding atmospheric
chemistry of organics and formation mechanism of sec-
ondary organic aerosols and cloud condensation nuclei.
Since organic acids in the atmosphere are a pool of
compounds with varying structures and sources/origins,
their chemical speciation and source apportionment remain
to be a big challenge.

Organic acids in urban areas are even more complicated
in terms of their primary and secondary contributions, and
in their biogenic and anthropogenic sources. In the Pearl
River Delta (PRD) region, one of the most industrialized
and densely populated regions in Guangdong Province,
China, organic acids contributed substantially to particle-
bound solvent-extractable organics (Feng et al., 2006; Ma
et al., 2010; Zheng et al., 2000). Ho et al. (2007) and Wang
et al. (2006) investigated seasonal and spatial variation
of organic acids in Chinese cities, and found organic
acids exhibited higher concentrations in southern China,
especially in Guangzhou, a central city in the PRD region.
Yet at the moment, information about sources and origins
of organic acids in the PRD region is quite limited (Ho
et al., 2011). As cooking can directly emit organic acids
like fatty acids (He et al., 2004; Schauer et al., 1999, 2002;
Zhao et al., 2007a, 2007b), cooking might be an important
source of organic acids in the densely populated PRD
region with about 40 thousand restaurants in Guangzhou
(Guangzhou Statistical Yearbook, 2011); vehicle exhausts,
another contributor to organic acids (Fraser et al., 1998; He
et al., 2006, 2008), are supposed to be another important
source with over 30% annual growth rate of private cars
in the PRD region in recent years (Guangdong Statistical
Yearbook, 2011). Biogenic emissions, on the other hand,

can give rise to organic acids directly through emission of
terrestrial higher plant wax (Simoneit, 1986) or indirectly
through oxidation of biogenic volatile organic compounds
(VOCs) (Ding et al., 2011; Hu et al., 2008). This bio-
genic source is expected to be much more significant in
the tropical/subtropical PRD region with relatively high
annual mean temperature (about 25°C) and more evergreen
vegetation (Ho et al., 2011). Secondary organic aerosols
including secondary acids should also be important com-
ponents of fine particles in the PRD region (Ding et al.,
2012) as a result of the higher anthropogenic and biogenic
precursor emissions (Zhang et al., 2012; Zheng et al.,
2009), elevated atmospheric oxidative capacity (Hofzuma-
haus et al., 2009) and strong aerosols acidity (Ding et al.,
2011) in the region. Considering the complex situation in
the PRD region, it is an interesting topic to further explore
the contributions of organic acids from different sources in
addition to investigate their chemical compositions.

In the PRD region, aerosol pollution is typically much
more serious in winter largely due to lower mixing height,
less wet removal and prevailing winds from polluted area.
In Guangzhou, the study by Ma et al. (2010) revealed much
higher free organic acids in total suspended particulates
(TSP) in winter than in summer. In the present study, we
collected PM2.5 samples simultaneously at six represen-
tative sites in the PRD region during winter 2009, and
analyzed these samples for organic acids including fatty
acids, dicarboxylic acids and aromatic acids. The purpose
of this study is to characterize chemical compositions and
to identify and apportion sources for organic acids in this
highly industrialized and densely populated subtropical
region in south China.

1 Experimental

1.1 Field sampling

The PRD region, with a population of about 56 million
and a land area of about 43,000 km2, is an economically
developed region in south China and it contributes about
one tenth of China’s national GDP. In the present study,
six sampling sites, including two urban sites (GZ and GD),
two suburban sites (HD and PY) and two rural sites (KD
and WQS), are selected for filter-based sampling of PM2.5.
These sites are also among the air quality monitoring
stations established by local governmental environmental
monitoring center. The locations of these sites are shown
in Fig. 1.

The two urban sites GZ and GD, about 1.5 km away
from each other, are located in densely populated com-
mercial/residential districts of urban Guangzhou City with
much heavier traffic around. The site PY is a suburban site
in the south of urban Guangzhou with an industrial area
about 1 km away in the east. HD is another suburban site

http://www.jesc.ac.cn
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Fig. 1 Sampling sites in the Pearl River Delta (PRD) region, China.

in the northwest of urban Guangzhou. It is close to a forest
park but there are also handicraft and machinery industries
nearby. KD is a rural site in the north of PRD region
without any significant emission sources nearby but with
more forests and vegetation in the neighborhood, while
WQS is a regional background site in the south of urban
Guangzhou and about 50 km away from the city clusters of
Guangzhou, Shenzhen, Foshan and Dongguan in the PRD
region.

Twenty four hours filter-based PM2.5 samples were
collected simultaneously at the six sites from November
28 to December 23, 2009, using medium-volume samplers
at a flow rate of 300 L/min. The samplers were placed
on the rooftops, 10–20 m above grounds. The quartz
filters (5 × 8 inch; Whatman) were baked at 450°C for at
least 4 hours before sampling to reduce potential organic
contamination. After weighing, these filters were wrapped
with prebaked aluminum foils and stored in zipped Teflon
bags when transported to the field. After sampling, the
filters were again wrapped with prebaked aluminum foils
and put in zipped Teflon bags, and then transported back to
laboratory and stored at –4°C till analysis. Samples were
only collected on sunny days and totally 140 valid samples
were collected in this study. There was a field blank at each
site during the campaign.

1.2 Laboratory analysis

Organic carbon (OC) and elemental carbon (EC) were
measured on a punch (1.5 × 1.0 cm2) from each filter by the
thermo-optical transmittance method (NIOSH 1999) with
an OC/EC analyzer (Sunset Laboratory Inc., USA).

Detailed analysis of organic compounds has been de-
scribed elsewhere (Ding et al., 2011). Briefly, 1/8 of
each filter was extracted twice by sonication with 30 mL
hexane/dichloride methane (DCM) (1:1, V/V) each time
and then twice with 30 mL DCM/methanol (1:1, V/V) each
time. Prior to solvent extraction, 400 µL mixing internal
standards including n-tetracosane-D50, palmitic acid-D31,

lauric acid-D23, phthalic acid-D4, and levoglucosan-13C6
were spiked into the samples. The extracts of each sam-
ple were combined, filtered and concentrated to 2 mL.
Then each sample was divided into two aliquots. One
part was blown to dryness under a gentle stream of
nitrogen, and kept at room temperature for one hour to
derivatize carboxylic acids to methyl esters after adding
200 µL of DCM, 10 µL of methanol and 300 µL of
fresh prepared diazomethane. The methylated extract was
analyzed for organic acids and 1,3,5-triphenylebenzene.
Another part of sample was blown to dryness for silylation
with 100 µL pyridine and 200 µL N,O-bis-(trimethylsilyl)-
trifluoroacetamide plus 1% trimethylchlorosilane in an
oven at 70°C for 1 hr. The silylated extract was analyzed
for levoglucosan.

Samples were analyzed by an Agilent 5975N gas chro-
matography/mass selective detector (GC-MSD) in the scan
mode with a HP-5 MS capillary column (30 m length ×
0.25 mm i.d. × 0.25 µm filmthickness). Splitless injection
of 1 µL sample was performed. The GC temperature was
initiated at 65°C (held for 2 min) and increased to 290°C at
a rate of 5°C/min then held for 20 min. Compounds were
identified according to their mass spectra and retention
times. Quantification were accomplished by GC-MSD
workstation after calibration curves were obtained with
authentic standards included C14–C32 fatty acids, C4–C9
dicarboxylic acids and aromatic acids except 1,4-phthalic
acids. Due to lacking of authentic standards, 1,4-phthalic
acid was quantified using 1,2-phthalic acid as an alternative
standard. The method detection limits ranged from 0.02
ng/m3 (1,4-phthalic acid) to 0.33 ng/m3 (octacosanoic
acid), when calculated with the average sampling volume
of 432 m3. Recoveries of the target compounds were over
70%. The field and laboratory blanks were extracted and
analyzed in the same way as the field samples. Target
compounds were not detected except for palmitic acid and
stearic acid. Concentrations of organic acids were reported
with their blanks corrected.

2 Results and discussion

2.1 Levels and compositions

Observed concentrations of fatty acids, dicarboxylic acids
and aromatic acids in the PM2.5 samples together with
OC and EC contents are presented in Table 1. The con-
centrations of OC ranged from 4.35 to 59.9 µg/m3 with
an average value of 17.9 µg/m3 while EC ranged from
0.92 to 16.5 µg/m3 with an average value of 4.95 µg/m3,
quite approximate to those previously reported in the PRD
region, such as 14.7 µg/m3 for OC and 6.1 µg/m3 for EC
in winter 2002 (Cao et al., 2003). Detected 40 organic
acids totaled 82.6–756 ng/m3 with an average value of 280
ng/m3, and accounted for 0.66%–3.69% of OC with an av-

http://www.jesc.ac.cn


jes
c.a

c.c
n

Journal of Environmental Sciences 2014, 26(1) 110–121 113

Table 1 Concentrations of fatty acids, dicarboxylic acids and aromatic acids measured at the six sites in the PRD region over the period Nov
28–Dec 23, 2009 (unit: ng/m3)

Compounds GZ GD PY HD KD WQS

I. Fatty acids
Saturated

Myristic acid (C14:0) 5.99 ± 2.62 5.07 ± 2.15 5.18 ± 2.58 5.53 ± 2.06 3.57 ± 1.34 4.22 ± 1.17
Pentadecanoic acid (C15:0) 2.77 ± 1.23 2.58 ± 1.30 2.51 ± 1.08 2.44 ± 1.08 2.25 ± 0.91 2.23 ± 0.65
Palmitic acid (C16:0) 107 ± 48.2 87.8 ± 38.7 78.4 ± 52.7 122 ± 50.9 54.6 ± 27.3 58.3 ± 22.3
Margaric acid (C17:0) 1.97 ± 0.89 1.84 ± 0.89 1.63 ± 1.10 2.08 ± 1.10 1.55 ± 0.78 1.14 ± 0.69
Stearic acid (C18:0) 35.7 ± 15.2 28.7 ± 13.7 26.7 ± 19.2 38.7 ± 22.8 17.7 ± 9.72 15.1 ± 9.53
Nonadecanoic acid (C19:0) 0.61 ± 0.27 0.61 ± 0.30 0.50 ± 0.34 0.63 ± 0.33 0.66 ± 0.38 0.52 ± 0.26
Arachidic acid (C20:0) 3.58 ± 1.75 3.03 ± 1.45 2.44 ± 1.55 3.57 ± 1.99 3.64 ± 2.12 2.96 ± 1.35
Heneicosanoic acid (C21:0) 1.06 ± 0.50 1.06 ± 0.55 0.83 ± 0.63 1.13 ± 0.64 1.28 ± 0.81 0.99 ± 0.50
Behenic acid (C22:0) 5.08 ± 2.44 4.61 ± 2.23 3.71 ± 2.33 5.46 ± 3.06 5.91 ± 3.31 4.21 ± 2.43
Tricosanoic acid (C23:0) 2.58 ± 1.42 2.49 ± 1.42 1.87 ± 1.26 2.95 ± 1.92 3.42 ± 2.34 2.50 ± 1.51
Carnaubic acid (C24:0) 6.21 ± 3.19 5.88 ± 3.14 4.39 ± 2.67 7.19 ± 4.23 8.21 ± 5.00 5.96 ± 3.35
Pentacosanoic acid (C25:0) 1.35 ± 0.73 1.37 ± 0.81 0.96 ± 0.67 1.58 ± 1.06 1.74 ± 1.25 1.01 ± 0.67
Cerotic acid (C26:0) 3.11 ± 1.57 3.23 ± 1.76 2.24 ± 1.57 3.76 ± 2.28 4.39 ± 2.79 2.73 ± 1.71
Heptacosanoic acid (C27:0) 0.63 ± 0.35 0.67 ± 0.41 0.43 ± 0.35 0.74 ± 0.48 0.73 ± 0.51 0.53 ± 0.44
Octacosanoic acid (C28:0) 2.83 ± 1.55 3.10 ± 1.84 1.99 ± 1.35 3.56 ± 2.30 3.88 ± 2.67 2.31 ± 1.84
Nonacosanoic acid (C29:0) 0.58 ± 0.38 0.64 ± 0.45 0.37 ± 0.28 0.69 ± 0.52 0.66 ± 0.55 0.42 ± 0.35
Triacontanoic acid (C30:0) 2.67 ± 1.76 3.02 ± 2.11 1.70 ± 1.21 3.52 ± 2.51 3.64 ± 2.92 2.01 ± 1.93
Henriacontanoic acid (C31:0) 0.36 ± 0.24 0.42 ± 0.29 0.20 ± 0.16 0.45 ± 0.34 0.44 ± 0.38 0.28 ± 0.22
Lacceroic acid (C32:0) 2.00 ± 1.42 2.25 ± 1.70 1.18 ± 0.80 2.82 ± 2.18 2.79 ± 2.48 1.40 ± 1.22
Subtotal 185 ± 80.5 158 ± 70.3 137 ± 89.0 209 ± 88.3 121 ± 62.6 106 ± 45.9

Unsaturated
Palmitoleic acid (C16:1) 0.11 ± 0.14 0.05 ± 0.03 0.03 ± 0.03 0.08 ± 0.08 0.28 ± 0.23 0.18 ± 0.20
Oleic acid (C18:1) 4.63 ± 6.89 1.81 ± 1.23 1.22 ± 0.95 1.05 ± 1.52 1.02 ± 2.42 0.61 ± 0.28
Linoleic acid (C18:2) 1.74 ± 2.69 0.48 ± 0.28 0.27 ± 0.19 0.40 ± 0.38 0.43 ± 0.45 0.10 ± 0.14
Subtotal 6.46 ± 9.51 2.33 ± 1.50 1.51 ± 1.14 1.53 ± 1.92 1.31 ± 0.90 0.84 ± 0.45
Total fatty acids 192 ± 86.5 161 ± 71.3 139 ± 89.4 210 ± 89.1 122 ± 63.0 107 ± 46.1

II. Dicarboxylic acids
Succinic acid (di-C4) 17.8 ± 7.23 33.8 ± 11.5 25.7 ± 9.31 23.7 ± 14.0 23.7 ± 7.25 50.1 ± 30.5
Glutaric acid (di-C5) 2.94 ± 1.17 5.26 ± 1.84 3.88 ± 1.19 3.26 ± 2.03 3.38 ± 1.13 6.03 ± 3.99
Adipic acid (di-C6) 1.41 ± 0.56 2.37 ± 1.09 1.84 ± 0.48 1.87 ± 0.79 1.73 ± 0.47 3.52 ± 2.94
Pimelic acid (di-C7) 0.71 ± 0.38 1.26 ± 0.74 0.66 ± 0.24 0.69 ± 0.32 0.74 ± 0.30 1.09 ± 1.13
Suberic acid (di-C8) 1.68 ± 0.64 2.19 ± 1.12 1.82 ± 0.73 1.92 ± 0.68 2.06 ± 0.67 4.26 ± 3.31
Azelaic acid (di-C9) 10.6 ± 4.81 13.9 ± 8.21 10.5 ± 5.66 11.8 ± 5.42 10.1 ± 4.11 21.6 ± 19.6
Subtotal 35.2 ± 13.7 58.8 ± 21.1 44.4 ± 16.0 43.3 ± 20.7 41.7 ± 12.7 85.7 ± 58.1

III. Aromatic acids
Benzoic acid 1.97 ± 1.03 2.28 ± 1.19 2.04 ± 1.04 1.72 ± 0.87 1.90 ± 0.96 5.28 ± 2.93
m-Toluic acid 0.25 ± 0.11 0.27 ± 0.09 0.22 ± 0.09 0.22 ± 0.09 0.25 ± 0.10 0.38 ± 0.19
p-Toluic acid 0.24 ± 0.09 0.21 ± 0.09 0.20 ± 0.09 0.18 ± 0.07 0.20 ± 0.06 0.38 ± 0.19
1,2-Phthalic acid (1,2-Ph) 24.0 ± 5.63 18.2 ± 6.24 20.0 ± 8.25 23.7 ± 6.17 25.6 ± 5.36 33.9 ± 17.5
1,4-Phthalic acid (1,4-Ph) 28.6 ± 19.6 21.0 ± 14.0 28.1 ± 35.0 32.9 ± 27.4 29.8 ± 25.2 29.0 ± 14.6
1,3-Phthalic acid (1,3-Ph) 1.12 ± 0.59 0.97 ± 0.61 0.86 ± 0.44 0.93 ± 0.52 0.80 ± 0.41 1.27 ± 0.81
4-Methyl-1,2-phthalic acid(4-Methyl-1,2-ph) 4.86 ± 1.17 3.56 ± 1.05 3.73 ± 1.06 4.17 ± 1.62 4.24 ± 1.30 6.58 ± 2.66
Trimellitic acid 7.37 ± 4.19 5.61 ± 2.47 5.58 ± 3.05 6.19 ± 3.24 6.85 ± 3.08 9.89 ± 4.86
Trimesic acid 0.29 ± 0.13 0.20 ± 0.08 0.21 ± 0.10 0.26 ± 0.13 0.25 ± 0.11 0.38 ± 0.17
Pyromellitic acid 3.19 ± 2.11 1.87 ± 0.76 2.05 ± 0.99 1.62 ± 0.71 2.35 ± 1.16 4.31 ± 2.11
4-Methoxybenzoic acid 0.95 ± 1.24 1.14 ± 0.80 1.41 ± 1.30 0.79 ± 0.53 1.80 ± 1.50 1.03 ± 1.61
3,4-Dimethoxy benzoic acid 0.94 ± 0.76 0.98 ± 0.60 1.15 ± 0.83 1.24 ± 0.77 2.55 ± 2.02 0.98 ± 0.98
Subtotal 73.7 ± 27.9 56.2 ± 22.7 65.5 ± 38.2 73.8 ± 33.6 76.5 ± 34.8 93.3 ± 38.0

Carbon fraction
Fatty acids (ng/µg OC) 8.97 ± 2.43 8.01 ± 2.76 11.1 ± 5.52 13.1 ± 4.60 8.19 ± 1.07 6.50 ± 1.93
Dicarboxylic acids (ng/µg OC) 1.80 ± 0.83 3.02 ± 0.97 3.72 ± 1.70 2.58 ± 0.83 3.20 ± 1.21 5.44 ± 3.40
Aromatic acids (ng/µg OC) 3.62 ± 1.18 2.86 ± 0.95 5.37 ± 3.65 4.26 ± 0.78 5.30 ± 1.04 5.95 ± 3.12
Organic carbon (µg/m3) 23.0 ± 12.4 20.8 ± 8.66 13.6 ± 6.18 18.3 ± 10.1 15.1 ± 8.16 15.5 ± 5.73
Elemental carbon (µg/m3) 7.13 ± 3.69 5.69 ± 2.42 3.78 ± 2.03 4.18 ± 2.47 4.03 ± 2.56 4.84 ± 1.59
Levoglucosan 118 ± 51.6 131 ± 96.8 89.6 ± 44.9 179 ± 100 251 ± 137 116 ± 59.5
1,3,5-Triphenylebenzene 0.42± 0.32 0.63± 0.50 0.49± 0.82 0.68± 0.84 0.44± 0.36 0.48± 0.25
NDVI –0.01 –0.06 0.06 –0.02 0.22 0.1

NDVI: normalized difference vegetation index. Data are expressed as mean ± standard deviations (SD).

erage value of 1.72%. Fatty acids predominated in organic
acids and their average concentration was 157 ng/m3. The

mean concentration was 72.5 ng/m3 for aromatic acids and
50.7 ng/m3 for discarboxylic acids.
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Saturated fatty acids (C14:0–C32:0) from this study in
the PRD region showed a strong even carbon number
predominance with a maximum at palmitic acid (C16:0)
and stearic acid (C18:0) (Table 1). This was quite similar
to the distribution patterns reported in the urban areas
(Fraser et al., 2002; Fu et al., 2010; Ho et al., 2011),
but different from the bimodal distribution observed at the
mountain site (Fu et al., 2008) or in marine aerosols (Fu et
al., 2011; Kawamura et al., 2003) with maximums at C16:0
and C24:0/C28:0. The concentrations of C16:0 and C18:0
in the PRD region averaged 85.8 and 27.8 ng/m3, respec-
tively, comparable with those reported in some urban sites,
such as Nanjing in China (Wang and Kawamura, 2005) and
Chennai in India (Fu et al., 2010). On the Mt. Tai in north
China, average C16:0 and C18:0 concentrations in TSP
reached 60 and 19 ng/m3, respectively (Fu et al., 2008);
other remote sites, however, had much lower C16:0 and
C18:0 levels, such as 27.0 and 11.3 ng/m3, respectively,
in a Germany forest during summertime (Kourtchev et al.,
2008), the concentration in aerosols collected at the North
Pacific Island and over the ocean during the ACE-Asia
campaign were even lower (Simoneit et al., 2004).

Due to difference in extraction and derivatization pro-
cedures in this study, low molecular weight dicarboxylic
acids were not available as those by Kawamura and
Ikushima (1993), and therefore only C4–C9 dicarboxylic
acids are presented (Table 1). Succinic acid and azelaic
acid were dominating species in C4–C9 dicarboxylic acids
in aerosols from various regions including marines and the
Arctic (Narukawa et al., 2002; Simoneit et al., 2004). In
the present study, succinic acid and azelaic acid were also
the two most abundant dicarboxylic acids with average
concentrations of 28.6 ng/m3 and 12.9 ng/m3, respectively.
Their concentrations were in the same magnitude as those
in other urban sites in Asia, such as 52.5 and 12.9 ng/m3

in roadside Hong Kong (Ho et al., 2006) and 42.8 and
24.5 ng/m3 in megacity India (Pavuluri et al., 2010), but
were substantially higher than those reported in Houston,
USA (Fraser et al., 2002), in Europe (Hyder et al., 2012;
Kubátová et al., 2002), at high mountains (Fu et al., 2008)
and in the Arctic region (Narukawa et al., 2002).

Detected aromatic acids, including benzoic acid, m-
toluic acid and p-toluic acid, had much lower levels than
fatty acids and dicarboxylic acids partly because that these
semi-volatiles would partition much more in gas phase
under higher temperature in the PRD region (Fraser et
al., 2003). Benzoic acid, m-toluic acid and p-toluic acid
averaged 2.46, 0.26 and 0.23 ng/m3, respectively, which
were lower than those previously reported at four sites in
PRD region in both summer and winter (Ho et al., 2011),
but in the same magnitude as the benzoic acid of 1.25
ng/m3 and total toluic acids of 0.62 ng/m3 observed in the
Indian City of Chennai during winter (Fu et al., 2010).

The aromatic polycarboxylic acids measured in this
study included diacids, triacids and a tetraacid (Table 1).

Much higher levels of 1,2-phthalic acid than that of 1,4-
phthalic acid were typically observed (Fu et al., 2008; Ho
et al., 2010, 2011). However, our study instead revealed
higher 1,4-phthalic acid in average (28.2 ng/m3) than 1,2-
phthalic acid (23.9 ng/m3), the same as those reported in
the polluted city sites, such as Chennai in India and Xi’an
in China (Fu et al., 2010; Wang et al., 2012a). The levels of
1,4-phthalic acid and 1,2-phthalic acid quite approximated
those reported in China and India, but were higher than
those reported in USA.

2.2 Spatial distribution

Among the six sampling sites, the suburban site (HD) had
the highest average level of fatty acids and the rural site
(WQS) had the lowest; dicarboxylic acids and aromatic
acids, however, peaked at WQS (Table 1). If the carbon
fraction of organic acids are normalized to OC, the two
suburban sites (HD and PY) showed the highest shares of
fatty acids in OC, which were 11.1 and 13.1 ng/mg OC
on average, respectively, and the rural site (WQS) had the
lowest (6.50 ng/mg OC). In contrast, the average shares of
dicarboxylic acids and aromatic acids in OC reached their
peaks at WQS and showed relative lower values at the two
urban sites SZ and FC.

2.3 Source attribution

2.3.1 Source identification
Higher molecular weight fatty acids (> C20) (HFAs) are
derived from terrestrial higher plant wax (Oliveira et al.,
2007; Simoneit, 1986), while lower molecular weight fatty
acids (6 C20) (LFAs) are derived from microbes and
marine phytoplankton (Kawamura et al., 2003) and from
anthropogenic sources, such as the fossil fuels combustion
(He et al., 2006; 2008), biomass burning (Zhang et al.,
2007) and cooking (He et al., 2004; Zhao et al., 2007a,
2007b). Higher concentrations of HFAs at the rural site
KD suggested more contribution of terrestrial higher plant
wax than other sites. This is supported by the highest
normalized difference vegetation index (NDVI) from re-
mote sensing data around KD (Table 1). On the other
hand, emission of higher plant waxes was reported during
biomass burning events (Alves et al., 2012). Higher levels
of biomass burning marker levoglucosan and the signifi-
cant relationship (r = 0.63, p < 0.01) between levoglucosan
and HFAs at KD implied biomass burning activity might
also promote the HFAs at KD. The major sources of
LFAs in this study should be anthropogenic in the highly
industrialized and densely populated PRD region, as can
also be indicated by the higher LFAs in the urban sites.

Strong positive correlations (r > 0.63, p < 0.01) were ob-
served among the C4–C9 dicarboxylic acids at all six sites
(Table 2). Secondary formation was generally more impor-
tant for dicarboxylic acids in PM2.5 (Chebbi and Carlier,
1996; Fraser et al., 2003), even though primary exhausts
were possible sources (Kawamura and Kaplan, 1987).
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Table 2 Pearson correlation coefficients between the ambient concentrations of dicarboxylic acids and aromatic acids

di-C4 di-C5 di-C6 di-C7 di-C8 di-C9 Benzoic acid m-Toluic acid

di-C4 1 0.925** 0.797** 0.632** 0.793** 0.731** 0.540** 0.401**
di-C5 1 0.846** 0.746** 0.782** 0.772** 0.496** 0.388**
di-C6 1 0.802** 0.837** 0.826** 0.586** 0.374**
di-C7 1 0.775** 0.770** 0.389** 0.317**
di-C8 1 0.941** 0.529** 0.401**
di-C9 1 0.515** 0.414**
Benzoic acid 1 0.815**
m-Toluic acid 1
p-Toluic acid
1,2-Ph
1,4-Ph
1,3-Ph
4-Methyl-1,2-ph
Trimellitic acid
Trimesic acid
Pyromellitic acid
cis-Pinonic acid 0.618** 0.489** 0.656** 0.427** 0.737** 0.631** 0.588** 0.411**
Pinic acid 0.704** 0.578** 0.744** 0.507** 0.812** 0.717** 0.554** 0.355**
C16:0 0.112 0.219* 0.134 0.242** 0.118 0.301** 0.109 0.240**
C18:0 0.162 0.267** 0.143 0.221* 0.060 0.253** 0.143 0.224*
C18:1 -0.056 0.008 -0.023 0.086 -0.054 0.000 0.054 0.129
OC 0.297** 0.367** 0.163 0.270** 0.158 0.274** 0.220* 0.336**
EC 0.292** 0.368** 0.192* 0.256** 0.177* 0.298** 0.278** 0.358**
Levoglucosan 0.219* 0.243** 0.222* 0.314** 0.304** 0.337** 0.195* 0.367**
1,3,5-Triphenylebenzene 0.293** 0.375** 0.242** 0.281** 0.208* 0.330** 0.249** 0.298**

p-Toluic 1,2-Ph 1,4-Ph 1,3-Ph 4-Methyl-1,2-ph Trimellitic Trimesic Pyromellitic
acid acid acid acid

di-C4 0.547** 0.464** 0.258** 0.354** 0.482** 0.479** 0.490** 0.514**
di-C5 0.517** 0.376** 0.321** 0.424** 0.409** 0.441** 0.453** 0.471**
di-C6 0.525** 0.457** 0.205* 0.370** 0.445** 0.440** 0.429** 0.499**
di-C7 0.397** 0.267** 0.208* 0.437** 0.214* 0.423** 0.356** 0.408**
di-C8 0.596** 0.486** 0.235** 0.365** 0.478** 0.520** 0.521** 0.583**
di-C9 0.608** 0.416** 0.374** 0.428** 0.480** 0.465** 0.490** 0.521**
Benzoic acid 0.808** 0.656** 0.337** 0.659** 0.648** 0.612** 0.566** 0.496**
m-Toluic acid 0.805** 0.644** 0.372** 0.739** 0.576** 0.666** 0.615** 0.429**
p-Toluic acid 1 0.704** 0.370** 0.658** 0.663** 0.714** 0.703** 0.641**
1,2-Ph 1 0.163 0.509** 0.799** 0.791** 0.751** 0.611**
1,4-Ph 1 0.603** 0.329** 0.295** 0.406** 0.187*
1,3-Ph 1 0.422** 0.695** 0.656** 0.418**
4-Methyl-1,2-ph 1 0.596** 0.702** 0.596**
Trimellitic acid 1 0.916** 0.825**
Trimesic acid 1 0.785**
Pyromellitic acid 1
cis-Pinonic acid 0.618** 0.489** 0.656** 0.427** 0.737** 0.631** 0.588** 0.411**
Pinic acid 0.704** 0.578** 0.744** 0.507** 0.812** 0.717** 0.554** 0.355**
C16:0 0.112 0.219* 0.134 0.242** 0.118 0.301** 0.109 0.240**
C18:0 0.162 0.267** 0.143 0.221* 0.060 0.253** 0.143 0.224*
C18:1 -0.056 0.008 -0.023 0.086 -0.054 0.000 0.054 0.129
OC 0.297** 0.367** 0.163 0.270** 0.158 0.274** 0.220* 0.336**
EC 0.292** 0.368** 0.192* 0.256** 0.177* 0.298** 0.278** 0.358**
Levoglucosan 0.219* 0.243** 0.222* 0.314** 0.304** 0.337** 0.195* 0.367**
1,3,5-Triphenylebenzene 0.293** 0.375** 0.242** 0.281** 0.208* 0.330** 0.249** 0.298**

∗∗ Value with p < 0.01; ∗ value with p < 0.05.
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These low molecular-weight diacids are produced photo-
chemically in the polluted atmosphere from oxidation of
cyclic olefins, diolefins, monocarboxylic acids, mid-chain
ketocarboxylic acids, ω-ketocarboxylic acids (Mochida et
al., 2007; Wang et al., 2011) and also unsaturated fatty acid
(Kawamura and Sakaguchi, 1999; Kawamura et al., 1996).
As for the higher succinic acid, it is interesting that signifi-
cant correlation between succinic acid and levoglucosan (r
= 0.62, p < 0.01) was found in the rural site KD, suggesting
the contribution of biomass burning to succinic acid in this
site. In fact, high levels of succinic acid were observed in
aerosols under the influence of biomass burning (Falkovich
et al., 2005; Narukawa et al., 1999; Wang et al., 2011;
Yan et al., 2008). However, biomass burning should not
be the major source for succinic acids at other sites and
instead secondary formation would be more important,
as much higher levels were observed at the downwind
WQS. Azelaic acid is regarded as an oxidation product
of oleic acid by O3, H2O2 or OH radical (Kawamura and
Gagosian, 1987; Stephanou and Stratigakis, 1993). Oleic
acid is reported to be rich in marine phytoplankton and
terrestrial higher plant leaves (Kawamura and Gagosian,
1987). In the PRD region, anthropogenic sources such as
cooking (He et al., 2004; Zhao et al., 2007a, 2007b), would
be much more important. As can be seen, concentrations
of oleic acid from urban to rural sites (Fig. 2), and the
highest concentration of azelaic acid were observed at the
downwind rural site WQS. The ratios of azelaic to oleic
acid were much higher at the two rural sites with averages
of 40.4 at WQS and 33.9 at KD, further confirming the
oxidizing of oleic acids to azelaic acids during transport
from the urban source areas to the rural (Kawamura and
Gagosian, 1987; Kawamura and Sakaguchi, 1999). Similar
formation process of dicarboxylic acid was also observed
in a background site in Sweden (Hyder et al., 2012).

1,2-Phthalic acid has been proposed as secondarily
formed by the oxidation of naphthalene (Fine et al., 2004;
Kleindienst et al., 2012) or other polycyclic aromatic hy-
drocarbons such as benz(a)antharacene (Jang and McDow,
1997). Concentration of naphthalene which is a ubiquitous
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Fig. 2 Spatial variation of azelaic acid, oleic acid and the ratio of azelaic
acid to oleic acid at the six sites.

pollutant in the atmosphere was reported to be as high
as 3.5 µg/m3 in Hong Kong in the PRD region (Lee et
al., 2001). In the present study, the higher abundance of
1,2-phthalic acid in the rural site WQS was supposed
to be secondarily formed during transport of naphthalene
from the polluted urban areas. 1,2-Phthalicacid was highly
correlated with dicarboxylic acids, benzoic acid and oth-
er aromatic polycarboxylic acids except for 1,4-phthalic
acid (Table 2), also suggesting that secondary formation
was much more important for 1,2-phthalic acid, and 1,4-
phthalic acid had sources other than secondary formation.
As an important industrial raw material in manufacturing
polyethylene terephthalate (PET) fiber and plastic bottles
(Kawamura and Pavuluri, 2010), 1,4-phthalic acid was
reported to have elevated levels derived from open burning
of plastics, roadside litter and landfill trash (Simoneit et
al., 2005). In this study, 1,4-phthalic acid was found to
be significantly correlated with 1,3,5-triphenylebenzene
(r = 0.70, p < 0.01), which is a specific marker for
the open-burning of plastics (Simoneit et al., 2005). This
source of 1,4-phthalic acid can largely explain its higher
levels in many Asian cities (Fu et al., 2010; Ho et al.,
2010; 2011; Wang et al., 2012a) and its rare occurrence
in aerosols from oceans and the Arctic (Narukawa et al.,
2002; Simoneit et al., 2004). The quite different spatial
patterns of 1,4-phthalic acid comparing to the secondarily
formed 1,2-phthalic acid, as well as significant correlation
between 1,4-phthalic acid and EC (r = 0.59, p < 0.01;
Table 2), also supports that 1,4-phthalic acid was a primary
pollutant. Additionally, cis-pinonic acid and pinic acid, as
typical SOA tracers from biogenic monoterpenes (Ding
et al., 2011) in the region, also had good correlations (p
< 0.01, Table 2) with the detected diacids and aromatic
acids except 1,4-phthalic acid, further supporting that 1,4-
phthalic acid was primary while other aromatic acids and
diacids were mainly secondary.

2.3.2 Principal component analysis
Principal component analysis (PCA) followed by multiple
linear regression was applied to the dataset obtained in
the present study to explore the major sources of organic
acids (Larsen and Baker, 2003). The purpose of PCA is to
represent the total variability of the original organic acids
data in a minimum number of factors. Each factor is or-
thogonal to all others, which results in the smallest possible
covariance. The first factor represents the weighted (factor
loadings) linear combination of the original variables that
account for the greatest variability. Each subsequent factor
accounts for less variability than the previous (Table 3). By
critically evaluating the factor loadings, an estimate of the
chemical source responsible for each factor can be made.
Six factors were resolved which altogether explained 87%
of the total variance. Factor 1 was heavily loaded by C19–
C32 n-alkanoic acids, and therefore was identified to be
associated with natural sources such as plant wax (Oliveira
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Table 3 Varimax rotated component matrix of organic acids from the PRD region

Principal components

1 2 3 4 5 6

Variance (%) 46.6 17.6 7.73 6.69 4.52 3.66
C14:0 0.378 0.120 0.115 0.828 –0.110 0.062
C15:0 0.589 0.156 0.139 0.635 –0.040 0.114
C16:0 0.330 –0.005 0.094 0.865 –0.006 0.116
C17:0 0.573 0.054 0.096 0.753 0.113 0.100
C18:0 0.405 –0.021 0.081 0.837 –0.042 0.111
C19:0 0.792 0.158 0.213 0.482 0.146 0.043
C20:0 0.808 0.183 0.158 0.460 0.104 0.157
C21:0 0.871 0.180 0.187 0.335 0.116 0.019
C22:0 0.882 0.160 0.128 0.343 0.132 0.089
C23:0 0.944 0.204 0.119 0.150 0.068 –0.001
C24:0 0.936 0.198 0.131 0.161 0.095 0.038
C25:0 0.932 0.121 0.087 0.198 0.050 0.017
C26:0 0.934 0.124 0.104 0.229 0.129 0.048
C27:0 0.941 0.128 0.070 0.227 –0.030 0.026
C28:0 0.968 0.103 0.045 0.177 0.044 0.024
C29:0 0.949 0.089 0.031 0.164 –0.051 0.060
C30:0 0.980 0.097 –0.007 0.067 –0.019 0.007
C31:0 0.911 0.078 0.009 0.108 –0.045 0.085
C32:0 0.961 0.071 –0.009 0.063 –0.022 0.035
C16:1 0.101 0.091 0.304 –0.263 0.271 0.626
C18:1 0.093 0.027 –0.080 0.345 –0.124 0.858
C18:2 0.103 0.089 –0.147 0.279 –0.087 0.874
di-C4 0.138 0.342 0.814 0.017 –0.035 –0.049
di-C5 0.133 0.258 0.860 0.153 –0.001 –0.033
di-C6 –0.027 0.317 0.884 0.064 –0.042 0.011
di-C7 0.081 0.127 0.840 0.163 0.088 0.058
di-C8 0.117 0.351 0.870 –0.029 0.005 –0.006
di-C9 0.165 0.309 0.839 0.170 –0.030 –0.024
Benzoic acid –0.091 0.749 0.342 0.200 0.215 0.055
m-Toluic acid 0.102 0.748 0.155 0.274 0.296 0.065
p-Toluic acid 0.086 0.799 0.329 0.194 0.152 –0.027
1,2-Ph 0.121 0.856 0.199 –0.155 0.156 –0.018
1,4-Ph 0.503 0.167 0.156 0.557 0.180 0.160
1,3-Ph 0.237 0.586 0.183 0.527 0.281 0.112
4-Methyl-1,2-ph 0.207 0.790 0.216 –0.033 –0.153 0.103
Trimellitic acid 0.251 0.824 0.229 0.037 0.185 0.003
Trimesic acid 0.406 0.805 0.209 0.059 0.016 0.048
Pyromellitic acid 0.185 0.716 0.338 –0.056 –0.096 0.045
4-Methoxybenzoic acid –0.005 0.240 –0.036 0.031 0.893 –0.038
3,4-Dimethoxy benzoic acid 0.229 0.182 –0.011 –0.020 0.911 –0.012

et al., 2007; Simoneit, 1986). Factor 4 was dominated by
C14–C18 n-alkanoic acids and 1,4-phthalic acid, and Factor
6 by the three unsaturated acids. These two factors were
mixed anthropogenic sources including vehicle exhausts
(He et al., 2006, 2008) and cooking (He et al., 2004; Zhao
et al., 2007a, 2007b). Factor 5 was strongly correlated with
the two oxygenated aromatic acids, 4-methoxybenzoic
acid and 3,4-dimethoxy benzoic acid, which were lignin
pyrolysis products primarily emitted from biomass burning
(Simoneit et al., 1993). Besides, Factor 5 had significant

correlations with the biomass burning marker levoglucosan
(r = 0.43, p < 0.01). Therefore this factor was asso-
ciated with biomass burning. C4–C9 dicarboxylic acids
associated with the photochemical oxidation showed good
correlation with Factor 3, while benzoic acid, toluic acid
and most of aromatic polycarboxylic acids except 1,4-
phthalic acid were heavily loaded in Factor 2. These two
factors all represented secondary sources but with different
precursors.

The ultimate goal of performing PCA/MLR is to de-
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Fig. 3 Source attribution of individual organic acids (a) and the contribution of the six factors to organic acids at the six sites (b).

termine the percent contribution of different organic acids
sources for a given ambient sample. The basic equation
of a multiple linear regression (MLR) of Y =

∑
BiXi

was performed using factor scores (Xi) as independent
variables and total organic acids mass concentration (Y)
as dependent variable. With the regression coefficients
(Bi) by MLR, the influence of each factor on the organic
acids mass could then be directly compared and the mean
contribution percentage by source i was calculated as
100 (Bi/

∑
Bi).

The contribution of different sources of individual com-
pounds by multiple linear regressions followed PCA was
presented in Fig. 3a. More than 70% of C14–C18 fatty
acids were attributed to anthropogenic sources, 80%–
95% of dicarboxylic acids and 1,2-phthalic acid were
secondary in contrast with that 81% of 1,4-phthalic acid
was primary. Biomass burning contributed about 70% to
4-methoxybenzoic acid and 3,4-dimethoxy benzoic acid,
and natural sources accounted for 50%–85% of the HFAs.
These findings were well consistent with discussions about
source attribution in the above parts. Histograms of the
four major factor groups at the six sampling sites are
shown in Fig. 3b. The spatial distribution showed that
the urban and suburban sites had higher average level
of anthropogenic sources than rural sites. The rural site
KD had the highest nature sources loadings (84.3 ng/m3).
Contributions of biomass burning were also significant
higher at rural site KD (11.0 ng/m3), where the biomass
burning was more frequent. The secondary organic acids
significantly increased at the downwind rural site WQS
with the average value of 99.3 ng/m3.

3 Conclusions

C14–C32 fatty acids, C4–C9 dicarboxylic acids and aromat-
ic acids in PM2.5 were investigated during winter 2009
at typical urban, suburban and rural sites in the Pearl

River Delta (PRD) region. C14–C32 fatty acids, aromatic
acids and C4–C9 dicarboxylic acids averaged 157, 72.5
and 50.7 ng/m3, respectively. Palmitic acid and stearic acid
were dominant fatty acids, succinic acid and azelaic acid
were the most abundant among C4–C9 diacids, and 1,4-
phthalic acid and 1,2-phthalic acid were major aromatic
acids. The sources of the organic acids were explored
through three aspects: spatial patterns, mutual correlation
as well as their correlation with typical source tracers, and
principal component analysis followed by multiple linear
regressions. Fatty acids were mainly primary with C20–
C32 fatty acids mainly from natural higher plant wax and
C14–C18 fatty acids mainly from anthropogenic emissions
including cooking. Dicarboxylic acids and aromatic acids
except 1,4-phthalic acid were largely secondarily formed,
and 1,4-phthalic acid was probably primarily emitted from
combustion of solid wastes containing PET plastics. Prin-
cipal component analysis resolved six sources including
biomass burning, natural higher plant wax, two mixed
anthropogenic and two secondary sources, and it turned out
that more than 70% of C14–C18 fatty acids were attributed
to anthropogenic sources, 50%–85% of the HFAs were
attributed to natural sources, 80%–95% of dicarboxylic
acids and 1,2-phthalic acid were secondary in contrast with
that 81% of 1,4-phthalic acid was primary.
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