
Journal of Asian Earth Sciences 78 (2013) 263–276
Contents lists available at SciVerse ScienceDirect

Journal of Asian Earth Sciences

journal homepage: www.elsevier .com/locate / jseaes
Geophysical evidence on segmentation of the Tancheng-Lujiang fault
and its implications on the lithosphere evolution in East China
1367-9120/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jseaes.2012.11.006

⇑ Corresponding author at: Guangzhou Institute of Geochemistry, Chinese
Academy of Sciences, Guangzhou 510640, China.

E-mail addresses: dengyangfan@mail.iggcas.ac.cn (Y. Deng), zhangzj@mail.
iggcas.ac.cn (Z. Zhang).
Yangfan Deng a,b,c,⇑, Weiming Fan a, Zhongjie Zhang c, José Badal d

a Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
d Physics of the Earth, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
a r t i c l e i n f o

Article history:
Available online 15 November 2012

Keywords:
P-wave velocity
Seismicity
Crustal rheology
Geothermal field
Segmentation properties
Tanlu fault
a b s t r a c t

The north–south trending Tancheng-Lujiang (Tanlu) fault belt extends from northeast China to the
Dabie–Sulu orogenic belt, for a length of more than 3000 km. This fault belt probably has close links with
the lithosphere evolution, seismic activity and mineral resource concentration in East China. Surface geo-
logical mapping and studies on sedimentation and basin formation have indicated segmentation at the
southern, middle and northern domains of the fault. Here we employ geophysical constraints to evaluate
these fault segments. Unlike previous geophysical studies focused on laterally varying crust/mantle seis-
mic velocity structure across the fault, in this study we have integrated a variety of geophysical data sets,
such as crustal P-wave velocity, earthquake occurrence and released seismic energy, seismogenic layer
thickness, surface heat flow and geothermal field, to understand the deep structure and strength of the
lithosphere along the Tanlu segmented fault belt. The results demonstrate remarkable crustal-scale
north-to-south segmentation this major fault. The geophysical evidence and some geochemical con-
straints suggest that the Tanlu fault belt probably served as a channel for melt and fluid percolation,
and exerted a significant control on the lithosphere evolution in East China.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Tancheng-Lujiang fault belt, also known as Tanlu fault or by
its acronym TLF, with a length greater than 3000 km, extends
north–northeast along the eastern margin of mainland China. The
faults trends from the Songliao basin (Heilongjiang Province) in
the north to Lujiang (Anhui Province) of the Dabie–Sulu orogenic
belt, through the Bohai Sea (Salon, 1977; Xu, 1984b; Xu et al.,
1987; Li et al., 1994; Wan et al., 1996; Teng et al., 2001, 2006;
Zhu et al., 2002, 2004; Bai et al., 2007; Martin et al., 2007; Zhang
et al., 2007) (Fig. 1). The Tanlu fault and the San Andreas fault
are the two important tectonic belts on both western and eastern
margins of the Pacific Ocean (Mount and Suppe, 1987). Numerous
geological, tectonic and geochemical studies suggest that TLF has
undergone multistage structural deformations since the Mesozoic,
thus showing quite different properties during different periods,
such as left-lateral strike slip in the Early Cretaceous, extensional
deformation during the Late Cretaceous and Paleogene, and
compression and right-lateral strike slip since the Neogene (Wan
et al., 1996; Zhu et al., 2004). Various mechanisms have been pro-
posed to explain the formation of TLF. An early proposal explained
that TLF is part of a wide wrench fault system along the northeast-
ern Asian continent and that sinistral displacement along this fault
system accommodated oblique convergence between the Pacific
oceanic plate and the Asian continent (Xu et al., 1987, 1993; Zhu
et al., 2004), as also is argued in more recent studies based on seis-
mic observation (Tian et al., 2009; Zhao et al., 2009a,b; Chen,
2010). Yin and Nie (1993) and then Li (1994) considered that TLF
formed as a result of the collision between the North and South
China Blocks during the Late Triassic and that the fault was
strongly activated during the Cretaceous and Cenozoic periods
(Fan and Menzies, 1992; Fan et al., 2000, 2007; Zhao et al.,
2009a,b). It has been also suggested that TLF belongs to the rift sys-
tem of eastern China (Xu et al., 1987; Xu and Zhu, 1995; Hsiao
et al., 2004). Regionally, Cenozoic tectonics in north China is char-
acterized by widespread rifting and extension, which caused the
formation of petroliferous basins, such as the Bohai Sea and Yellow
Sea (Ma and Wu, 1987). Furthermore, Li et al. (2012a,b) considered
that different patterns of the basins on both sides of the TLF were
controlled by escape tectonics in different domains of the crust. It
is generally considered that Tertiary rifting and extension in the
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Fig. 1. Schematic representation of TLF across East China. The involved region is outlined by a rectangle drawn on a map of China (top left inset). Discontinuous lines depict
the fault zones, while TLF is drawn with a translucent thick line. Linear segments of thick stroke represent the positions of four wide-angle seismic profiles crossing TLF:
Fuliji–Fengxian (P1), Lianyungang-Sishui (P2), Yixian–Youyan (P3) and Haerbing–Suifenhe (P4). Counting of earthquakes and computation of the seismic energy released has
been made inside the areas delimited by quadrilaterals. Two very short thick yellow strokes upon TLF delimit the segmented structure of the fault; while two triangles mark
the positions NCC and SC mentioned in Fig. 7.

264 Y. Deng et al. / Journal of Asian Earth Sciences 78 (2013) 263–276
North China Craton (NCC) resulted from back-arc spreading of the
mantle induced by westward subduction of the Pacific plate be-
neath the Asian continent, resulting the destruction and
significant lithospheric thinning of the eastern NCC (Uyeda and
Miyashiro, 1974; Uyeda and Kanamori, 1979; Ye et al., 1987; Yang
et al., 2011, 2012; Zhai and Santosh, 2011; Zhang et al., 2012a,b;
Zhu et al., 2012). Moreover, the presence of active faults in north
China and the strong earthquake occurrences, such as the 1668
Mw 8.5 Shandong earthquake and the 1975 Mw 7.3 Haicheng
earthquake, show that dextral slip occurred along the Tanlu fault
zone during the Quaternary, which is associated with eastward
extrusion of the South China Block as a consequence of the late-
stage India-Eurasia convergence (Tapponnier and Molnar, 1977;
Peltzer et al., 1985; Zhang et al., 1995, 1998), or with transpression
at the southern and northern margins of the NCC (Zhang et al.,
2003a,b) accompanied by the northward and southward extru-
sions of the lower crust (Zhang et al., 2011d). The mechanism of
formation of TLF is still under dispute.

Owing to its intrinsic complexity, the occurrence of destructive
earthquakes and the existence of rich mineral deposits (Teng et al.,
1983), TLF initially raised the interest of the Ministry of Geology
(now the Ministry of Geology and Mineral Resources) that spon-
sored an aeromagnetic survey in the 1950s with the obvious aim
of exploring possible mineral resources (Wan et al., 1996; Zhang
and Zhang, 2007). From then, several institutions including the
Chinese Academy of Sciences, Ministry of Lands and Resources,
China Earthquake Administration and also some universities have
carried out various geological, geochemical and geophysical
studies related to TLF. Several wide-angle seismic profiles (Zheng
and Teng, 1989; Yang et al., 1996; Bai et al., 2007), nearly vertical
seismic reflection surveys in Bohai Bay basin, Liaodong Bay (Hsiao
et al., 2004) and Jiangsu Province (Chen et al., 1999), and magneto-
telluric soundings (Ye et al., 2009; Zhang et al., 2010b) were also
carried out. Many of the results from the wide-angle seismic
profiles (mainly focused on lateral variations across TLF) were
published in Chinese journals and books (Ma et al., 1991; Lu and
Xin, 1993; Fu and Yang, 1998; Deng et al., 2011), and these data
set provide valuable information (Li et al., 2006a; Zhang et al.,
2011c, 2012b).

In this study, we have analyzed four profiles that intersect TLF
almost normally and obliquely at different latitudes by integrating
different data sources, namely: wide-angle seismic data, spatial
distribution of the seismicity, surface heat flow and geothermal
field. We have paid special attention to the lateral variation of
the crustal thickness, released seismic energy and lithosphere rhe-
ology, average P-wave velocity of the seismogenic crustal layers,
and temperature distribution in the crust and uppermost mantle.
Based on this information, we have presented the segmentation
properties of TLF, discussed possible mechanisms and implications
on the lithosphere evolution in East China.
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2. Tectonic evidence on the segmentation of TLF

The TLF is assumed as a large active lithospheric fault running
through the eastern margin of the Pacific region of China. It strikes
in N30�E (Xu, 1984a,b) and plays a decisive role on the regional
structure, sedimentary paleogeography, magmatism, distribution
of mineral deposits and seismic activity in East China (Xu et al.,
1993; Xu and Zhu, 1995; Wu et al., 2005; Xiao et al., 2010). Several
studies demonstrate that the fault was disintegrated into various
segments by fractures in NW–SE direction. Remarkable differences
can be seen in the mode and direction of the activities; for instance
a rough demarcation can be made at Shenyang, where small mag-
nitude extension dominated in its north segment, whereas alterna-
tion of dextral compressional shearing and extensional rifting was
predominant in the south (Wang et al., 1998).

A number of sedimentary basins occur along the TLF; from
north to south these are: Sanjiang (Three Rivers), Songliao, Yilan-
Yitong, Liaoxi, Bohai Bay, Jiaolai (Jiaozhouwan-Lauhouwan), Luxi,
Yishu, Subei, Hefei and Jianghan (Zhu et al., 2001b; Li et al.,
2012b; Scott et al., 2012). Large basins such as the Songliao and
the Subei-Yellow Sea basins, that are rich in oil and gas resources,
are located on both sides of the fault belt or within the fault zone.
All the basins crossed by the TLF system have experienced three
stages of mantle uplifting, Iithospheric extension-rift faulting,
and compression. The first one was the compression-shearing
stage of TLF; the second the rifting stage, which also was
the formation stage of the source rocks; and the third was that
of petroleum generation, migration and accumulation by
compression-shearing of TLF (Wang et al., 1998).

Below we briefly summarize the geophysical and geological
data bearing on the origin of segmentation of the TLF. Gravity
and magnetic anomalies extend in the southern part of the fault
(Jiangsu and Anhui Province) in NW–SE direction. Here the fault
belt consists of several obliquely arranged faults and the dominant
sedimentation includes Cretaceous, Palaeogene and Neogene for-
mations (Zhang and Zhang, 2007). Studies on the structure and
sedimentation have demonstrated that sinistral strike-slip move-
ment dominated in this part during the Early Cretaceous, responsi-
ble for the eruptive activity and the large-scale intrusion of
volcanic rocks and strong mylonitization (Zhu et al., 2001a, 2005;
Hou et al., 2003). An extensional movement featured the period be-
tween the Late Cretaceous and the Paleogene; the faults in the He-
fei basin change their nature from compression to extension as
revealed by nearby coarse clastic sedimentary rocks in the basin
(Chen et al., 2004). Besides, the deep structure represents a
remarkable compressional feature as revealed by a magnetotelluric
sounding (Li et al., 2006b).

The middle segment (from Shandong Province to Shenyang, Lia-
oning Province) can be divided into two sub-segments. A slip move-
ment in the southernmost part (Shandong Province) during the
Early Cretaceous controlled the large-scale volcanism of Qingshan
formation; in the Late Cretaceous the fault shows extensional move-
ment with a thick succession of clastic sedimentary rock (Zhu et al.,
2001b). The gravity and magnetic anomalies show a predominant
NW to NE orientatin (Zhang et al., 2007). The northernmost part
(from Bohai Bay to Shenyang) consists of series of NNE faults, and
the sedimentation belongs to Cretaceous and Neogene. Between
Triassic and Jurassic, NE and NW trending folds and thrust faults
developed in the Bohai Bay basin, thus suggesting possible sinistral
strike-slip displacement through NW–SE compression. In the Late
Cretaceous, the fault in this part was in a compression state. The
gravity and magnetic anomalies show NE direction (Zhang et al.,
2007).

Finally, the northern segment (north of Shenyang, towards Jilin
Province) formed between Early Cretaceous and Late Cretaceous, at
around 100–95 Ma, with the simultaneous formation of a big lake
(Qingshankou formation), thus suggesting a genetic relationship
with the Songliao basin (Dou et al., 1996).

3. Seismic velocity structure as derived from wide-angle seismic
profiles

As part of the national program in the frame of the Global Geo-
sciences Transects (GGT) Project developed in the 80s, stimulated
by the succession of disastrous earthquakes occurred in North
China during the last few decades, numerous wide-angle seismic
experiments were carried out in the east of continental China (Li
et al., 2006a; Zhang et al., 2011c). Among these, there are four
wide-angle seismic profiles (P1 to P4 in Fig. 1) crossing TLF along
its southernmost segment (P1), central part (P2 and P3) and north-
ern segment (P4), namely: (1) Fuliji–Fengxian profile (P1) (Bai
et al., 2007); (2) Lianyungang-Sishui profile (P2) (Li, 1991; Ma
et al., 1991); (3) Yixian–Youyan profile (P3) (CEA, 1992; Lu and
Xin, 1993); (4) Haerbing–Suifenhe profile (P4) (Fu and Yang,
1998). Crustal velocity models related to these profiles were ob-
tained by applying standard schemes (Ma, 1989; Li et al., 2006a;
Zhang et al., 2011c), including picking up phases, ray-tracing and
depth-to-layer inversion. Below, assuming a division of the crust
into upper, middle and lower crust, we have summarized the re-
sults on layer depths and seismic velocities related to these refer-
ence profiles. Fig. 2 illustrates the topographic reliefs (data based
on GTOPO30, top panels a, b, c and d) of each of these profiles
and the corresponding crustal P-wave velocity models (bottom
panels).

Profile 1 extends from Fuliji to Fengxian across the southern
segment of TLF over a length of 570 km and a rough longitude
range of 116–122�E (Fig. 2a), and was conducted by the ex-State
Seismological Bureau (now Chinese Earthquake Administration)
in 1984 (Bai et al., 2007). From the corresponding crustal P-wave
velocity model (lower panel of Fig. 2a), we can observe 3–4 km
Moho uplift beneath TLF (118�E), since the Moho depth varies be-
tween 31–33 km beneath TLF and 35 km beneath the Yangtze
Block. Another notable finding is that the sediments are not thicker
beneath the Hefei basin (2 km), but rather beneath the western of
the Yangtze Block (5 km), when taking the P-wave velocity contour
line of 6.0 km/s as the crystalline basement along the profile. The
crustal P-wave velocity structure can be summarized as 5.6–
6.2 km/s in the upper crust (at depths ranging from 0 to about
13 km), 6.2–6.5 km/s in the middle crust (extending from the bot-
tom of the upper crust down to a depth of 25 km), and 6.6–7.1 km/
s in the lower crust (down to a depth of about 35 km). The sub-
crustal P-wave velocity is usually taken as a reference to ascertain
the thermal state of the topmost mantle (Wang et al., 2001; Xu
et al., 2010); this seismic velocity can be estimated from the Pn
phase (refracted wave from the topmost upper mantle) observed
in wide-angle seismic experiments (Zhang et al., 2000, 2011c;
Wang et al., 2000; Teng et al., 2006; Li et al., 2006a) or teleseismic
Pn tomography (Liang et al., 2004; Huang and Zhao, 2006). In the
China continent, the upper mantle velocities are usually
8.0 ± 0.2 km/s (Li et al., 2006a). However, the P-wave velocity esti-
mated from the wide-angle seismic Pn phase recorded in the pro-
file (118.5�E) reaches up to 8.3 km/s at the topmost mantle, which
is much higher than the global average, thus indicating that the
mantle should be colder beneath this region.

Profile 2 extends from Lianyungang (Jiangsu Province) to Sishui
(Shandong Province) across the middle segment of TLF over a
length of about 350 km, and through the Luxi Block with high ele-
vation, Tanlu fault and Sulu orogeny belt with low elevation (Li,
1991). The most remarkable feature of the crustal velocity model
(lower panel of Fig. 2b) is that the Moho topography remains flat
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at 33 km depth beneath the Luxi Block (about 118�E), is a little
undulation under TLF (119�E), and uplifts about 3 km beneath
the Sulu orogeny (120�E), what is confirmed by receiver function
migration (Chen et al., 2006) and seismic velocity profiles too
(Bai et al., 2007). There is a well-developed flat layering in the crust
beneath Luxi and Tanlu. The crustal P-wave velocity varies be-
tween 5.6 and 6.4 km/s in the upper crust (above 13 km roughly),
from 6.0 to 6.5 km/s in the middle crust (to a depth of about
23 km), and from 6.5 to 7.4 km/s in the lower crust (down to a
depth of about 33 km).

As part of the Dong-Ujimqinqi-Neimogol-Donggou Geoscience
Transect, profile 3 extends from Yixian to the seismic zone of
Haicheng (Liaoning Province) located in the North China Craton
(Lu and Xin, 1993), across the central segment of TLF over a length
of about 270 km (Fig. 2c). From the crustal velocity model (lower
panel of Fig. 2c), we can observe that the Moho rises 3–4 km up
to 31 km depth under TLF (122�E), but remains flat at 35 km depth
beneath Liaodong Horst (123�E). The crustal P-wave velocity
ranges from 5.6 to 6.3 km/s in the upper crust (about 16 km thick),
between 6.1 and 6.6 km/s in the middle crust (to a depth of about
26 km), and between 6.6 and 7.0 km/s in the lower crust (down to
a depth of about 33 km). A low velocity layer can be observed in
the middle crust south of the Haicheng region.

As part of the Manzhouli–Suifenhe Geoscience Transect, profile
4 extends from the Songliao basin to the Jiamusi Block in Heilongji-
ang Province across the north segment of TLF over a length up to
400 km (Fig. 2d) (Yang et al., 1996; Fu and Yang, 1998). The surface
topography and the Moho discontinuity show a typical image of
symmetry (Zhang et al., 2011c): this interface is about 35 km depth
under the Songliao basin and TLF (127–129�E), but the Moho sinks
to about 41 km beneath the Jiamusi Block (130�E) in coincidence
with a high elevation of the surface topography (lower panel of
Fig. 2d). The crustal P-wave velocity values become progressively
larger with increasing depth: 5.6–6.2 km/s in the upper crust
(above 18 km approximately), 6.3–6.5 km/s in the middle crust
(extending to a depth of 30 km), and 6.8–7.2 km/s in the lower
crust, whose bottom reveals an undulated Moho.
4. Seismicity and crustal rheology

The lithospheric strength provides tighter constraints on its
evolution, so that it can be used to understand the potential seg-
mentation mechanism of TLF. The lithospheric strength can be ex-
pressed through isostasy and flexural rigidity (Watts, 2001),
effective elastic thickness (Maggi et al., 2000; Audet et al., 2007;
Pérez-Gussinyé et al., 2007, 2009), seismic activity and stress state
(Ge and Zhang, 2009), seismicity and long-term rheology (Ranalli,
1997; Burov and Watts, 2006; Burov, 2010), and seismogenic layer
thickness (Watts and Burov, 2003; Panza and Raykova, 2008;
Zhang et al., 2010b, 2011c,e, 2012a,b). Given the difficulties to deal
with the suitable wavelength to calculate apparent elastic thick-
ness, we have used the seismogenic layer thickness to characterize
the strength of the lithosphere, as already has been done in recent
studies (Zhang et al., 2012a,b; Wu and Zhang, 2012). In this context
seismogenic layer (hereafter denoted by SL) means the layer
wherein the 80% of the seismic energy is released, while any other
structure in the crust depicts the non-seismogenic layer (denoted
by NSL). In what follows, we briefly present the rheology of the
lithosphere in terms of the spatial distribution of the seismicity
and the seismic energy released in relation with different transects
of TLF.
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We compiled data on earthquakes that occurred in the period
1970–2010 as listed in the earthquake catalogue edited by the Chi-
na Earthquake Network Center, in order to carry out a statistical
analysis of the seismic events for each segment of TLF. Besides,
we set a lower magnitude limit as ML > 1 to reduce the effect of fo-
cal depth errors and uneven monitoring abilities at different places.
It should also be noted that the earthquakes occurred in the mouth
of 1975.02 have been removed to reduce the aftershock effect from
Haicheng earthquake. With reference to the profiles mentioned
above (P1 to P4 in Fig. 1), the laterally varying distribution of hyp-
ocenters and the statistics of the released energy calculated on a 1�
sized grid are presented jointly down to 60 km depth in Fig. 3. The
counting of earthquakes was done for those areas closer to the ref-
erence profiles (contoured by quadrilaterals in Fig. 1) and the com-
putation following the procedure described by Panza and Raykova
(2008) and recently applied by Zhang et al. (2011c,e, 2012a,b). The
national seismic network commonly uses the Geiger method
(Geiger, 1912) to locate the events, while the provincial seismic
networks use the Hypo2000 (Klein and Survey, 2002) and HypoDD
(Waldhauser and Ellsworth, 2000) location algorithms. The preci-
sion of the seismic event location is commonly scaled as level A
(having an uncertainty in focal depth h 6 5 km), B (5 < h 6 15 km),
C (15 < h 6 30 km), or D (h > 30 km). We herein limit ourselves to
seismic events sorted as level A. For each grid cell along any of
the profiles, the seismic energy (E) released by an earthquake
was computed using its MS magnitude by means of the relationship
log E = 11.8 + 1.5 MS (Panza et al., 2003).

We provide a synoptic representation of the seismogenic prop-
erties (spatial distribution of earthquake hypocenters, released
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(according to magnitude) down to 60 km depth on grid cells at longitude intervals of 1�.
As in Fig. 2, the seismogenic (SL) and non-seismogenic (NSL) layers, and the Moho discont
energy (log E/Emax vs. depth) organized in form of histograms of horizontal filled bars;
bottom of each histogram. Middle panels (c): Distribution of the number of earthquake
intersection of TLF (East China) with each reference profile is marked on top of the grap
seismic energy and number of seismic events) in the uppermost
60 km of the lithosphere at a constant step of 4 km depth intervals.
Fig. 3a shows earthquake hypocenters on grid cells at longitude
intervals of 1�. Fig. 3b shows the statistics of the logarithm of the
seismic energy (log E/Emax) vs. depth as histograms of horizontal
filled bars; the maximum value of the energy Emax (used for nor-
malization) is indicated at the bottom of every graph. Fig. 3c shows
the distribution of the logarithm of the number of earthquakes vs.
depth, and Fig. 3d shows the distribution of log E/min (log E) vs.
depth. We can see that both the earthquakes and its energy are un-
evenly distributed along the four profiles.

Numerous studies have demonstrated that the seismic activity
is generally concentrated at different depth ranges. Molnar and
Chen (1983) found that the earthquakes that occur on continents
are confined in the upper part of the crust, whose brittle nature en-
sures that earthquakes are relatively common over there. Foster
and Jackson (1998) provided evidence that in East Africa, India
and Himalayas, earthquakes occur throughout the whole crust,
although none below the Moho. In our case, we find a remarkable
lateral variation in the thickness of the seismogenic layer. Profiles
P1 and P2, that are closer in space, clearly show SL as a layer thick-
er than in profiles P3 and P4. Compared to other regions, TLF shows
a stronger seismic activity inside a relatively thicker seismogenic
layer.

In the case of the southernmost segment of TLF (Fig. 3) we find
that the seismicity is clearly confined in the upper-to-middle crust
(Fig. 3a) and that the seismic energy is mostly released in the upper
crust (Fig. 3b). This suggests that the lithospheric strain affects par-
ticularly the crust, regardless of whether the uppermost mantle
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may be weak enough to produce some earthquake. The thickness
of SL is of about 22 km to the west of TLF, but thins to the east
end of the profile. NSL stretches more or less flat in most of the pro-
file with thickness of some 10–12 km, which becomes about 15 km
under the east end of the profile (Fig. 3c and d).

On the next segment of TLF, further northward, we observe that
the earthquakes occur all over the crust and some of them even be-
low the Moho (Fig. 3a). Nevertheless, the thickness of SL is practi-
cally constant of about 24 km along the whole profile except in the
east end of the profile where it decreases gradually up to only
12 km (Fig. 3b). NSL shows an underlying flat layer 10-km-thick
having similar shape and that rises to the east as SL does (Fig. 3c
and d).

On the central segment of TLF (Fig. 3) we find the most active
seismicity among the analyzed transects, which is mostly concen-
trated in the upper crust below the fault belt (Fig. 3a). In particular,
the seismic events occur beneath TLF within a much deeper range
than in Bohai Bay Basin (west of the profile) and Liaodong Horst
(east of the profile), which may be induced by the brittle/ductile
transition as observed in the eastern part of the North China Craton
(Zhang et al., 2012a). The released seismic energy reaches the max-
imum value (used for normalization) of 21,000 (Fig. 3b) and the
thickness of SL is practically constant of 15–16 km along the whole
profile (Fig. 3c). The thickness of NSL is however somewhat greater
and fluctuates between 16 and 20 km along the profile (Fig. 3d).

On the northern segment of TLF (Fig. 3), which represents a
topographic relief with the highest elevations (Fig. 2d), we find a
less frequent and weaker seismic activity (Fig. 3a), and the smallest
amount of seismic energy released in the upper crust (Fig. 3b). The
GPS results and numerical modeling also show a weak deformation
in this part, which mean that the force from West Pacific has been
absorbed by the trenches and island arc (Gao et al., 1996; Wang
et al., 2002). The thickness of SL varies from 10 to 12 km in the cen-
tral part of the profile, while NSL shows a bigger thickness from 22
to 24 km along the western half of the profile up to almost 30 km
beneath its east end (Fig. 3b–d).

In order to give an overview of the results achieved, we present
both the seismic velocity structure and the rheology properties
concerning the four investigated profiles (P1 to P4 in Fig. 1) at lon-
gitude intervals of 1� in Fig. 4, in terms of thicknesses of the seism-
ogenic and non-seismogenic layers (Fig. 3) and their respective P-
wave velocities (Fig. 2), so Fig. 4 allows us to see at a glance all the
values of the analyzed variables related to the reference profiles.
The intersection of the Tancheng-Lujiang fault belt (East China)
with each profile is marked by arrows delimiting a gap in geo-
graphic longitude.
5. Geothermal field and temperature distribution

Several researchers have studied the geothermal field providing
heat flow measurements along TLF and nearby regions over the
past 20 years (Chen, 1988; Zu et al., 1996; Hu et al., 2001; Wang,
2001; Zang et al., 2002; Tao and Shen, 2008). The observed surface
heat flow along the reference profiles (P1 to P4 in Fig. 1) varies
within a relatively wide range, but not equally in all cases; so,
the heat flow is quite similar along the profiles P1 and P2 and
shows an increase from west to east from 58 to about 67 mW/m2

and from 59 to 66 mW/m2 (Fig. 5a and b, upper panels). However,
a negative gradient is observed in the other two profiles, decreas-
ing very rapidly from 66 to 57 mW/m2 in the case of P3 and some-
what smoother from 68 to 63 mW/m2 in the case of P4 (Fig. 5c and
d, upper panels).

The temperature field was calculated along the reference pro-
files down to a depth of 55 km, using of a two-dimensional numer-
ical solution of the steady-state heat conduction equation,
obtained after modeling the medium by finite elements (Hu
et al., 2001). This solution was constrained by surface and basal
heat flows, temperature-dependent thermal conductivity (Cermak
and Bodri, 1986) and heat production (Rybach and Buntebarth,
1984; Cermak and Rybach, 1989) in the continental crust. The pro-
cedure here followed is similar to the method applied by Zhang
et al. (2008). The uncertainties affecting the temperature field are
estimated to be about 15% according to those associated to the sur-
face heat flow measurements (Pasquale et al., 1990).

The Moho temperature is found between 500 and 650 �C in the
profiles P1, P2 and P3 (Fig. 5a–c, lower panels), but increases
slightly up to values of 650–700 �C along the profile P4 (Fig. 5d,
lower panel). In the upper-to-middle crust, the temperature field
correlates with the smooth regional variation of the surface heat
flow (CEA, 1992; Jin et al., 1996), whereas the temperature fluctu-
ation in the lower crust and topmost mantle are constrained by the
heat flow changes in these layers (Zhang et al., 2008, 2011d).
6. Discussion

6.1. Segmentation properties of TLF

A synthesis of data from seismic velocity structure of the crust
(Fig. 2), seismic activity and crustal rheology (Fig. 3), average P-
wave velocity in SL and NSL (Fig. 4), and surface heat flow and tem-
perature field (Fig. 5), provides us robust information to discuss the
Tancheng-Lujiang fault belt and it physical segmentation. To facil-
itate understanding of the geophysical responses derived from the
segmentation of TLF, we have integrated all the available geophys-
ical information together with the topographic relief along the
fault (top panel) and penetration depth (bottom panel) from
31�N to 46�N in Fig. 6. As can be seen, the topographic relief is
rather flat, except in the north transect of the fault where the high-
er elevations make its appearance. The highest concentration of
earthquakes in the crust occurs between 35� and 39�N approxi-
mately, though other earthquakes also occur at deeper depths be-
low the Moho. SL is clearly thicker at latitudes of �35–39�N and
�43.5–45�N. The Moho is a slightly undulated interface that hardly
shows any variation around 30–34 km depth, but rises a little at
the central part of the fault belt (36–40�N) where the crust is about
2 km thinner than elsewhere. The heat flow is around 65 mW/m2,
remains stable up to 37.4�N and increases slightly with smooth ups
and downs from this latitude to the north end of the fault. Fig. 6,
which provides an overview of TLF at different latitudes, shows
distinctive zoning features that refer to the following aspects: (1)
seismogenic layer thickness; (2) crustal thickness; (3) crustal P-
wave velocity; (4) heat flow; and (5) penetration depth. Below
we summarize these zoning features for different fault segments
(S1 to S3 in Fig. 6a).
6.1.1. Segment S1 (latitude 31–34.5�N)
This segment (Fig. 6a) is characterized by a gradually thickening

of SL northward together with a thinning of NSL in this direction,
with earthquakes mostly confined in the upper crust (Fig. 6b and
c). The crustal thickness is about 34 km (Fig. 6c). The crust-mantle
layered seismic velocity structure just below the middle point A
(Fig. 6a) is represented by the 1D crustal velocity column marked
by A (Fig. 6d). An important feature is that P-wave velocity in-
creases from 6.8 to 7.1 km/s within the lower crust 10-km-thick,
which suggests there is a mafic layer at the bottom of the crust.
The high heat flow is distributed all over the Tanlu fault and stays
almost stable at 65 mW/m2 (Fig. 6e). According to the depth of for-
mation of peridotite xenoliths (Wan et al., 1996), the penetration of
the fault reaches 80 km but then rises up to 60 km from south to



Fig. 4. Average P-wave velocity (in km/s) and thickness of the seismogenic (TSL) and non-seismogenic (TNSL) layers at longitude intervals of 1� regarding the reference profiles
analyzed in this study (P1 to P4 in Fig. 1). The intersection of TLF (East China) with each reference profile is marked on top of the graphs by arrows delimiting a gap in
geographic longitude.
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north (Fig. 6f), which is consistent with the depth estimated from a
magnetotelluric sounding (Zhu et al., 2002).

6.1.2. Segment S2 (latitude 34.5–42�N)
The thickest SL and the thinnest NSL characterize this segment

at its southern half (Fig. 6a). In this sector SL is deeper than 25 km
and thicker than NSL, which is only about 5 km thick. The seismic
activity is remarkable in this zone with many earthquakes
occurred at different crustal depths and even at mantle depths,
and likewise the seismic energy that is released in the crust
(Fig. 6b and c). The Moho depth is 30–32 km (Fig. 6c). Analogously,
the 1D crustal velocity column marked by B (Fig. 6d) represents
now the crust-mantle seismic velocity structure in this sector just
below the point B at surface (Fig. 6a). Like in the previous case, the
P-wave velocity increases from 6.7 to 7.4 km/s within the lower
crust 10-km-thick, which suggests the presence of a mafic layer
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(with a strong vertical velocity gradient) at the bottom of the crust.
In the northern half of S2 (Fig. 6a) SL is a comparatively thinner
layer with earthquakes mostly confined in the upper crust,
although the seismic activity is strong in this part since the re-
leased energy reaches the value of 23,000 (Fig. 6b and c). The crus-
tal thickness is 33 km here (Fig. 6c) and the 1D crustal velocity
column marked by C (Fig. 6d) describes the seismic velocity struc-
ture in this zone. The heat flow rises and is somewhat higher than
in the first sector up to 70 mW/m2 (Fig. 6e), thus suggesting under-
plating or crust/mantle interaction (Zhang et al., 2012a). Based on
the formation depth of the peridotite xenoliths (Wan et al., 1996),
the fault penetrates in this sector to 50–55 km, although further
north it reaches the deepest point at 75 km beneath the seismic
zone of Haicheng (Fig. 6f), which is roughly consistent with the
depth estimated from a magnetotelluric sounding (Zhu et al.,
2002). The heat flow seems to show a mirror symmetry with the
penetration depth of the fault even though it has been extrapolated
(Fig. 6e and f). The rock fragmentation inside the lithosphere can
result in many earthquakes and high heat flow in segment S2. This
is the causative mechanism for the seismicity in this area. Both
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phenomena may be coincident because the fragmentation of rocks
is the triggering factor of earthquakes, and the faults can be the
passage for heat flow.

6.1.3. Segment S3 (42–46�N)
The northernmost transect (Fig. 6a) is characterized by a thick

SL down to 20 km depth and a rather weak seismic activity
(Fig. 6b and c). The Moho depth is 32–33 km (Fig. 6c). The crust-
mantle seismic velocity structure in this sector is given by the 1D
crustal velocity column marked by D (Fig. 6d). Here the P-wave
velocity also increases from 6.8 to 7.2 km/s within the lower crust
10-km-thick, which again suggests there is a mafic layer at the bot-
tom of the crust. The heat flow is relatively high �66 mW/m2 along
this segment S3 (Fig. 6e). Here the fault penetrates between 50 and
60 km and already reaches the uppermost mantle (Fig. 6f) as re-
vealed by the formation depth of the peridotite xenoliths (Wan
et al., 1996), which agrees partly with the depth estimated by a
magnetotelluric sounding (Zhu et al., 2002), the latter yielding
somewhat greater depths (Fig. 6f). The low seismicity in the Son-
gliao basin, the northernmost transect of TFL, may be because of
the thrust force developed by the West Pacific in the area is ab-
sorbed by the trenches and island arc. In fact, GPS results (Wang
et al., 2002; Ge and Zhang, 2009) and the results from by numerical
modeling (Gao et al., 1996) show a weak deformation in the basin.

6.2. Segmentation mechanism of TLF

The formation mechanism of TLF in East China has been de-
bated ever since its finding through aeromagnetic measurements
in the 50s and the mapping of the surface geology and tectonics
in the 60s (Xu, 1984a,b). So far, four tectonic models have been
proposed to explain the formation of TLF: (1) A slip fault system
as consequence of the collision between the Yangtze Block and
the North China Block (Cluzel et al., 1991; Yin and Nie, 1993); (2)
A strike-slip fault system accommodated to the oblique conver-
gence between the Pacific oceanic plate and the Asian continent
(Xu et al., 1987, 1993; Zhu et al., 2004, 2012); (3) A transform fault
in the margin between North China and South China due to the
dynamics of the Pacific oceanic plate (He et al., 1990; Wang and
Cheng, 1992); (4) A transform fault generated through the collision
between South China and North China along the Qinling-Dabie
orogeny (Zhang et al., 1984; Guo, 1993). Essentially, these tectonic
models can be evaluated by combining the various models into the
interaction between the North and South China Blocks (2,3) or that
between the Pacific plate and North China (1,4).

In the first interaction model, the lower crust beneath the seg-
ment S1 and the southernmost part of the segment S2 should be
that of the Yangtze Block, or else it should be the same or similar
that beneath the NCC. In the course of the back-arc extensional
activity during the Late Cretaceous to the Eogene (Yin, 2010), an in-
tense upwelling of the asthenosphere occurred under the fault
zone in North China, which resulted in a lithospheric narrowing
of pure shear type (Zhu et al., 2004; Yang et al., 2012) and the prob-
able rock fragmentation inside the lithosphere. As a consequence
of this upwelling along the fracture zone, both the temperature
and the geothermal flow in the north transect of S2 should be high-
er than elsewhere and the broken rocks should generate more
earthquakes. The Dabie–Sulu orogenic belt, adjacent to the south
part of TLF, resulted from the continental collision between the
Yangtze Block and the NCC since Mesozoic accompanied by ul-
tra-high pressure metamorphism (Zhu and Zheng, 2009; Bai
et al., 2007), so the crustal P-wave velocity in S1 should be higher.
In order to evaluate this possibility, we have chosen a crustal P-
wave velocity column obtained in South China (Zhang et al.,
2005) and another in North China (Zhang et al., 2011d) with the
purpose of comparing with other two velocity columns beneath
the segments S1 and S2 (points A and B at surface, Fig. 6). All these
columns are shown together in Fig. 7. We can observe that the sim-
ilarity of the velocity-depth profiles for South China and the seg-
ment S1 is much higher, which supports the idea that the
formation of S1 has a close relationship with the collision between
the Yangtze and North China Blocks (Yin and Nie, 1993). In addi-
tion, the segment S1 shows a seismic layer 15 km thick similar to
that of the Yangtze Block (Zhang et al., 2012b).

As to the wrench model, which proposes that TLF is a rift forma-
tion subjected to the continuous convergence of the Pacific plate
onto the Asian plate, geophysical experiments in the rifts or
wrenches around the world demonstrate that a high P-wave veloc-
ity layer usually exists at the bottom of the crust, which suggests
that underplating is a key mechanism to trigger rifting or wrench.
This P-velocity reaches 7.2 km/s in the lower crust beneath the
Kenya Rift (Thybo et al., 2000), 7.3–7.5 km/s in central Denmark
(Thybo et al., 2006), >7.4 km/s in the Baikal Lake area (Thybo and
Nielsen, 2009), and 7.2 km/s in the Three Gorges area of the Yan-
gtze Platform, central China (Zhang et al., 2009). In view of the
1D crustal velocity columns beneath the above mentioned seg-
ments of TLF (Fig. 7), we see layers with velocities as high as
7.1 km/s or even 7.4 km/s beneath the segment S1 and the south-
ern transect of the segment S2, respectively, but no layer with P-
velocity beyond 7.0 km/s beneath the northern part of the segment
S2. Li (1994) proposed a crustal-detachment model of suture for
the region east of TLF, which suggests that the upper crust of the
South China Block in the Subei-Yellow Sea region was detached
from the lower crust and thrust over the North China block for
>400 km, whereas the lower part of the lithosphere was subducted
under the North China Block along a subsurface suture running to
east from Nanjing. The sinistral offset of the Qinling suture by TLF
is only 110–120 km in the deep crust and much less than previ-
ously suggested. In this way the layer with P-velocity > 7.0 km/s
could not have been induced by underplating (Thybo et al., 2000,
2006; Zhang et al., 2011d, 2012a), but acts as a signature of the
subduction of the lower part of the lithosphere under South China
where the seismic velocity would increase as the pressure (depth)
increases (Wang et al., 2000).

6.3. TLF-lithosphere interaction in East China

The lithosphere beneath TLF and part of the North China Craton
is heterogeneous both in mineralogy and chemistry (Wu et al.,
2003, 2005; Zhang et al., 2011b). The incidence of TLF upon the
evolution of East China is one of the most interesting topics in this
context, which can be evaluated from geophysical and geochemical
observations. Besides the high heat flow and strong seismicity
mentioned in the previous section, receiver functions show an



Fig. 8. (a) Distribution of olivine-Mg# in peridotites, East China: Fertile, olivine-Mg# < 90; Transitional (Trans), olivine-Mg# 90–92; Refractory (Refra), olivine-Mg# > 92. Data
sources: Leiyan (Xiao et al., 2010); Jiaozhou (Zhang et al., 2011a); more details can be seen in Zheng et al. (2007b). The involved region is outlined by a rectangle drawn on a
situation map of East China (bottom right corner). (b) The lithospheric architecture around TLF, East China: OLM means Old Lithospheric Mantle; NALM means Newly
Accreted Lithospheric Mantle; Asthe is the abbreviation for Asthenosphere.

272 Y. Deng et al. / Journal of Asian Earth Sciences 78 (2013) 263–276
uplift of the Moho and thickening of the lithosphere under TLF
(Chen et al., 2006; Zheng et al., 2006, 2007a), which seems to
indicate that the Tanlu fault zone might have acted as a major
channel for the upwelling of the asthenosphere during the
Mesozoic–Cenozoic continental extension and lithospheric
thinning in eastern China. In addition, the results obtained from
P-wave and S-wave velocity tomography show low velocity anom-
alies below TLF, which may also reflect asthenospheric upwelling
in this region (Tian et al., 2009; Tian and Zhao, 2011).
According to recent petrologic and geochemical studies in NCC
(Zheng et al., 2001, 2007b, 2008; Wu et al., 2003, 2005, 2006;
Zhang et al., 2003b, 2010a; Ying et al., 2006; Xiao et al., 2010; Xu
et al., 2012; Zhang et al., 2011b; Zhang, 2012), the low-Mg# lherz-
olites have petrologic and mineralogical affinities with mantle
peridotitic xenoliths from the Cenozoic basalts of NCC and repre-
sent the newly accreted lithospheric mantle. In contrast, the
high-Mg# lherzolites have petrologic features similar to mantle
peridotitic xenoliths from the Archean/Proterozoic lithospheric
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mantle and represent the remnant old refractory lithospheric man-
tle. However, the percentages of high-Mg# and low-Mg# perido-
tites vary (Zheng et al., 2007b; Xiao et al., 2010; Zhang et al.,
2011b) (Fig. 8a).

The majority of the xenoliths from Qingdao are high-Mg#, with
small amounts of low-Mg# peridotites and Archean lower crust
granulites (Zhang and Zhang, 2007), while the xenoliths from Ju-
nan are mainly low-Mg# peridotites, with only one high-Mg# peri-
dotite reported so far, although there are abundant lower crustal
granulite xenoliths (Xiao et al., 2010). Fertile peridotites are rare
in the xenolith suites from the Paleozoic Mengyin and Fuxian
kimberlites (Zheng et al., 2007b). In the xenolith suites from
Mesozoic–Tertiary basalts, the proportion of fertile peridotites is
clearly higher in some localities near the trans-lithospheric TLF
zone, while more refractory components are commonly preserved
in more distant localities such as Hebi, Fuxin and Kuandian (Zheng
et al., 2007b). The lithospheric mantle beneath the Qingdao region
is composed of a small amount of newly accreted material and
dominant ancient lithospheric mantle component that was sub-
stantially modified. The Junan, Kuandian and Fuxin lithospheric
mantles are mainly composed of newly accreted lithospheric man-
tle, with only a small amount of residual ancient mantle at the top
upper mantle. All the peridotitic xenoliths entrained in the Late
Mesozoic basaltic rocks in Qingdao, Daxizhuang and Junan, eastern
Shandong, are spinel-facies, and no garnet-facies xenoliths have
been found, suggesting that the thickness of the lithosphere is less
than 75–80 km (Xiao et al., 2010). This inference is consistent with
the result of the geophysical exploration of TLF and its neighboring
regions (Chen et al., 2006). The Beiyan basalts located within TLF
and their entrained peridotites are very low in olivine Fo values,
among which the highest Fo value is close to that of Junan low-
Mg# peridotites. This suggests that the lithospheric mantle be-
neath the TLF zone is composed of newly accreted mantle, without
remnants of old lithospheric mantle, unlike what happens in the
surrounding zones (Fig. 8b).

Abundant cpx-rich lherzolites and wehrlites with extremely
low Fo (<87) values and high 187Os/188Os ratios also occur in the
interior of the TLF zone beside the Beiyan locality, such as Nushan
in Anhui Province (Xu et al., 1998; Xiao and Zhang, 2011) and
Shanwang in Shangdong Province (Zheng et al., 1998; Xiao and
Zhang, 2011). Therefore, the TLF zone facilitates the ascent of the
asthenosphere and enhances the degree of peridotite-melt reaction
(Wu et al., 2006; Zhang, 2009; Xiao and Zhang, 2011; Zeng et al.,
2011).
7. Concluding remarks

The segmentation properties of TLF along its stretch between
31�N and 46�N of latitude is identified based on a synthesis of
the results obtained from integrated geophysical data set along
four vertical sections that cut the fault in NW–SE direction at lati-
tudes of 31–34�N, 34.3–35.8�N, 39.9–41.2�N and 44.5–45.4�N
approximately. These results specifically relate to crustal seismic
velocities, Moho depth, earthquake hypocenters, seismic energy
released, seismogenic layer and crustal rheology, heat flow and
geothermal field, and penetration depth of the fault. The north-
to-south segmentation of TLF can be summarized in the following
terms: (1) south segment: the highest seismic velocities compara-
tively, the crust is relatively thicker, seismicity constrained in the
upper-to-middle crust, penetration depth of the fault 60–80 km;
(2) middle segment: earthquakes occur at deeper depth even be-
low the Moho, the most intense seismic activity and the bigger
amount of released energy, the deepest seismogenic layer, the pen-
etration depth undulates between 50–75 km, and the heat flow
shows positive correlation with the penetration depth; (3) north
segment: a contrasting picture with the highest topographic relief,
a less frequent and weaker seismic activity wholly concentrated in
the shallowest crustal layers, low amount of seismic energy re-
leased in the upper crust, and relatively high Moho temperature,
and penetration depth of the fault 50–65 km.

The formation of the south transect of TLF is closely related to
the collision between the Yangtze Block and the North China Block,
as supported by the higher crustal P-wave velocity observed. How-
ever the layer with P-velocity > 7.0 km/s could not have been in-
duced by underplating, but acts as signature of the subduction of
the lower part of the lithosphere of South China.

From the geophysical and geochemical data, TLF plays an
important role in the evolution of the lithospheric mantle beneath
East Asia, acting as a deep channel for the ascent of melts and flu-
ids, resulting in higher heat flow, higher seismicity, lower P-wave
velocity anomaly, thinner lithosphere, higher degree of lithospher-
ic modification and a greater amount of newly accreted lithosphere
near the fault.
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