新疆尼勒克县圆头山后碰撞花岗斑岩的同位素年代学 及地球化学特征[。]

李宁波^{12,3} 牛贺才^{1**} 单强¹ 姜玉航^{1,3} 曾令君^{1,3} 杨武斌¹ 裴重举⁴

LI NingBo^{1 2 3}, NIU HeCai^{1 **}, SHAN Qiang¹, JIANG YuHang^{1 3}, ZENG LingJun^{1 3}, YANG WuBin¹ and PEI ZhongJu⁴

1. 中国科学院广州地球化学研究所 矿物学与成矿学重点实验室 广州 510640

- 2. 西北大学大陆动力学国家重点实验室 西安 710069
- 3. 中国科学院大学,北京 100049
- 4. 山东省第一地质矿产勘查院 济南 250014
- 1. CAS Key Laboratory of Minerology and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. State Key Laboratory of Continental Dynamics, Northwest University, Xi' an 710069, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Shandong Survey Institute of Geology and Mineral Resources, Jinan 250014, China 2013-04-10 收稿, 2013-06-26 改回.

Li NB, Niu HC, Shan Q, Jiang YH, Zeng LJ, Yang WB and Fei ZJ. 2013. Zircon U-Pb geochronology and geochemistry of post-collisional granitic porphyry from Yuantoushan, Nileke, Xinjiang. *Acta Petrologica Sinica*, 29(10): 3402 – 3412

Abstract The Yuantoushan biotite granitic porphyry intrusion is located at the southern Nileke. Copper mineralization prevalently occurs within the intrusion , especially in the shattered zone. The granite has typical porphyritic texture , where phenocrysts are composed of alkali feldspar and biotite , and matrix is mainly composed of feldspar , biotite , quartz and minor sulfide. Trace element patterns for the granite are significantly depleted in HSFE , Nb , Ta , P , Ti and enriched in Pb and LILE (except Sr) , indicating products of arc magmatism. Zircon U-Pb age for the granite is 269 ± 3 Ma. According to its geochemical features , we inferred that the granite were derived from a source mainly is composed of the lower continental crust materials with minor mantle substance and the lower continental crust has similar geochemical features with arc magma. In addition , the Yuantoushan granite has high (87 Sr/ 86 Sr) ; ratios (0. 706054 to 0. 709228) and Pb contents ($5.05 \times 10^{-6} \sim 32.5 \times 10^{-6}$) indicate the occurrence of contamination of continental crust materials during its emplacement. The involvement of fertilized materials from the melting-assimilation-storage homogenization (MASH) zones , which settled in the bottom of lower continental crust , induced the primary magma of the Yuantoushan intrusion enriched in water and metals. The geochemical data of the Yuantoushan granite indicates it was formed at post-collision setting and controlled by a delamination of mantle lithosphere. The delamination could be induced by the collapse of Central Asian Orogenic Belt or by the activity of Tarim mantle plume.

Key words Biotite granitic porphyry; Post-collisional stage; Lithosphere mantle delamination; Lower crust; MASH

摘要 圆头山黑云母花岗斑岩位于尼勒克县城南,岩体普遍发育的铜矿化,以中部碎裂带中矿化最强。岩石具有典型的 斑状结构,斑晶由碱性长石和黑云母组成,基质以长石、云母和石英为主,并含有少量的硫化物。圆头山黑云母花岗斑岩的轻 重稀土分馏明显,并且明显富集大离子亲石元素(LILE)(除Sr外)和Pb,同时亏损高场强元素(HFSE)和Nb、Ta、P、Ti,显示出 弧火山岩的地球化学特征。圆头山黑云母花岗形成年龄为269±3Ma,其源区以具有弧火山岩特征的下地壳为主,同时含有少量的幔源物质,而且在岩体的侵位过程中有高(⁸⁷Sr/⁸⁶Sr);(0.706054~0.709228)和高Pb含量(5.05×10⁻⁶~32.5×10⁻⁶)的

第一作者简介: 李宁波 ,男 ,1985 年生 .博士生 .地球化学专业 .E-mail: liningbo@ gig. ac. cn

** 通讯作者:牛贺才,男,1963年生,研究员,地球化学专业, E-mail: niuhc@gig.ac.cn

^{*} 本文受国家自然科学-新疆联合基金(U1203291)、国家重点基础研究发展计划(973 计划)(2011CB808903)、国家自然科学基金项目 (41173040)和西北大学大陆动力学国家重点实验室开放课题基金联合资助.

陆壳物质混染。在下地壳物质熔融过程中,位于下地壳底部的富水和成矿元素的 MASH 带物质也被圈入,使原始岩浆富水和 成矿物质。圆头山黑云母花岗斑形成于碰撞后阶段,岩石的形成主要受岩石圈地幔拆沉作用的控制,而岩石圈地幔的拆沉可 能与中亚造山带的垮塌或塔里木地幔柱活动有关。

关键词 黑云母花岗斑岩;碰撞后阶段;岩石圈地幔拆沉;下地壳; MASH带

中图法分类号 P588. 121; P597. 3

阿吾拉勒山是中亚造山带的重要组成部分,区内广泛分 布着晚古生代的火山岩-侵入岩及与其有关的铁、铜多金属 矿床,但是其晚古生代的构造背景存在两种不同观点:1)晚 古生代(石炭纪和二叠纪)的岩浆活动与板内拉张有关(车 自成等,1996;陈哲夫和梁云海,1985;夏林圻等,2002, 2004;左国朝等,2008);2)石炭纪岩浆活动受板块汇聚控 制,而二叠纪则与板内拉张作用有关(陈衍景等,2004a,b; 姜常义等,1995,1996)。因此,二叠纪阿吾拉勒地区的构造 环境是否出现重大转折是争论的关键。这些问题直接影响 人们对阿吾拉勒乃至西天山地区晚古生代的区域构造演化、 岩浆岩形成机制和铁铜多金属成矿规律的认识,而且对正确 理解中亚造山带的形成与演化也具有重要意义。

阿吾拉勒山位于伊犁板块、准噶尔板块和塔里木板块的 结合部位,其东西长约250km,南北宽约25km。阿吾拉勒山 自东向西可划分为三段:东段从艾肯达坂至坎苏牧场,主要 出露的地层为石炭系大哈拉军山组火山岩,而且区内侵入岩 十分发育;中段从坎苏牧场至特铁达坂,二叠系地层呈角度 不整合于石炭系地层之上,岩浆活动相对较弱;西段从特铁 达坂至喀什河大桥,主要出露一套以陆相火山岩建造为主的 二叠系地层,该区岩浆岩以喷出岩和浅成侵入岩为主(李小 军,1994;田薇,2006)。阿吾拉勒地区金属矿床分布也具 有明显的分带性:铁矿床主要分布要东段和中段,而铜矿床 则主要出现在西段,而且其中大部分铜矿床(点)分布在尼勒 克县境内。阿吾拉勒成矿带西段的众多铜矿床可分为两种 类型,即以群吉萨伊和圆头山铜矿为代表的中、南部次火山 岩型和以琼布拉克铜矿床为代表的北部中-低温热液脉型 (赵军等,2012)。

本文对圆头山铜矿床赋矿围岩-黑云母花岗斑岩进行了 系统的元素地球化学、同位素地球化学和同位素年代学的研 究,旨在揭示圆头山铜矿床形成的地球动力学背景,为探讨 阿吾拉勒成矿带铜矿床形成机制提供新的科学素材。

1 地质背景及样品特征

阿吾拉勒西段出露的地层主要为石炭系和二叠系。在 该区石炭系发育不全,缺失下石炭统,而中上石炭统则仅于 阿吾拉勒山的南北两侧,组成巩乃斯复向斜两翼,岩性为海 相-海陆交互相中酸性火山岩系夹少量凝灰质碎屑岩和碳酸 岩;该地区二叠系地层分布广泛,发育较好,为一套陆相火 山岩-碎屑岩建造,主要出露在阿吾拉勒山的中部 组成巩乃 斯复向斜核部,是该地区铜矿床(点)的主要赋矿围岩。二 叠系地层在该地区可以细分为下二叠统乌朗组、塔尔得套组 和上二叠统晓山萨依组、塔姆其萨依组(图 1a)。圆头山岩 体位于尼勒克县城南约 6km 处,岩体呈岩株状产出,在地表 呈现由西南向北东延伸的舌状体(图 1b),其侵位于晓山萨 依组细砾岩与细粒砂岩之间。接触带有明显的蚀变现象, 内接触带主要是同化混染和退色现象;外接解带有同化、烘 烤退色现象,岩石变硬,伴随有少量绿泥石、绿帘石和碳酸 盐化现象(韩长江,2007)。圆头山岩体普遍发育的铜矿化, 其中以黑云母花岗斑岩体中部断裂碎裂带中铜矿化强度最 大。经地表工程控制、取样分析化验,初步圈定3个矿体 (I、II、III号矿体),1个矿化体(IV号矿化体),各矿体、矿 化体都与重晶石脉、细网脉密切共生。矿石矿物以辉铜矿、 斑铜矿为主,含有少量的黄铁矿和黄铜矿,矿床显示出贫硫 特征。在矿体内辉铜矿与斑铜矿共生,呈固溶体出溶结构, 表明辉铜矿为原生矿物。

圆头山岩体为黑云母斜长花岗斑岩呈椭圆状,接触面 外倾,产状较陡,东部倾角70°,南部倾角50°。东部和南部 的外接触带为褪色化和硅化,而内接触带均为冷凝边。圆 头山黑云母花岗斑岩呈肉红色、黄褐色,岩石整体蚀变较弱, 具有典型的斑状结构,斑晶主要为碱性长石和黑云母(图 2)。碱性长石自型程度较高,可见明显的卡式双晶结构,而 且发育较强的蚀变,同时长石周围的矿物具有明显的定向结 构(图2a,b)。而黑云母呈自型片状,多色性明显,但蚀变并 不十分发育(图2b-d)。基质以长石、云母和石英为主,并含 有少量的硫化物(2%)。来自岩体内部与边部的岩石在结构 上具有一定的差异:来自岩体内部的岩石中的黑云母呈多方 向展布(图2c),而来自岩体边部岩石中的黑云母具有明显 的定向性(图2d),这暗示了岩体可能产于火上通道内。

2 分析方法

主、微量元素分析测试均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成。主量元素分析 利用 Rigaku RIX 2000 型荧光光谱仪(XRF)测试,其详细步 骤见(Li *et al.*,2005),分析精度优于5%。微量元素的分析 则采用 Perkin-Elmer Sciex ELAN 6000 型电感耦合等离子体 质谱仪(ICP-MS),具体的流程见(Li,1997),分析精度一般 为2%~5%。

锆石 U-Pb 年龄测定在中国科学院广州地球化学研究所 同位素地球化学国家重点实验室完成。利用 Agilent 7500a 型 ICP-MS 与 GeoLas 2005 型深紫外(DUV) 193nm 准分子

图 1 阿吾拉勒西段地质简图(a,据江西省地质调查研究院,2006^①修改)和圆头山地质图(b据韩长江 2007 修改) Fig. 1 Geological map of the western Awulale Mountain (a) and briefly geological map of Yuantoushan intrusion (b) (after Han, 2007)

(excimer)激光剥蚀系统联机进行。实验中采用 He 作为剥 蚀物质的载气 激光斑束直径为 32µm。锆石 U-Pb 年龄的测 定采澳大利亚国立大学推荐标准锆石 TEM 作为外标进行校 正,每隔5个分析点测两次标准锆石,保证标准和样品的仪 器条件一致。详细的分析流程及有关参数见 Yuan *et al.* (2004)和 Liu *et al.* (2008)。

锆石 Hf 同位素分析在西北大学大陆动力学国家重点实 验室 采用英国 Nu Instrument 公司的 Nu Plasma 多接收等离 子体质谱仪和德国 micro/LAS Lambda Physik AG 公司 GeoLas 2005 excimer ArF 激光剥蚀系统联机进行。Hf 同位素分析对 应于 U-Pb 年龄分析点。激光剥蚀的脉冲速率为 7Hz 激光 束直径为 44μm,激光束的能量密度为 10J/cm,剥蚀时间约 为 26s,详细的分析方法见 Yuan *et al.* (2008)。

Sr-Nd 同位素比值的分析测试是在中国科学院广州地球 化学研究所同位素地球化学国家重点实验室利用 Neptune Plus 多接受器电感耦合等离子体质谱仪(MC-ICPMS)完成 的。Sr-Nd 同位素分析采用 Teflon 溶样器,加入 HNO₃和 HF 混合溶样,用专用的阳离子交换柱进行分离,所有测量的 143 Nd/ 144 Nd 和⁸⁶ Sr/ 88 Sr 比值分别用 146 Nd/ 144 Nd = 0.7219和 86 Sr/ 88 Sr = 0.1194校正,详细的分析流程及仪器分析情况见 韦刚健等(2002)和梁细荣等(2003)。

① 江西省地质调查研究院. 2006. 新疆尼勒克县乌朗达坂区域地质矿产图

图 2 圆头山黑云母花岗斑岩显微结构特征

Fig. 2 Microphotographs of biotite granitic porphyry from Yuantoushan intrusion Afs-alkali feldspar; Bi-biotite

图 3 圆头山黑云母花岗斑岩的 TAS 图(a) 和 A/CNK-A/NK 图解(b)

3 分析结果

3.1 主量元素和微量元素地球化学特征

圆头山黑云母花岗斑岩的 SiO₂ 含量相对集中,介于 72.68%~74.86%之,Na₂O 和 K₂O 含量相对较高,分别为 3.77%~4.47%和4.29%~5.62%,Na₂O + K₂O 含量介于 7.92% ~9.64% 之间,大多数样品的 Na_20 含量低于 K_20 含 量(表1) 在 TAS 图解中大多数样品的投影点落在碱性花岗 岩区域内(图 3a)。圆头山黑云母花岗斑岩的 TiO_2 、 Al_2O_3 、 $Fe_2O_3^T$ 和 MgO 含量分别从 0.11%、11.81%、0.34% 和 0.36% 变化到 0.15%、14.09%、1.26% 和 0.53%,而 CaO 含 量相对较低,介于 0.16% ~2.53% 之间,在 A/CNK-A/NK 图 解中样品的投影点主要落在准铝质花岗岩区域内,少数样品

Fig. 3 TAS (a) and A/CNK vs. A/NK (b) discriminant diagrams of biotite granitic porphyry from Yuantoushan

表1 圆头山黑云母花岗斑岩的主量元素(wt%)和微量元素(×10⁻⁶)含量

Table 1 Major (wt%) and trace ($\times 10^{-6}$) element compositions of biotite granitic porphyry from Yuantoushan

Sample	YTS7	YTS9	YTS11	YTS12	YTS13	11YT2	11YT3	11 YT4	11 YT5	11 YT6	11 YT7
SiO ₂	74.16	73.99	74.03	74.86	73.47	73.72	72.68	72.69	74.36	73.03	74.55
TiO ₂	0.14	0.14	0.13	0.13	0.12	0.15	0.13	0.13	0.15	0.11	0.14
Al_2O_3	13.70	13.11	13.29	14.09	13.54	13.37	13.13	12.78	13.53	11.81	13.49
$\mathrm{Fe}_{2}\mathrm{O}_{3}^{\mathrm{T}}$	0.88	0.34	0.48	0.73	0.57	0.98	0.87	0.90	0.96	1.26	1.04
MnO	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
MgO	0.46	0.44	0.53	0.51	0.46	0.43	0.52	0.43	0.47	0.36	0.48
CaO	0.16	1.15	0.85	0.16	0.80	1.00	1.68	1.64	0.38	2.53	0.24
Na ₂ O	4.16	3, 99	4.01	3.78	3.77	4.46	4.05	3.99	4.47	3.79	4.11
K ₂ 0	5.48	5.07	5.11	4 73	5.62	4 44	4 79	4.73	4.59	4 29	5.02
P205	0.04	0.04	0.04	0.03	0.04	0.04	0.05	0.05	0.05	0.04	0.04
101	0.47	1 38	1 16	0.70	1 30	1 12	1.76	1 74	0.61	2 35	0.63
Total	99 66	99 65	99 65	99 73	99 69	99 72	99 67	99 09	99 58	99 58	99.75
Se	1 34	0.84	1 38	1 37	1 03	3 21	2 90	3 15	2 75	3.08	3 11
л:	072	0.04	020	029	0.05	5. 21 774	2. 50	714	2.15	5.00	742
II V	975	925	950	930	7 57	12.9	12.7	12.0	12.2	12 1	12 2
v	10.7	10.5	9.20	9.08	1.51	12. 8	12.7	12.9	12.5	15.1	15.5
Cr	11. 5	0.85	44. 0	0.80	0.50	25.0	24. 5	25.5	25. 1	51.5	27.0
Mn	161	138	180	157	185	173	176	146	158	192	143
Co	30.8	17.0	15.3	16.3	9.0	1.71	1.83	2.19	1.46	2.86	1.48
Ni	6. 77	0.26	27.95	0.39	0.26	8. 17	8.59	11.06	8.80	8.87	6.50
Ga	18.5	16.7	20.3	18.5	17.7	15.1	16.2	15.7	15.8	14.3	15.6
Ge	0.87	0.84	1.07	0.89	0.82	0.97	0.86	0.97	1.05	0.95	0.91
\mathbf{Rb}	108	93.5	103	101	113	85.8	88.2	89.2	88.4	84.3	97.8
Sr	52.4	56.9	41.6	41.2	43.0	38.5	31.8	92.9	33.1	81.9	32.4
Y	4.38	3.83	4.41	3.93	4.27	4.87	5.28	4.93	3.85	5.07	4.46
Zr	70.5	62.0	71.8	64.2	66.2	60.3	60.5	60.7	61.7	52.5	60.7
Nb	2.78	2.63	2.78	2.71	2.72	2.44	2.34	2.34	2.45	2.02	2.43
Cs	-	-	-	-	-	1.17	0.98	1.15	1.59	0.77	1.23
Ba	729	667	770	575	872	636	594	3273	585	2905	711
La	14.2	14.0	12.7	18.0	8.83	10.2	8.82	17.1	11.8	17.9	12.4
Ce	27.5	27.2	26.0	33.3	18.8	22.4	19.0	33.6	24.4	35.3	25.6
Pr	3.47	3.51	3.27	4.15	2.37	2.87	2.51	3.85	2.80	4.11	3.13
Nd	12.2	12.3	12.1	14.6	9.09	10.9	9.61	13.9	10.5	14.6	11.5
Sm	1.81	1.86	1.86	2.04	1.49	1.89	1.79	2.04	1.65	2.13	1.82
Eu	0.47	0.40	0.42	0.45	0.41	0.38	0.41	0.58	0.38	0.65	0.44
Gd	1.37	1.27	1.28	1.39	1.08	1.44	1.39	1.56	1.24	1.67	1.40
Tb	0.18	0.15	0.16	0.15	0.16	0.18	0.19	0.19	0.16	0.19	0.17
$\mathbf{D}\mathbf{v}$	0.85	0.79	0.84	0.78	0.74	0.88	0.98	0.88	0.79	0.86	0.83
Ho	0.17	0.14	0.17	0.14	0.15	0.17	0.18	0.17	0.14	0.16	0.15
Er	0.47	0.41	0.43	0.39	0.41	0.46	0 49	0.46	0.37	0.42	0.38
Tm	0.07	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.06	0.07	0.06
Yh	0.43	0 41	0.40	0.37	0.42	0.50	0.51	0.48	0.30	0.43	0.41
10	0.07	0.06	0. 40	0.05	0. 42	0.00	0.01	00	0.05	0.07	0. 41
LU LI	0.07	0.00	0.07	0.03	0.07	0.00	0.00	0.00	2.00	1.07	2 15
111 To	2.45	0.22	2.40	2.33	2.20	2.13	2.12	2.10	2.20	0.10	2.15
1a Di	0.2/	0.23	0.24	0.23	12 2	0.21	12.9	0.21	16.0	0.19	7.00
Pb T	1/.1	32.5	7.10	22.1	12.3	5.05	12.8	7.12	10.0	11.9	7.99
1h	2.87	2. 62	2.80	2. //	2. /8	2.04	2. 51	2. 52	2. 55	2.30	2.53
U	0.93	1.07	0.99	1.1/	1.18	1.07	1.01	1.12	0.93	0.9/	0.85

的投影点落在了过铝质花岗岩的区域内(图 3b)。圆头山黑 云母花岗斑岩具有相对较低的 MnO 和 P_2O_5 含量而 TiO_2 含 量相对稳定。 Al_2O_3 、MgO、 Na_2O 和 K_2O 含量显示出与 SiO_2 含量呈正相关的趋势 大多数样品的投影点落在了高钾钙碱 性岩区域内(图略),而 CaO 和 P_2O_5 的含量与 SiO₂ 含量呈 负相关,显示出 I 型花岗岩的特征。

图 4 圆头山黑云母花岗斑岩稀土元素分布模式(a) 和微量元素蛛网图(b)(标准化数据据 Sun and McDonough, 1989) Fig. 4 Trace REE distribution pattern (a) and element spider diagram (b) of biotite granitic porphyry from Yuantoushan (the chondrite and primary mantle normalized data after Sun and McDonough, 1989)

圆头山黑云母花岗斑岩稀土元素总量从 44.1 × 10⁻⁶ 变 化到 78.6×10⁻⁶,含量相对较低,(La/Yb)_N从 12.4 变化到 35.8,具有较陡的稀土配分曲线(图 4a),显示出较强的轻重 稀土分馏特征,而且样品均无明显的铕异常(δ Eu = 0.7 ~ 1.05)。圆头山黑云母花岗斑岩明显富集大离子亲石元素 (除 Sr 外),亏损高场强元素,表现出明显的 Nb、Ta、P、Ti 的 亏损和 Pb 富集(图 4b),显示出造山带岩浆岩的特征(Altherr *et al.*,2008; Boari *et al.*,2009; Foley *et al.*,1987)。圆头山 黑云母花岗斑岩的具有较低的 Zr 含量($52.5 \times 10^{-6} ~ 71.8 \times 10^{-6}$),其岩浆的锆饱和温度也相对较低,介于 635 ~ 727℃ 之间。圆头山黑云母花岗斑岩的 Sr 与 Ba 的含量表现出较 好的正相关,暗示岩石的化学组成变化主要受碱性长石的结 晶分异作用的控制(Huang *et al.*,2012);在岩石中 Rb 与 Th 的含量也表现出较好的正相关,显示出 I 型花岗岩的演化趋 势(Chappell,1999)。

3.2 单颗粒锆石 U-Pb 年龄

圆头山黑云母花岗斑岩的锆石为无色至淡褐色的长柱 状晶体 晶体长介于 60~150 μ m,其长宽比从 3:1 变化 5: 1 晶体柱面十分发育,而锥面相对不发育。在锆石晶体内分 布着大量的熔融包裹体,CL 图像显示该类锆石具有明显的 生长环带(图 5) 这均说明锆石为岩浆成因锆石。锆石的 Th 含量为 81×10⁻⁶~345×10⁻⁶,U 含量为 151×10⁻⁶~579× 10⁻⁶,其 Th/U 为 0.38~0.65(表 2),也表明该类锆石为岩浆 成因锆石。15 个有效测点的²⁰⁶ Pb/²³⁸ U 表面年龄介于 262~ 280Ma 之间(表 2),其加权平均年龄为 269±3Ma(图 5)。

图 5 圆头山黑云母花岗斑岩锆石 U-Pb 年龄的谐和图 Fig. 5 U-Pb concordia diagrams from the biotite granitic porphyry from Yuantoushan

3.3 Hf-Sr-Nd 同位素特征

13 个测点分析结果显示,圆头山黑云母花岗斑岩锆石 ¹⁷⁶ Hf /¹⁷⁷ Hf 介于 0. 282884 ~ 0. 283001 之间,具有相对较高的 $\varepsilon_{\rm Hf}(t)$ 值(t = 269 Ma),从9.5 变化到 13.8 (表3)。

圆头山黑云母花岗岩具有较低的 Rb/Sr,计算所得的 ⁸⁷ Rb/⁸⁶ Sr 比值介于 0.99~7.16 之间(表 4) ,因此 Sr 同位素 分析结果误差较小。分析结果显示,圆头山黑云母花岗斑岩 的样品的⁸⁷ Sr/⁸⁶ Sr 为 0.709872~0.736738,其初始值(⁸⁷ Sr/ ⁸⁶ Sr);具有较宽的变化范围,从 0.706054 变化到 0.709228;

表 2 圆头山黑云母花岗斑岩的 LA-JCPMS 锆石 U-Pb 测年结果

Table 2 LA-ICP-MS zircon U-Pb results for the biotite granitic porphyry from Yuantoushan

Analysis spots	Th	U	$\frac{\text{Th}}{\text{U}}$	²⁰⁷ Pb ra	/ ²⁰⁶ Pb tio	²⁰⁷ Pb ra	/ ²³⁵ U tio	²⁰⁶ Pb ra	/ ²³⁸ U tio	²⁰⁷ Pb age(/ ²⁰⁶ Pb Ma)	²⁰⁷ Pb age(/ ²³⁵ U Ma)	²⁰⁶ Pb / age(M	²³⁸ U Ma)
°P ° to	(×1	0 - 6)		ratio	1σ	ratio	1σ	ratio	1σ	age	1σ	age	1σ	age	1σ
YTS7-01	345	576	0.60	0.05246	0.00412	0. 30083	0.02689	0.04159	0.00055	306	171	267	21	263	3
YTS7-02	167	366	0.46	0.05413	0.00432	0.31604	0.02855	0.04234	0.00052	377	173	279	22	267	3
YTS7-03	81	151	0.54	0.05351	0.00426	0.31065	0.02767	0.04211	0.00047	350	172	275	21	266	3
YTS7-04	211	371	0.57	0.05707	0.00312	0.33024	0.02118	0.04197	0.00048	494	117	290	16	265	3
YTS7-05	318	492	0.65	0.05499	0.00472	0.3174	0.03084	0.04186	0.00056	412	185	280	24	264	3
YTS7-06	221	497	0.44	0.0539	0.00186	0.32741	0.01491	0.04381	0.00056	367	75	288	11	276	3
YTS7-07	274	433	0.63	0.05176	0.00122	0.30547	0.01032	0.04267	0.00051	275	52	271	8	269	3
YTS7-08	170	282	0.60	0.05494	0.00545	0.31388	0.03508	0.04144	0.00062	410	214	277	27	262	4
YTS7-09	188	320	0.59	0.05253	0.00162	0.32318	0.01376	0.04443	0.00061	309	68	284	11	280	4
YTS7-10	222	579	0.38	0.05048	0.00487	0. 29843	0.03233	0.04288	0.00062	217	205	265	25	271	4
YTS7-11	235	480	0.49	0.04768	0.0022	0.27888	0.01622	0.04192	0.00058	83	97	250	13	265	4
YTS7-12	168	355	0.47	0.05221	0.00368	0.30761	0.02492	0.04273	0.00054	295	154	272	19	270	3
YTS7-13	134	284	0.47	0.05285	0.00492	0.30708	0.03322	0.04214	0.00075	322	200	272	26	266	5
YTS7-14	121	294	0.41	0.05498	0.00429	0.33187	0.02984	0.04378	0.00061	412	170	291	23	276	4
YTS7-15	269	514	0.52	0.05704	0.00197	0. 34886	0.01662	0.04404	0.00067	493	74	304	13	278	4

表 3 圆头山黑云母花岗斑岩锆石的 Hf 同位素组成特征

Table 3 LA-MC-ICP-MS Hf composition of zircons from the biotite granitic porphyry

Analysis spots	$^{176}{\rm Yb}/^{177}{\rm Hf}$	2σ	$^{176}{ m Hf}/^{177}{ m Hf}$	2σ	¹⁷⁶ Lu / ¹⁷⁷ Hf	2σ	$\boldsymbol{\varepsilon}_{\mathrm{Hf}}(t)$	$t_{\rm DM~2}$
YTS7-01	0.061113	0.000208	0. 282884	0.000011	0.002213	0.000008	9.5	633
YTS7-02	0.032918	0.000115	0. 282915	0.000009	0.001239	0.000003	10.8	563
YTS7-03	0.043743	0.000154	0. 282957	0.000009	0.001534	0.000004	12.2	481
YTS7-04	0.044192	0.000115	0. 282953	0.000011	0.001569	0.000003	12.0	491
YTS7-05	0.047254	0.000147	0. 283001	0.000009	0.001620	0.000004	13.8	395
YTS7-06	0.042789	0.000134	0. 282915	0.000009	0.001591	0.000006	10.7	566
YTS7-07	0.049654	0.000230	0. 282939	0.000012	0.001667	0.000005	11.5	519
YTS7-08	0.053704	0.000152	0. 282967	0.000012	0.001903	0.000005	12.5	467
YTS7-09	0. 029962	0.000172	0. 282952	0.000013	0.001049	0.000006	12.1	486
YTS7-10	0.036354	0. 000094	0. 282932	0.000012	0.001388	0.000004	11.4	529
YTS7-11	0.049638	0.000138	0. 282926	0.000015	0.001788	0.000004	11.1	546
YTS7-12	0.045349	0.000212	0. 282990	0.000011	0.001636	0.000009	13.4	417
YTS7-13	0.044026	0.000264	0. 282918	0.000013	0.001606	0.000009	10.8	559

然而,该类岩石的¹⁴³ Nd/¹⁴⁴ Nd 相对稳定,介于 0.512610 ~ 0.512630 之间 *ε*_№(*t*) 从 3.14 变化到 3.43 (表4)。

4 讨论

4.1 圆头山黑云母花岗斑岩的源区特征

由于 $\varepsilon_{Nd}(t)$ 相对稳定,而(${}^{87}Sr/{}^{86}Sr$);变化范围较大,圆 头山黑云母花岗斑岩样品在(${}^{87}Sr/{}^{86}Sr$); $\varepsilon_{Nd}(t)$ 图解中的投 影点构成了一条平行与(${}^{87}Sr/{}^{86}Sr$);的直线,但均落在了岛弧 火山岩区域内(图 6a),暗示成岩物质来自岛弧火山岩。同 时分析数据显示,该类岩石的(${}^{87}Sr/{}^{86}Sr$);与其 Sr 含量呈反 相关,而与 Rb/Sr 呈正相关(表 4),说明在岩浆上升中受到 高(${}^{87}Sr/{}^{86}Sr$);物质(如老的陆壳、大洋沉积物等)的混染。 锆石原位 Hf 同位素分析结果显示,圆头山黑云母花岗斑岩 具有相对较高 $\varepsilon_{\rm Hf}(t)$ (表 3), $A^{206} Pb/^{238}$ U 年龄 $-\varepsilon_{\rm Hf}(t)$ 图解 中其投影点均落在富集地幔区域内(图 6a)。锆石原位 Hf 同位素分析结果还显示,其 $\varepsilon_{\rm Hf}(t)$ 二阶段模式年龄($t_{\rm MD 2}$) 呈 很好的线性关系,可以拟合一条 R² = 0.999 的直线(图 6b), 考虑到测点的 $\varepsilon_{\rm Hf}(t)$ 的极差达 4.3, 且 $\varepsilon_{\rm Hf}(t)$ 与($t_{\rm MD 2}$) 呈反 相关,有理由认为圆头山黑云母花岗斑岩的源区有新生幔源 物质的加入。

圆头山黑云母花岗斑岩具有相对较低的 Ce/Pb(0.84~ 10.76,主要集中在5以下),同时具有相对适中的 Ce 含量 (18.8×10⁻⁶~35.3×10⁻⁶),在 Ce-Ce/Pb 图解中其投影点 落在了弧火山岩的区域内及周边(图7b),具有弧火山岩的 特(Boztuğ, et al., 2007; Qu et al., 2012);在 Nb-Nb/Th 图

Fig. 6 Sr, Nd and Hf isotopic characteristics of the biotite granitic porphyry from Yuantoushan (Fig. 6a after Temizel *et al.*, 2012) UM-Upper Mantle; UCC-Upper Continental Crust; MCC-Middle Continental Crust; LCC-Lower Continental Crust

图 7 圆头山黑云母花岗斑岩 Nb-Nb/Th (a) 和 Ce-Ce/Pb (b) 图解(据 Boztuğ *et al.*, 2007) Fig. 7 Nb vs. Nb/Th (a) and Ce vs. Ce/Pb (b) diagrams of the biotite granitic porphyry from Yuantoushan (after Boztuğ *et al.*, 2007)

解中圆头山黑云母花岗斑岩的投影点相对集中,均落在了弧火山岩区域内(图 7a),这暗示该类岩石的形成与弧火山岩 有内在的成因联系。

同位素地球化学和微量元素地球化学特征显示,圆头山 黑云母花岗斑岩的成岩物质应以具有弧火山岩特征的新生 陆壳为主,在岩浆形成时注入了一定量的幔源岩浆,而在上 升过程中有高(^{\$7}Sr/⁸⁶Sr);和高 Pb 含量的陆壳物质混染,使 其(^{\$7}Sr/⁸⁶Sr);和 Ce/Pb 有明显的变化。

4.2 圆头山黑云母花岗斑岩的形成构造环境

在 Y + Nb-Rb 形成构造环境判别图中 ,圆头山黑云母花 岗斑岩的投影点主要落在碰撞后成因岩浆岩的区域内(图 8a);尽管圆头山黑云母花岗斑具有典型岛弧火山岩的地球 化学特征,但在SiO₂-Rb/Zr图解中,其投影点没有落在岛弧 岩浆的区域内,而是落在了碰撞后成因的岩浆岩区域内(图 8b)。

Yang et al. (2012) 对阿吾拉勒地区晚古生代的大地构 造演化进行了约束,认为该地区在290~300Ma 洋壳俯冲停 止,处于后俯冲演化阶段(Richards,2009),由于俯冲板片的 拖拽在地幔形成了板片窗并诱发了源于地幔的富钾岩浆活 动;在280~290Ma则处于地壳加厚阶段,形成了以玉希莫勒 盖达坂石英正长斑岩为代表的高硅的富钾岩浆岩;其后该地 区的岩浆活动主要受岩石圈地幔拆沉作用的控制。

圆头山黑云母花岗斑岩是一个较典型的贫硫的铜矿床, 其产状及矿床地质特征与 Richards (2009)所论述的与后俯 冲在关的斑岩型矿床十分相似,这也在一定程度上暗示该类

Fig. 8 Discrimination diagrams for the tectonic setting of the biotite granitic porphyry from Yuantoushan (after Pearce, 1996; Harris *et al.*, 1986)

表4	圆头山黑云母花岗斑岩的 Sr Nd 同位素组成特征	

Table 4	Sr-Nd	isotopic	date	of the	biotite	granitic	porphyry	from
Yuantous	han							

Sample	YTS6	YTS7	YTS9	YTS11	YTS12
Rb	72.65	107.8	93.52	102.6	101.0
Sr	211.5	52.40	56.89	41.57	41.20
Sm	1.68	1.81	1.86	1.86	2.04
Nd	10.96	12.24	12.27	12.11	14.63
$\frac{^{87}\mathrm{Rb}}{^{86}\mathrm{Sr}}$	0. 9941	5.9650	4. 7649	7. 1614	7. 1111
$\frac{{}^{87}{\rm Sr}}{{}^{86}{\rm Sr}}$	0.709872	0. 729380	0. 726059	0. 736738	0. 733906
2σ Err.	0.000009	0.000012	0.000010	0.000013	0.000013
$\left(\frac{{}^{87}\mathrm{Sr}}{{}^{86}\mathrm{Sr}}\right)_i$	0.706054	0. 706466	0. 707756	0. 709228	0. 706590
$\frac{^{147}{\rm Sm}}{^{144}{\rm Nd}}$	0.0924	0.0892	0.0917	0.0926	0. 0844
$\frac{^{143}\mathrm{Nd}}{^{144}\mathrm{Nd}}$	0. 512614	0. 512623	0. 512625	0. 512630	0. 512610
2 σ Err.	0.000004	0.000004	0.000005	0.000003	0.000004
$\left(\frac{^{143}Nd}{^{144}Nd}\right)_i$	0. 512451	0. 512466	0. 512463	0. 512466	0. 512461
$\varepsilon_{\rm Nd}(t)$	3.14	3.42	3.36	3.43	3.34
t _{DM 2} (Ma)	782	758	763	758	765
$f_{\rm Sm/Nd}$	-0.53	- 0. 55	-0.53	-0.53	-0.57

岩石形成于后俯冲演化阶段。Zhao et al. (2008) 曾对分布 在圆头山附近的莫斯早特和黑山头的埃达克岩进行了系统 的地球化学和同位素年代学研究,认为阿吾拉勒地区 260Ma 左右的埃达克岩也形成于碰撞后阶段,并认为它是玄武质岩 浆底侵导致下地壳部分熔融的产物。圆头山黑云母花岗斑 岩与莫斯早特和黑山头的埃达克岩具有较好的时空耦合关 系,二者应该形成于相同或相似构造环境。 岩石的地质产状、微量元素、同位素年龄及矿床的矿化 特征均显示 圆头山黑云母花岗斑岩应形成于碰撞后阶段, 该类岩浆活动主要受岩石圈地幔拆沉作用的控制。

4.3 圆头山黑云母花岗斑岩的形成机制

Sr-Nd 同位素地球化学特征显示 圆头山黑云母花岗斑 岩的源区应以具有弧火山岩特征的新生地壳为主; 而 Hf 的 同位素地球化学特征则显示在该类岩石形成过程中有新分 离的地幔物质加入。微量元素和同位素年代学研究结果认 为,该类岩石的形成主要受碰撞后岩石圈地幔拆沉作用的控 制。本文认为由于拆沉的岩石圈地幔部分熔融形成了基性 岩浆 这种基性岩浆底侵至下地壳 ,并在下地壳汇聚成岩浆 房(图9)。由于基性岩浆携带了大量的热能使下地壳及弧 岩浆作用形成的 MASH 带物质部分熔融形成弱碱性酸性岩 浆。在 MASH 带含有大量的角闪石残余物, 它们像海棉一样 储存了大量的水(Davidson et al., 2007);同时由于本身的密 度较高,也会有相当数量的硫化物和铁氧化物残留在 MASH 带中 因此含有 MASH 带物质的下地壳部分熔融形成的岩浆 不但富水,而且也富集成矿元素(Richards, 2009)。这种富 水和成矿物质(S、Cu、Zn和贵金属等)在上升到上地壳的过 程中在水流体相中达到饱和,并有效地从硅酸盐熔体中萃取 金属元素(Candela and Holland 1984),使成矿元素超常富集, 为斑岩型矿床和浅成低温热液矿床的形成创造了有利条件。

Yang et al. (2012)研究显示,在 290~300Ma 塔里木板 块与伊犁板块拼合,在 280~290Ma 在阿吾拉勒地区发生岩 石圈增厚,形成了一系高硅橄榄玄粗岩系岩石(富钾的石英 正长岩等)因此发生在 270Ma 左右的阿吾拉勒地区陆下岩 石圈地幔的拆沉很可能是由于造山垮塌作用的产物。

Tian et al. (2010)研究显示,塔里木地幔柱活动为早二 叠纪(272~291Ma)。Qin et al. (2011)研究则显示,东天山

图 9 圆头山黑云母花岗斑岩形成机制示意图

Fig. 9 Schematic image of formation mechanism for the biotite granitic porphyry form Yuantoushan

和北山地区早二叠纪的含 Ni-Cu-Ti-Fe 矿化的超镁铁质岩浆 岩的形成与塔里木地幔柱有直接的成因联系, 暗示塔里木地 幔柱活动的影响范围十分广泛。塔里木板块与伊犁板块拼 合的时间为 290 ~ 300Ma,也就说在塔里木地幔柱活动时塔 里木板块已经与伊犁板块融为一体,因此有理由认为阿吾拉 勒地区 270Ma 左右的陆下岩石圈地幔的拆沉可能是塔里木 地幔柱活动的产物。

5 结论

同位素和微量元素地球特征显示,圆头山黑云母花岗斑 岩的源区以具有弧火山岩特征的下地壳为主,含有少量的幔 源物质,在岩体上升过程中有高(⁸⁷Sr/⁸⁶Sr),和高 Pb 含量的 陆壳物质混染。在下地壳物质熔融过程中,位于下地壳根部 的富含水和成矿物质的 MASH 带物质也被圈入,使原始岩浆 但富集水和成矿元素;

同位素和微量元素地球化学特征及同位素年代学研究 结果显示 圆头山黑云母花岗斑形成于碰撞后阶段 岩石的 形成主要受岩石圈地幔拆沉作用的控制。而岩石圈地幔的 拆沉可能与中亚造山带的垮塌有关也或与塔里木地幔柱活 动有关。

致谢 野外工作得到了江西省地质调查研究院廖思平等 同志的大力支持;室内研究得到了同位素地球化学国家重点 实验室胡光黔、曾文、刘颖、涂湘林、马金龙和孙彦敏等同志 的大力支持;另外两名审稿人对文章修改提出了宝贵意见; 在此一并表示感谢!

References

Altherr R , Topuz G , Siebel W , Şen C , Meyer HP , Satır M and Lahaye

Y. 2008. Geochemical and Sr-Nd-Pb isotopic characteristics of Paleocene plagioleucitites from the eastern Pontides (NE Turkey). Lithos , 105(1-2): 149 - 161

- Boari E, Avanzinelli R, Melluso L, Giordano G, Mattei M, De Benedetti AA, Morra V and Conticelli S. 2009. Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing volcanic rocks from "Colli Albani" volcano, Roman Magmatic Province, Central Italy: Inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71(9): 977 – 1005
- Boztuğ D, Harlavan Y, Arehart GB, Satır M and Aveı N. 2007. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriği-Sivas region, eastern-central Anatolia, Turkey. Lithos, 97 (1): 193–218
- Candela PA and Holland HD. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta , 48(2): 373 – 380
- Chappell BW. 1999. Aluminium saturation in I–and S-type granites and the characterization of fractionated haplogranites. Lithos , 46(3): 535-551
- Che ZC, Liu L, Liu HF and Luo JH. 1996. Review on the ancient Yili rift, Xinjiang, China. Acta Petrologica Sinica, 12(3): 478 490 (in Chinese with English abstract)
- Chen YJ, Bao JX, Zhang ZJ, Liu YL, Chen HY, Cai WJ and Helmstaedt H. 2004a. Tectonic setting and element geochemistry of the Aikendaban Formation volcanic rocks in west Tianshan. Journal of Mineralogy and Petrology, 24(3): 36–45(in Chinese with English abstract)
- Chen YJ, Liu YL, Bao JX, Zhang ZJ, Chen HY, Cai WJ and Helmstaedt H. 2004b. Isotopic dating for the volcanic rocks of the Aikendaban Formation in West Tianshan, China and its tectonic implication. Journal of Mineralogy and Petrology, 24(1): 52 – 55 (in Chinese with English abstract)
- Chen ZF and Liang YH. 1985. Rreseach on several problems of structural geology in Tianshan , Xinjiang. Xinjiang Geology ,3(2): 1-13 (in Chinese)
- Davidson J , Turner S , Handley H , Macpherson C and Dosseto A. 2007. Amphibole "sponge" in arc crust? Geology , 35(9): 787 - 790
- Foley SF, Venturelli G, Green DH and Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2):81-134
- Han CJ. 2007. Geological characteristics and origin of Yuantoushan Cu deposit in Nileke , Xinjiang. Xinjiang Nonferrous Metals , 30(S1): 35 – 39 (in Chinese)
- Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67-81
- Huang H , Zhang ZC , Kusky T , Santosh M , Zhang S , Zhang DY , Liu JL and Zhao ZD. 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim , western Xinjiang , NW China: Insight from the Permian Halajun A₁-type granitic magmatism. Lithos , 155: 49 66
- Jiang CY, Wu WK, Zhang XR and Cui SS. 1995. The change from Island arc to rift valley: Evidence from volcanic rocks in Awulale area. Acta Petrologica et Mineralogica, 14 (4): 289 – 300 (in Chinese)
- Jiang CY, Wu WK, Zhang XR and Cui SS. 1996. Magma action and tectonic evolution in Awulale district, western Tianshan Mountain. Journal of Xi' an Engineering University, 18 (2): 18 – 24 (in Chinese with English abstract)
- Li XH. 1997. Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze Craton , SE China. Geochemical Journal , 31(5): 323 338
- Li XH, Qi CS, Liu Y, Liang XR, Tu XL, Xie LW and Yang YH. 2005. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50 (21): 2481 – 2486
- Li XJ. 1994. Preliminary study on the spatial distribution rules of deposits

and prospecting potential in Awulale area. Mineral Resources and Geology , 8(5): 344 - 347(in Chinese)

- Liang XR , Wei GJ , Li XH and Liu Y. 2003. Precise measurement of ¹⁴³Nd/¹⁴⁴Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica , 32 (1): 91 – 96 (in Chinese with English abstract)
- Liu YS , Hu ZC , Gao S , Günther D , Xu J , Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology , 257(1-2): 34 43
- Pearce JA. 1996. Sources and settings of granitic rocks. Episodes , 19 (4): 120-125
- Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237 – 260
- Qu XM , Wang RJ , Xin HB , Jiang JH and Chen H. 2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture , Tibetan plateau. Lithos ,146 – 147: 264 – 275
- Richards JP. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247 – 250
- Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313 – 345
- Temizel İ , Arslan M , Ruffet G and Peucat JJ. 2012. Petrochemistry , geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: Implications for extension-related origin and mantle source characteristics. Lithos , 128 – 131: 126 – 147
- Tian W. 2006. Metallogenic regularities and exploration outlook in Later Paleozoic period lift continental volcanic type copper (silver) deposit in Yili, Xinjiang. Mineral Resources and Geology, 20(3): 237 – 242(in Chinese with English abstract)
- Tian W, Campbell IH, Allen CM, Guan P, Pan WQ, Chen MM, Yu HL and Zhu WP. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from Northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 160(3): 407 – 425
- Wei GJ, Liang XR, Li XH and Liu Y. 2002. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC– ICPMS. Geochimica, 31(3): 295 – 305 (in Chinese with English abstract)
- Xia LQ, Zhang GW, Xia ZC, Xu XY, Dong YP and Li XM. 2002. Constraints on the timing of opening and closing of the Tianshan Paleozoic oceanic basin: Evidence from Sinian and Carboniferous volcanic rocks. Geological Bulletin of China, 21(2): 55 – 62(in Chinese with English abstract)
- Xia LQ , Xia ZC , Xu XY , Li XM , Ma ZP and Wang LS. 2004. Carboniferous Tianshan igneous megaprovince and mantle plume. Geological Bulletin of China , 23 (9): 903 – 910 (in Chinese with English abstract)
- Yang WB , Niu HC , Shan Q , Luo Y , Sun WD , Li CY , Li NB and Yu XY. 2012. Late Paleozoic calc-alkaline to shoshonitic magmatism and its geodynamic implications , Yuximolegai area , western Tianshan , Xinjiang. Gondwana Research , 22(1): 325 340
- Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353 – 370
- Yuan HL , Gao S , Dai MN , Zong CL , Günther D , Fontaine GH , Liu XM

and Diwu C. 2008. Simultaneous determinations of U-Pb age , Hf isotopes and trace element compositions of zircon by excimer laser–ablation quadrupole and multiple-collector ICP-MS. Chemical Geology , 247(1-2): 100-118

- Zhao J , Zhang ZH , Liu XY , Liu M , Zhang H and Zhu WN. 2012. Carbon , oxygen , sulfur and lead isotope constraints on the ore source and metallogenesis of copper deposits in western Awulale Mountain metallogenic belt , Xinjiang. Mineral Deposits , 31(5): 999 – 1013 (in Chinese with English abstract)
- Zhao ZH, Xiong XL, Wang Q, Wyman DA, Bao ZW, Bai ZH and Qiao YL. 2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos, 102(1-2): 374-391
- Zhao ZH , Wang Q , Xiong XL , Niu HC , Zhang HX and Qiao YL. 2009. Magnesian andesites in North Xinjiang , China. Int. J. Earth Sci. , 98(6): 1325 – 1340
- Zuo GC , Zhang ZH , Wang ZL , Liu M and Wang LS. 2008. Tectonic division , stratigraphical system and the evolution of western Tianshan Mountains , Xinjiang. Geological Review , 54 (6): 748 – 767 (in Chinese with English abstract)

附中文参考文献

- 车自成,刘良,刘洪福,罗金海.1996.论伊犁古裂谷.岩石学报, 12(3):478-490
- 陈衍景,鲍景新,张增杰,刘玉琳,陈华勇,蔡文俊,Helmstaedt H. 2004a. 西天山艾肯达坂组火山岩系的元素地球化学特征和构 造环境. 矿物岩石,24(3):36-45
- 陈衍景,刘玉琳,鲍景新,张增杰,陈华勇,蔡文俊,Helmstaedt H. 2004b. 西天山艾肯达坂组火山岩系同位素定年及其构造意义. 矿物岩石,24(1):52-55
- 陈哲夫,梁云海.1985.新疆天山地质构造几个问题的探讨.新疆地 质,3(2):1-13
- 韩长江. 2007. 新疆尼勒克县圆头山铜矿地质特征及成因初探. 新 疆有色金属,30(S1):35-39
- 姜常义,吴文奎,张学仁,崔尚森. 1995. 从岛弧向裂谷的变迁—— 来自阿吾拉勒地区火山岩的证据. 岩石矿物学杂志,14(4): 289-300
- 姜常义,吴文奎,张学仁,崔尚森.1996.西天山阿吾拉勒地区岩浆 活动与构造演化.西安地质学院学报,18(2):18-24
- 李小军. 1994. 阿吾拉勒山主要矿产分布规律及成矿远景浅析. 矿 产与地质,8(5): 344-347
- 梁细荣,韦刚健,李献华,刘颖. 2003. 利用 MC-ICPMS 精确测定 ¹⁴³Nd/¹⁴⁴Nd 和 Sm/Nd 比值. 地球化学,32(1):91-96
- 田薇. 2006. 新疆伊犁晚古生代裂谷陆相火山岩型铜(银) 矿的成 矿规律及其找矿前景——以阿吾拉勒地区为例. 矿产与地质, 20(3): 237-242
- 韦刚健,梁细荣,李献华,刘颖. 2002. (LP) MCICPMS 方法精确测 定液体和固体样品的 Sr 同位素组成. 地球化学,31(3): 295 - 305
- 夏林圻,张国伟,夏祖春,徐学义,董云鹏,李向民.2002.天山古 生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪 火山岩的证据.地质通报,21(2):55-62
- 夏林圻,夏祖春,徐学义,李向民,马中平,王立社.2004.天山石 炭纪大火成岩省与地幔柱.地质通报,23(9):903-910
- 赵军,张作衡,刘晓阳,刘敏,张贺,朱维娜. 2012. 新疆阿吾拉勒 成矿带西段铜矿床碳、氧、硫、铅同位素研究——成矿物质来源 及成矿环境探讨. 矿床地质,31(5): 999-1013
- 左国朝,张作衡,王志良,刘敏,王龙生.2008.新疆西天山地区构 造单元划分,地层系统及其构造演化.地质论评,54(6):748 -767