东天山二叠纪大草滩地区镁铁-超镁铁质岩体的 岩浆演化过程和含矿性[。]

任明浩¹² 王焰³ 倪康⁴ 孙亚莉^{1**} REN MingHao¹², WANG Yan³, NI Kang⁴ and SUN YaLi^{1**}

1. 同位素地球化学国家重点实验室,中国科学院广州地球化学研究所,广州 510640

- 2. 中国科学院大学 北京 100039
- 3. 中国科学院矿物学与成矿学重点实验室,中国科学院广州地球化学研究所,广州 510640
- 4. 福建地质矿产局闽西地质大队 厦门 361000
- 1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- 2. University of Chinese Academy of Sciences, Beijing 100039, China
- 3. Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- 4. Western Fujian Geology Team, Fujian BGMR, Xiamen 361000, China

2013-05-20 收稿, 2013-08-16 改回.

Ren MH, Wang CY, Ni K and Sun YL. 2013. Differentiation of magmas in the formation of Permian mafic-ultramafic intrusions in the Dacaotan area, Eastern Tianshan: Implications for Ni-Cu-(PGE) sulfide mineralization potentials. *Acta Petrologica Sinica*, 29(10): 3473 – 3486

Abstract The No. 1 and No. 2 mafic-ultramafic intrusions in the Dacaotan area located in the middle of Jueluotag suture zone and north of Kanggnertage-Huangshan fault. To the east of this area , a number of magmatic Ni-Cu-(PGE) sulfide deposits are hosted in the mafic and ultramafic intrusions in the Tudun-Huangshan-Tulargen areas , which occur in the south of Kanggnertage-Huangshan fault. Zircons from two gabbro samples of the No. 1 and No. 2 intrusions yield SIMS 238 U/ 206 Pb ages of 279 ± 2Ma and 278 ± 2Ma , respectively. The two intrusions mainly consist of dunite and gabbro and both have low rare earth elements (REE) concentrations , with slightly depleted to flat LREE patterns. Whole-rock Sr-Nd isotopic compositions indicate that the parental magmas of the two intrusions may have derived from asthenosphere mantle and were similar to N-MORB in compositions. The parental magmas may have been contaminated by small amounts (1% ~5%) of the coeval A-type granite during ascent. Due to relatively low degrees of partial melting of the mantle source (10% ~15%) , sulfides may be remained in the mantle source. The parental magmas therefore are PGE-depleted and it is little chance to find economic Ni-Cu-(PGE) sulfide deposits in these two intrusions.

Key words Permian; Eastern Tianshan; Mafic-ultramafic intrusions; Mineralization of copper-nickel sulfide; Mineralization potentials

摘要 大草滩地区位于新疆东天山土墩-黄山-图拉尔根镁铁-超镁铁质岩带西侧,觉罗塔格构造带中段,区域构造环境主要受康古尔塔格-黄山深大断裂控制。本次研究的大草滩地区一、二号岩体形成于早二叠纪,SIMS法结石 U-Pb 年龄分别为 279±2Ma 和 278±2Ma。2个岩体主要由橄榄岩和辉长岩组成,全岩稀土总量较低,具 LREE 轻微亏损至平坦的分配型式。全岩 Sr-Nd 同位素与微量元素组成显示两个岩体的母岩浆来自软流圈地幔,其成分与 N-MORB 相似,在上升过程中经历了较低程度(1%~5%)的同生 A 型花岗岩混染。由于低程度的部分熔融(10%~15%)导致硫化物残留在地幔源区,导致母岩浆强烈亏损铂族元素,因此大草滩地区一、二号岩体可能不具有形成具经济价值铜镍硫化物矿床的潜力。 关键词 二叠纪;东天山;镁铁-超镁铁质岩体;铜镍硫化物矿化;成矿潜力

中图法分类号 P588. 125; P597. 3

^{*} 本文受国家 973 项目(2011CB808903)、中国科学院知识创新工程重要方向项目(KZCX2-YW-JS103)联合资助. 第一作者简介:任明浩,男,1988 年生,博士生,地球化学专业,E-mail: renmh@gig.ac.cn

^{**} 通讯作者:孙亚莉,女研究员,主要从事铂族元素、Re-Os同位素以及微量元素的分析测试方法研究,E-mail: yalisun@gig.ac.cn

图 1 新疆东天山大草滩镁铁-超镁铁质岩体地质简图(据新疆地质矿产局第一区域地质调查大队,1993 修改)

Fig. 1 A schematic geological map of the mafic-ultramafic intrusions in the Dacaotan area , Eastern Tianshan orogenic belt

1 引言

二叠纪塔里木大火成岩省的岩浆活动,不仅在塔里木地 区形成大规模玄武岩喷发和复杂多样的侵入岩 而且在新疆 北部东天山地区和阿勒泰地区沿深大断裂带也形成了一系 列的镁铁-超镁铁质杂岩体,被称为东天山镁铁-超镁铁质杂 岩带。近年来 在该地区陆续发现了几个大规模的铜镍硫化 物矿床,如喀拉通克(阿勒泰)、黄山、黄山东、图拉尔根等,还 有一些中小型的矿床如白石泉、天宇等(柴凤梅 2006;毛景 文等 2006; 毛启贵等 2006; Mao et al., 2008; Song and Li, 2009; 钱壮志等, 2009; 唐冬梅等, 2009; Zhang et al., 2010; Zhang and Zou, 2013) 是铜镍硫化物矿床的重要矿集区。总 结前人研究发现,目前对东天山镁铁-超镁铁质岩带的研究 主要集中在东侧,而对其西侧发育的一些镁铁-超镁铁质岩 体研究较少 其形成时代和含矿性尚未知晓。本次研究选取 东天山镁铁-超镁铁质岩带西侧大草滩成矿远景区内(新疆 地质矿产局第一区域地质调查大队,1993①)2个较大的镁 铁-超镁铁质岩体,即一号和二号岩体,进行锆石定年、全岩

主量、微量和铂族元素以及 Sr-Nd 同位素分析,讨论岩体的 形成时代、源区性质及岩浆成因并判断其是否具有形成具经 济价值铜镍硫化物矿床的潜力。

2 地质概况

东天山镁铁-超镁铁岩带是中亚造山带(CAOB)的组成 部分,主要由觉罗塔格构造带和中天山地块组成(图 1a) (Qin et al.,2011)。觉罗塔格构造带南部由石炭纪钙碱性 安山岩、火山凝灰岩、火山碎屑岩组成,并有砂岩和灰岩互 层;北部为一套早泥盆纪至石炭纪砂岩、泥质页岩及基性至 中性火山岩,并有砾岩、泥岩和灰岩互层。中天山地块由前 寒武纪基底和奥陶纪岛弧火山岩组成(Zhou et al.,2004)。 镁铁-超镁铁质岩体主要集中在觉罗塔格构造带内,沿康古 尔塔格-黄山深大断裂呈串珠状分布,在北山裂谷带也有零 星分布。

① 新疆地质矿产局第一区域地质调查大队. 1993. 新疆地区 1:20
万矿产图填图报告──大草滩幅

大草滩地区位于新疆哈密市西南部约 120km 处,觉罗塔 格构造带中段(图 1a)。该区域被康古尔塔格-黄山深大断裂 分为南北两部分(图 1b)。北部发育泥盆系大南湖组和头苏 泉组,岩性主要为橄榄玄武岩,凝灰岩,拉斑玄武岩和安山 岩;南部为石炭系梧桐窝子组和干墩组,主要岩性为安山岩、 英安岩和凝灰岩。区域内还分布大量晚石炭纪至早二叠纪 的闪长岩及花岗岩。大草滩一号和二号岩体出露于康古尔 塔格-黄山断裂北侧泥盆系头苏泉组地层,以孤立的透镜体 分布于残坡堆积中,球状风化显著,岩性以辉长岩为主,在岩 体中部出现橄榄石含量较高的橄榄辉长岩和橄榄岩,未见岩 体与地层界线。一号岩体规模较大,面积约 4km²;二号岩体 较小,呈透镜状,以北西 45° 展布,长轴约 1000m,南北宽 400m 左右。

本次研究共采集一、二号岩体的 14 个辉长岩和 5 个橄 榄岩样品。辉长岩样品较为新鲜,呈辉长结构,斜长石呈较 为自形的长柱状,辉石自形程度低;橄榄岩样品风化严重,橄 榄石裂隙中蛇纹石化显著。

3 分析方法

3.1 锆石 U-Pb 定年

锆石分选采用传统的重液和磁选法,选出的锆石与实验 室锆石工作标样 Qinghu (Li *et al.*,2009) 一起粘贴在环氧树 脂表面制成样品靶。将样品靶抛光至锆石露出一半晶面,并 在真空状态下在靶的表面镀一层高纯度的金。对待测靶进 行了透射光、反射光显微照相和阴极发光(CL) 图像分析,以 挑选包裹体少、无明显裂隙的锆石颗粒。

锆石 U-Pb 同位素定年分析在中国科学院地质与地球物 理研究所离子探针实验室完成,使用 Cameca IMS-I280 离子 探针质谱仪(SIMS)。样品 U-Th-Pb 含量和比值用 Qinghu 标 样校正获得。详细方法见 Li *et al.* (2009)。以长期监测标 样获得的标准误差(ISD = 1.5%, Li *et al.*, 2010)和单点测试 内部精度共同传递得到样品单点误差,普通 Pb 校正采用实 测非放射性²⁰⁴ Pb 值。由于测得普通 Pb 含量非常低,可认为 其主要源于样品制备过程中带入的表面 Pb 污染,以现代地 壳的平均 Pb 同位素组成(Stacey and Kramers, 1975)作为普 通 Pb 组成进行校正。同位素比值及年龄误差均为 1σ。数 据结果处理使用 ISOPLOT/Ex v. 2. 49 软件(Ludwig, 2001)。

3.2 全岩主量元素和微量元素

样品的主量元素和微量元素分析测试在中国科学院广 州地球化学研究所同位素地球化学国家重点实验室完成。 主量元素分析使用 Rigaku RIX 2000 型荧光光谱仪(XRF)测 得,分析精度优于 2% ~5%,详细步骤见 Li *et al.* (2005a); 微量元素使用 Thermo X Series 2 电感耦合等离子体质谱仪 (ICP-MS)测得,分析精度对于大多数元素优于 ±5%,详细 步骤见(Li *et al.*,2000)。

3.3 全岩铂族元素和硫

铂族元素分析采用改进的 NiS 火试金法结合 ICP-MS 法 测得 在中国科学院广州地球化学研究所同位素地球化学国 家重点实验室完成。具体操作流程和步骤见文献(Sun *et al.*,1998; Sun and Sun,2005)。全流程空白值: Ru 为 0.013 ×10⁻⁹, Rh, Jr 为 0.002 × 10⁻⁹, Pt 为 0.047 × 10⁻⁹, Pd 为 0.028 × 10⁻⁹, 分析精度优于 10%。测试标样为 GBW07294 (GPt-7)测定值与推荐值较为吻合。

全岩硫含量分析在中国科学院广州地球化学研究所边 缘海地质重点实验室完成的。使用的仪器为德国 Elementar 公司的 PYRO cube Elemental Analyzer。测试过程为:用锡舟 (Elementar 公司)包取 4~100mg的粉末样品放置在仪器自 动进样盘 样品掉入燃烧管 经过燃烧生成 SO₂和 SO₃,再经 过还原管还原成 SO₂ 经过 TCD 检测得到 SO₂的含量。仪器 测试条件选择 CNS 模式,氧化管用 WO₂(Elementar 公司)作 为氧化剂填料,还原管用 Cu(Elementar 公司)为还原剂填料, 高纯 He (99.999%)为载气,载气流量为 230mL/min,氧喷条 件为 35mL/min,时间为 70~90s,TCD 检测温度为 60℃。利 用元素含量标样校正仪器漂移 S的分析精度优于 5%。

3.4 全岩 Rb-Sr、Sm-Nd 同位素

Rb-Sr、Sm-Nd 同位素分析在中国国家海洋局第一海洋 研究所完成。使用的分析仪器为 Nu Plasam HR 多接受电感 耦合等离子质谱仪(MC-ICP-MS)。测试的⁸⁷ Sr/⁸⁶ Sr、¹⁴³ Nd/ ¹⁴⁴ Nd 同位素比值的质量漂移校正基于⁸⁶ Sr/⁸⁸ Sr = 0. 1194 和¹⁴⁶ Nd/¹⁴⁴ Nd = 0. 7219。Sr、Nd 测试使用标样分别为 NBS987 标样和 La Jolla 标样 测定结果分别为⁸⁷ Sr/⁸⁶ Sr = 0. 710391 ± 12(2σ), ¹⁴³ Nd/¹⁴⁴ Nd = 0. 511130 ± 8(2σ)。化学分离和同位 素分析流程见 Li *et al.* (2005b)。

4 分析结果

4.1 SIMS 法锆石 U-Pb 年龄

从大草滩一、二号岩体中的2个辉长岩样品(DT05和 DT01)中分别挑选锆石进行 U-Pb 定年。锆石颗粒大小在 100~200μm之间,大部分无色透亮,宽板状。在2个样品中 各挑选了17颗锆石进行 U-Pb 定年分析 结果见表1。

DT05 号样品中锆石的 U、Th 含量分别为 $143 \times 10^{-6} \sim$ 801 × 10⁻⁶和 62 × 10⁻⁶ ~ 797 × 10⁻⁶, Th/U 比值分别在 0.33 ~ 0.99 之间, DT01 号样品锆石的 U、Th 含量分别介于 57 × 10⁻⁶~473 × 10⁻⁶之间和 34 × 10⁻⁶~591 × 10⁻⁶之间, Th/U 比值在 0.46~1.33 之间 表明为岩浆成因。DT05 样品的 05-6 号点²⁰⁶ Pb/²³⁸ U 和²⁰⁷ Pb/²³⁵ U 比值较低, 导致该点年龄不谐 和 推测可能是放射成因 Pb 丢失造成, 其余 16 个点得到的 谐和年龄为 279 ± 2Ma (MSWD = 0.19)。DT01 样品 17 个分

表1	大草滩-	-号岩体和二	.号岩体辉长岩中	P锆石的 SIM	IS 法 U-Pb	年龄结果

Table 1	SIMS zircon	U-Pb	ages for	the gal	bros	from	the I	No. 1	and	No. 2	l intrusions	in the	e Dacaotan	area
---------	-------------	------	----------	---------	------	------	-------	-------	-----	-------	--------------	--------	------------	------

测占是	U	Th	Th/II	f ₂₀₆ #	$^{206}\mathrm{Pb}^*$	/ ²³⁸ U	²⁰⁷ Pb*	/ ²³⁵ U	²⁰⁷ Pb [*] / ²	⁰⁶ Pb*	206 Pb / 238	U年龄	²⁰⁷ Pb / ²³⁵	U 日 日 日 日 日 日 日 日 日 日 日 日
	$(\times 10^{-6})$	$(\times 10^{-6})$	111/0	(%)	(±1σ	-%)	$(\pm 1\sigma$	%)	(±1 σ	%)	(Ma) ($\pm 1\sigma$)	(Ma) ($\pm 1\sigma$)
一号岩体	本(样品 DT0	5)												
1	551	442	0.803	0.03	0.0456	1.50	0.32753	2.29	0.05234	1.69	287.4	4.3	287.7	5.7
2	301	130	0.431	1.41	0.0439	1.55	0.30510	5.04	0.06151	3.01	277.3	4.3	270.4	12.0
3	317	136	0.428	0.10	0.0439	1.51	0.31008	2.45	0.05193	1.65	277.6	4.1	274.2	5.9
4	631	445	0.706	0.21	0.0453	1.51	0.31280	2.23	0.05169	1.34	286.6	4.3	276.7	5.4
5	171	66	0.382	0.09	0.0436	1.52	0.30834	3.39	0.05197	2.84	275.7	4.2	272.9	8.2
6	240	99	0.411	0.00	0.0416	1.51	0.29110	2.75	0.05081	2.30	263.1	3.9	259.4	6.3
7	724	639	0.884	0.00	0.0444	1.50	0.31801	2.78	0.05198	2.33	279.9	4.2	280.4	6.8
8	801	797	0.994	0.00	0.0449	1.51	0.32188	1.83	0.05196	1.04	283.4	4.2	283.3	4.5
9	235	103	0.439	0.35	0.0436	1.51	0.31169	3.01	0.05452	1.91	275.3	4.1	275.5	7.3
10	267	109	0.408	0.00	0.0440	1.51	0.31601	3.11	0.05205	2.72	277.8	4.2	278.8	7.6
11	201	67	0.334	0.12	0.0439	1.51	0.29846	2.95	0.05020	2.13	278.4	4.2	265.2	6.9
12	143	62	0.433	0.00	0.0448	1.51	0.31697	2.96	0.05132	2.54	283.1	4.3	279.6	7.3
13	525	236	0.449	0.03	0.0440	1.50	0.30865	2.06	0.05115	1.35	278.1	4.1	273.1	4.9
14	258	88	0.342	0.00	0.0439	1.50	0.31413	2.55	0.05190	2.05	277.3	4.1	277.4	6.2
15	662	245	0.371	0.00	0.0444	1.50	0.31828	1.92	0.05201	1.20	280.3	4.2	280.6	4.7
16	332	201	0.605	0.00	0.0440	1.51	0.31722	2.29	0.05229	1.73	277.6	4.1	279.8	5.6
17	507	232	0.458	0.08	0.0436	1.52	0.31138	2.10	0.05246	1.33	275.0	4.1	275.3	5.1
二号岩体	本(样品 DT0	1)												
1	126	114	0.906	0.14	0.0444	1.50	0.32526	3.29	0.05422	2.55	279.8	4.2	285.9	8.2
2	108	94	0.874	0.22	0.0442	1.51	0.31189	3.95	0.05290	2.99	279.0	4.2	275.6	9.6
3	93	84	0.907	1.06	0.0440	1.61	0. 30239	6.86	0.05814	3.90	278.5	4.5	268.3	16.3
4	473	591	1.250	0.00	0.0449	1.51	0.32544	2.04	0.05259	1.37	282.9	4.2	286.1	5.1
5	153	70	0.458	0.43	0.0445	1.51	0.30201	4.07	0.05255	2.42	281.8	4.2	268.0	9.6
6	193	179	0.931	0.00	0.0429	1.50	0.31138	2.91	0.05258	2.49	271.0	4.0	275.2	7.0
7	260	221	0.849	0.06	0.0445	1.54	0.31530	3.08	0.05189	2.55	280.9	4.3	278.3	7.5
8	137	130	0.948	0.24	0.0441	1.51	0.30608	3.61	0.05227	2.59	279.0	4.2	271.1	8.6
9	413	336	0.814	0.06	0.0436	1.54	0.30457	2.28	0.05112	1.54	276.0	4.2	270.0	5.4
10	91	45	0. 491	0.18	0.0449	1.52	0.31273	4.11	0.05197	3.18	283.7	4.3	276.3	10.0
11	156	100	0.642	0.00	0.0441	1.52	0.30774	3.12	0.05057	2.72	279.2	4.2	272.4	7.5
12	73	66	0.912	0.00	0.0441	1.54	0.32062	4.32	0.05276	4.04	278.1	4.3	282.4	10.7
13	167	223	1.331	0.00	0.0435	1.51	0.31776	2.95	0.05298	2.53	274.3	4.1	280. 2	7.2
14	95	88	0. 928	0.29	0.0432	1.50	0. 27933	4.94	0.04919	3.57	274.8	4.1	250.1	11.0
15	57	34	0. 599	0.41	0.0434	1.55	0.30705	5.76	0.05460	3.92	273.9	4.3	271.9	13.8
16	224	227	1.012	0.10	0.0441	1.51	0.30609	2.68	0.05110	1.98	279.1	4.2	271.1	6.4
17	134	157	1.172	0.35	0.0442	1.52	0.30417	5.13	0.05258	4.13	279.8	4.3	269.7	12.2

注: Pb^* 表示放射性成因 $Pb; f_{206}$ [#]表示普通 ²⁰⁶ Pb 占总 ²⁰⁶ Pb 的百分比

4.2 全岩主量和微量元素组成

大草滩一、二号岩体样品全岩的主量和微量元素分析结 果见表2。在 Pearce 元素摩尔比值(Mg + Fe)/Ti-Si/Ti 图解 上2个岩体辉长岩主要落在单斜辉石和斜长石控制线上, 橄榄岩则主要受橄榄石控制(图3),与薄片观察结果一致。 2个岩体样品中的 MgO 与 SiO₂、Al₂O₃、CaO、Na₂O + K₂O 呈 现明显的负相关 与 $Fe_2O_3^{T}$ 有明显的正相关关系 与 TiO_2 呈 微弱负相关(图 4)。

在稀土元素球粒陨石标准化图中 样品均呈现较为平坦 的稀土配分型式,稀土总量较低($3.641 \times 10^{-6} \sim 41.42 \times 10^{-6}$)(图 5a,c)。所有辉长岩样品和二号岩体橄榄岩样品 具有 Eu 正异常且略微富集 LREE (La/Yb)_N比值介于 1.50 ~5.93 之间,一号岩体橄榄岩 LREE 轻微亏损 (La/Yb)_N比 值介于 0.53~0.84 之间。在原始地幔标准化微量元素配分 图解上(图 5b,d),辉长岩样品均具明显的 Sr、Eu 正异常和 Nb 负异常,而橄榄岩样品除了 Nb 负异常外,呈现不同的特 征:一号岩体 2 个橄榄岩样品还具有 Ti 正异常;而二号岩体

)组成
$\times 10^{-6}$
和微量元素(
wt%)
一、二号岩体主量元素(
大草滩-

Č _ c Ž Ż _ , _ -5 ÷ 10-61 _ Έ . Ň c 表 2 T. bl

		DT01-9		47. 29	0.40	27.44	1.42	2. 11	0.03	12.66	3.74	0.54	0.06	95.68	4.98	41.1	109	35.5	4.89	8.40	4.69	559	135	4. 71	15.9	0.45	0.76	0.18	0.07	3.08	7.00	0.97	4. 28	0.94	0.69	0.95	0.15	0.88	0.18	0. 44	0.06	0.37	7 10
		DT01-8		46.03	0. 33	27.95	1.46	2.12	0.03	13. 78	3. 29	0.45	0.07	95.50	3.50	38.1	85.5	37.5	12.2	8. 75	3. 39	474	84.7	6. 25	28.5	0. 69	0.73	0.21	0.10	2.46	6. 27	0.94	4. 37	1.09	0.65	1.12	0.19	1.15	0. 24	0.62	0.08	0.52	00.00
		DT01-7		41.35	0.09	17.13	6.86	19.03	0.10	8.76	1.48	0.14	0.01	94.95	12.9	33.8	207	602	87.3	73.3	1.62	381	19.2	1.37	3.13	0.09	0.09	0.03	0.06	0.49	1.18	0.18	0.87	0.22	0.29	0.24	0.04	0.23	0.05	0.14	0.02	0.14	0 00
		DT01-5	辉长岩	45.53	0.24	24. 54	4.58	7.68	0.09	12. 34	2.01	0.15	0.05	97.21	7.78	47.9	220	137	46.4	36.5	1.91	495	33. 9	5.01	18.3	0.49	0.44	0.09	0.05	1.47	3.86	0.61	3.05	0.84	0.53	0.89	0.16	0.98	0.21	0.53	0.08	0.48	0.08
	二号岩体	DT014		46.96	0.73	23.81	5.62	5.85	0.09	12.29	2.47	0.15	0.06	98.03	15.3	106	193	96.3	50.8	29.9	1.65	486	49.8	9.66	38.7	1.04	0.78	0.14	0.05	2.37	6.46	1.06	5.29	1.49	0.82	1.67	0.30	1.87	0.40	0.94	0.15	0.94	0 15
all area		DT01-3		42. 50	0.15	22. 40	4. 75	10.46	0.07	11.74	1.81	0. 29	0.03	94. 20	6.19	28.4	134	379	34.9	43.6	2. 65	678	52.6	2. 75	12.4	0. 29	0.26	0.06	0.09	0.10	2.51	0.39	1.86	0.48	0.40	0.52	0.09	0.54	0.11	0.30	0.04	0.27	0.04
le Dacaol		DT01-2		46.31	0.77	23.92	6.10	6.71	0.09	11.98	2.25	0.11	0.06	98.30	14.1	114	174	107	48.6	33.6	0.92	465	43.4	8.62	32.9	0.86	0.69	0.12	0.05	2.17	5.87	0.96	4.85	1.37	0.76	1.53	0.27	1.69	0.36	0.94	0.13	0.84	0 13
IOUS III U		DT01-6	信岩	38.82	0.12	7.58	12.93	29.60	0.17	3.94	0.65	0.08	0.02	93.91	8.56	40.1	950	1038	30.0	117	0.82	217	18.5	1.59	4.48	0.13	0.11	0.02	1.19	0.45	1.12	0.17	0.83	0.21	0.18	0.25	0.04	0.27	0.06	0.16	0.03	0.19	0.03
SUTURIA		DT01-1	橄榄	37.18	0.10	5.36	12.97	33.36	0.18	2.98	0.25	0.03	0.02	92.42	8.27	48.1	1801	1207	55.2	127	0.29	100	7.93	1.04	2.81	0.08	0.09	0.04	0.04	0.30	0.74	0.11	0.53	0.13	0.12	0.15	0.03	0.16	0.04	0.11	0.02	0.15	0 03
		DT03-3		36. 44	0. 24	0.87	21.01	33.80	0. 29	1.54	0. 29	0.04	0.02	94. 53	15.6	70.8	562	<i>LL</i> 6	23.5	141	0.30	12.7	8.72	3.80	7. 28	0. 23	0.20	0.06	0.04	0.49	1.43	0. 25	1.50	0.51	0.15	0.63	0.12	0.77	0.17	0. 44	0.06	0.42	0.07
I UIE IVO.		DT03-2	橄榄岩	35.10	0.48	0.68	26.59	30.76	0.35	1.45	0.21	0.03	0.01	95.66	15.1	112	327	778	34.7	162	0.44	9.67	6.73	2.20	6.23	0.17	0.20	0.05	0.02	0.30	0.78	0.14	0.77	0.27	0.08	0.34	0.07	0.43	0.09	0.24	0.04	0.28	0.05
OCKS IFUI		DT03-1		34.83	0.53	0.78	27.25	29.78	0.36	1.46	0.06	0.01	0.02	95.08	16.7	160	375	818	62.0	172	0.18	9.53	4.02	2.64	6.31	0.20	0.23	0.04	0.03	0.34	0.96	0.17	0.95	0.34	0.10	0.40	0.08	0.51	0.11	0.30	0.05	0.33	0.06
		DT05-8		45.48	0.11	27.99	2.06	3.49	0.04	13.29	2.95	0.11	0.02	95.53	3.95	26.0	116	35.4	10.1	13.6	1.51	536	32.6	1.94	5.83	0.16	0.11	0.02	0.02	0.61	1.50	0.21	1.04	0.28	0.38	0.31	0.05	0.32	0.07	0.17	0.02	0.14	0. 02
inpusion	百体	DT05-7		45.19	0.12	28. 13	3.02	5.07	0.07	13.98	1.84	0.10	0.02	97.54	4.40	32. 1	569	116	14. 3	21.3	1.12	513	30.6	2.18	12. 4	0.29	0.24	0.09	0.05	1.06	2.46	0.37	1.67	0.41	0.41	0.42	0.07	0.43	0.09	0.23	0.03	0.22	0.03
	上 	DT05-5		49.37	0.22	25.68	1.89	3.35	0.04	14.89	2.67	0.20	0.02	98.33	23.9	70.8	427	43.1	188	11.7	2.44	528	88.8	6.15	19.8	0.53	0.48	0.39	0.17	2.86	6.33	0.87	3.82	0.98	0.73	1.07	0.19	1.16	0.24	0.64	0.09	0.55	0.08
I X) IIIai		DT05-4	辉长岩	48.91	0. 29	23.84	2.72	4.99	0.06	15.08	2.41	0.17	0.04	98.49	29.8	93.1	538	57.8	133	15.8	1.49	509	83.9	10.0	34.1	1.00	0.99	0.85	0.31	4.32	9.85	1.39	6.42	1.70	0.82	1.85	0.32	2.01	0.41	1.08	0.15	0.92	0.14
race eren		DT05-3		46.08	0. 11	20.03	7.05	12.38	0.10	9.92	2. 39	0.06	0.01	98.14	10.1	35.2	164	252	81.8	56.6	0.37	344	21.7	1.97	3. 15	0. 11	0.05	0.02	0.01	0.56	1.27	0.19	0.97	0.26	0.36	0.30	0.05	0. 33	0.07	0.18	0.02	0.16	0.03
		DT05-2		47.71	0.12	21.65	5.97	10. 25	0.11	10.26	2.61	0.06	0.01	98.76	8.82	34. 9	187	139	39.4	44. 5	0.26	330	20.2	1.58	2.62	0.09	0.05	0.01	0.01	0.47	1.13	0.18	0.92	0.26	0.35	0.30	0.05	0.32	0.07	0.17	0.02	0.16	0.03
lajor (wr		DT05-1		45.90	0.37	15.98	8.34	12.24	0.14	14.69	0.99	0.04	0.01	98.71	45.1	167	626	342	117	55.0	0.44	299	13.5	8.68	8.43	0.41	0.04	0.02	0.01	0.59	1.88	0.40	2.61	1.09	0.59	1.41	0.27	1.78	0.38	0.94	0.13	0.79	0.12
Table 2 M	岩体	样品号	岩性	SiO_2	TiO_2	$\mathrm{Al}_2\mathrm{O}_3$	$\mathrm{Fe_2O_3}^\mathrm{T}$	MgO	MnO	CaO	Na_2O	$K_2 O$	P_2O_5	Total	$\mathbf{S}_{\mathbf{C}}$	Λ	Cr	Ni	Cu	Co	Rb	$\mathbf{S}\mathbf{r}$	\mathbf{Ba}	Υ	Zr	Ηf	Nb	Th	N	La	Ce	\mathbf{Pr}	Nd	\mathbf{Sm}	Eu	$\mathbf{G}\mathbf{q}$	$_{\mathrm{Tb}}$	$\mathbf{D}\mathbf{y}$	Ho	Er	Tm	$\mathbf{Y}\mathbf{b}$	L,n

图 2 大草滩一、二号岩体 SIMS 法锆石 U-Pb 年龄谐和图

Fig. 2 Concordia plots for zircons from the No. 1 and No. 2 intrusions in the Dacaotan area

表 3 大草滩一、二号岩体铂族元素($\times 10^{-9}$)和 S 含量(wt%)

Table 3 Platinum-group element concentrations ($\times 10^{-9}$) and S contents (wt%) of the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

岩体	岩性	样品号	Os	Ir	Ru	Rh	Pt	Pd	S
		DT03-1	0.030	0.016	0.068	0.006	0.094	0.071	0.035
	橄榄岩	DT03-2	0.058	0.025	0.073	0.008	0.098	0.093	0.046
		DT03-3	0.046	0.021	0.036	0.007	0.204	0.115	0.031
		DT05-1	0.007	0.004	0.020	0.004	0.133	0.112	0.044
一号岩体		DT05-2	0.006	0.006	0.020	0.004	0.060	0.071	-
	ᄣᆂᅶᄖ	DT05-3	0.014	0.010	0.022	0.004	0.074	0.067	-
	件下石	DT05-4	0.006	0.006	0.021	0.005	0.692	0.092	0.019
		DT05-5	0.001	0.002	0.012	0.002	0.078	0.086	0.027
		DT05-7	0.011	0.009	0.065	0.005	6.480	0.081	0.019
		DT05-8	0.003	0.003	0.031	0.002	0.055	0.049	0.017
	tille til	DT01-1	0.083	0.034	0.061	0.020	11.87	0.085	0.047
	仰饱石	DT01-6	0.140	0.086	0.144	0.037	0.170	0.272	0.048
		DT01-2	0.008	0.003	0.010	0.003	0.069	0.039	0.071
一旦些休		DT01-3	0.031	0.012	0.015	0.020	0.622	0.125	-
_5石冲	M월 12 년	DT01-4	0.003	0.013	0.016	0.021	0.702	0.167	0.043
	吽 下 石	DT01-5	0.011	0.006	0.020	0.006	0.096	0.067	0.017
		DT01-7	0.214	0.121	0.264	0.151	2.417	4.104	0.045
		DT01-8	0.012	0.003	0.007	0.002	0.029	0.038	-
		DT01-9	0.004	0.003	0.008	0.003	2.955	0.036	-

注: 推荐值参考 Sun and Sun (2005); "-"表示样品中 S 含量低于检出限

橄榄岩样品微量元素特征与辉长岩较为相似,并呈现明显的 Sr 和 Eu 正异常。

4.3 全岩 PGE、Cu、Ni 和 S 含量

全岩 PGE 和 S 含量分析结果见表 3。2 个岩体亲铜元素 具有相似的特征 表现为 PGE 相对于 Cu 和 Ni 的强烈亏损。 Ni 含量明显低于原始地幔值,部分样品 Cu 含量略高于原始 地幔值。在亲铜元素原始地幔标准化图上表现为左倾型式, 整体与 N-MORB 类似(图6)。Pd/Ir 比值介于 2.5~35.2 之 间 Ni/Cu 比值介于 0.2~41.6 之间。与辉长岩相比 橄榄岩 样品具有低的 Pd/Ir 比值(2.5~5.4)和高的 Ni/Cu 比值 (2.2~41.6)。2 个岩体 Cu/Pd 变化范围为 11024~2819549, NT 1 · ·

Table 4	whole	-rock hd-5i	and Sm-	a isotop	ic compositions	of the roc	ks from tr	ie No. 1 an	a No. 2 1	ntrusions in th	e Dacaotar	i area
岩体	样品号	Rb ($\times 10^{-6}$)	Sr ($\times 10^{-6}$)	$\frac{{}^{87}\mathrm{Rb}}{{}^{86}\mathrm{Sr}}$	$\frac{{}^{87}\mathrm{Sr}}{{}^{86}\mathrm{Sr}}$ (2 σ)	$\left(\frac{{}^{87}\mathrm{Sr}}{{}^{86}\mathrm{Sr}}\right)_i^*$	Sm (×10 ⁻⁶)	Nd ($\times 10^{-6}$)	$\frac{^{147}\mathrm{Sm}}{^{144}\mathrm{Nd}}$	$\frac{^{143}\mathrm{Nd}}{^{144}\mathrm{Nd}}$ (2 σ)	$\left(\frac{^{143}\mathrm{Nd}}{^{144}\mathrm{Nd}} \right)_i^*$	$\varepsilon_{\rm Nd}(t)$
	DT03-1	0.18	9.53	0.053	0.705969(24)	0.70576	0.34	0.95	0.2159	0.513042(6)	0.51265	7.2
	DT03-3	0.30	12.69	0.069	0.705447(26)	0.70518	0.51	1.50	0.2034	0.513041(7)	0.51267	7.6
一号	DT05-1	0.44	299.30	0.004	0.703603(15)	0.70359	1.09	2.61	0.2518	0.513143(3)	0.51268	7.9
岩体	DT05-3	0.37	343.90	0.003	0.703341(17)	0.70333	0.26	0.97	0. 1633	0.513025(6)	0.51273	8.7
	DT05-7	1.12	513.40	0.006	0.703398(14)	0.70337	0.41	1.67	0.1502	0.512953(5)	0.51268	7.8
	DT05-8	1.51	536.30	0.008	0.703688(14)	0.70366	0.28	1.04	0. 1659	0.513012(6)	0.51271	8.4
	DT01-1	0. 29	100.50	0.008	0.704026(15)	0. 70399	0.13	0.53	0. 1494	0.512962(5)	0.51269	8.0
	DT01-6	0.82	216.80	0.011	0.704384(16)	0.70434	0.21	0.83	0. 1555	0.513021(5)	0.51274	8.9
	DT01-2	0.92	464.50	0.006	0.703365(12)	0.70334	1.37	4.85	0.1713	0.513022(4)	0.51271	8.4
二号	DT01-3	2.65	678.40	0.011	0.703798(16)	0.70375	0.48	1.86	0.1563	0.513000(4)	0.51272	8.5
岩体	DT01-4	1.65	485.50	0.010	0.703389(17)	0.70335	1.49	5.29	0.1700	0.513031(4)	0.51272	8.6
	DT01-7	1.62	380.70	0.012	0.703879(18)	0.70383	0.22	0.87	0. 1498	0.513010(6)	0.51274	8.9
	DT01-8	3.39	474.20	0.021	0.703270(15)	0. 70319	1.09	4.37	0.1504	0.512974(4)	0.51270	8.2
	DT01-9	4.69	558.50	0.024	0.703309(17)	0.70321	0.94	4.26	0.1341	0.512926(4)	0.51268	7.9

c .1

表4 大草滩一、二号岩体全岩 Rb-Sr 和 Sm-Nd 同位素组成 1.0

I DL C

注: 大草滩一、二号岩体的初始同位素比值分别利用年龄值 279Ma 和 278Ma 计算

图 3 大草滩地区一、二号岩体 Pearce 元素比值图解 Fig. 3 A plot of Pearce element ratios for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

除一个样品较低外(DT01-7),其余样品 Cu/Pd 比值均大 $\mp 10^{5}$.

2 个岩体全岩 S 含量总体较低(0.017%~0.071%) 这 与岩石中硫化物肉眼不可见的现象一致 S 含量在不同岩性 间没有显著差异。

4.4 全岩 Rb-Sr 和 Sm-Nd 同位素组成

样品的初始⁸⁷ Sr /⁸⁶ Sr 同位素比值介于 0.7032~0.7058 之间 初始¹⁴³ Nd/¹⁴⁴ Nd 比值变化范围较小,介于 0.5126~ 0.5127 之间 & (t = 280Ma) 值较为一致,介于7.2~8.9之

间(表4)。与辉长岩相比,橄榄岩初始⁸⁷ Sr/⁸⁶ Sr 比值略高 (0.7040~0.7058) 初始¹⁴³Nd/¹⁴⁴Nd比值与辉长岩样品没有 明显差异,在 Sr-Nd 同位素图解中,所有样品落在"亏损地 幔"(DM)附近(图7)。

讨论 5

5.1 热液蚀变作用的影响

大草滩一、二号岩体的橄榄岩样品出现较强烈的蛇纹石 化蚀变 而辉长岩较新鲜。热液蚀变通常会导致一些大离子 亲石元素如 Cs、Rb、Ba、K、Sr 活动性增大 而稀土元素和一些 高场强元素如 Nb、Ta、Th、Zr、Hf 在热液蚀变和变质作用下活 动性较弱。大草滩一、二号岩体的 La Sm ,Nd ,Nb 与 Zr 之间 具有明显的正相关 而与 Sr 没有明显相关性(图略) ,表明稀 土元素以及高场强元素在热液蚀变过程中相对稳定,因此 Sm-Nd 同位素体系也应相对稳定。热液活动对铂族元素 特 别是 Pd 的活动性有一定影响(Barnes et al., 1985)。在原始 地幔标准化的亲铜元素配分图中(图6),几个样品表现出从 Pt 到 Pd 下降的趋势,可能表示 Pd 受到一定程度热液蚀变的 影响 而其他铂族元素未收明显影响。因此我们认为岩石稀 土和高场强元素、PGE 和 Sm-Nd 同位素体系可以代表原始岩 石的组成。

5.2 地壳混染

大草滩一、二号岩体样品的 Sr-Nd 同位素组成与东天山 镁铁-超镁铁质岩体一致 表明它们具有相似的岩浆源区(图 7)。其较高的 $\varepsilon_{Nd}(t)$ 值更接近亏损地幔 指示其岩浆源区应 为软流圈地幔。一号岩体橄榄岩的 LREE 亏损, Ni、Cu 和

图4 大草滩一、二号岩体样品主量元素图解

Fig. 4 Variations of SiO₂ , Al_2O_3 , CaO , TiO₂ , $Fe_2O_3^{T}$, and $Na_2O + K_2O$ against MgO for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

PGE 的含量与 N-MORB 指示范围一致(图 6),表明大草滩 一、二号岩体的母岩浆成分可能与 N-MORB 相似。

幔源岩浆经历地壳混染后,会导致 Th 和 LREE 的富集 和 Nb 的负异常,因此 Th/Nb 比值是灵敏的地壳混染指示参 数(Pearce,2008; Li *et al.*,2012b)。2 个岩体的样品均具有 Th 正异常和 Nb 负异常,除一号岩体的橄榄岩外,其余样品 富集 LREE ,显示出一定程度的地壳混染特征(图5)。在 Th/ Nb-Nb/Yb 图解上(图8),所有样品都具有较高的 Th/Nb 比 值 因此落在 MORB-OIB 演化线上方区域,表明了 2 个岩体 可能均经历了不同程度的地壳混染。然而,当我们利用亏损 地幔和上地壳的 $\varepsilon_{Nd}(t)$ 和(Th/Nb)_{PM}作为端元模拟计算大 草滩 2 个岩体的地壳混染程度时发现 2 个岩体的样品点并 未落在亏损地幔和上地壳的二元混合线上,这主要是由于 2 个岩体的样品具有较高的 ε_{Nd} 值(图8)。假设 2 个岩体高的 Th/Nb 比值主要受上地壳混染控制,那么岩体的 $\varepsilon_{Nd}(t)$ 值也 应受到上地壳混染的影响,使得样品在具有较高 Th/Nb 比值 的同时具有较低的 ε_{Nd} 值。因此,大草滩岩体高的 Th/Nb 比 值不应是上地壳混染的结果。根据前人研究,中亚造山带内 镁铁-超镁铁质岩体容易遭受区域内大量分布的同时期的 A 型花岗岩混染,如喀拉通克、红旗岭岩体(Li *et al.*, 2012a; Wei *et al.*, 2013)。这些 A 型花岗岩具有高的 Th/Nb 比值和 $\varepsilon_{Nd}(t)$ 值,如果岩浆遭受其混染,则会导致 Th/Nb 比值升高 的同时不会明显降低岩体的 $\varepsilon_{Nd}(t)$ 值。在大草滩地区周围 发育大量同期的 A 型花岗岩(Rb-Sr 年龄为 294Ma)(Chen and Jahn, 2004) 我们将其作为第三个端元进行混合模拟计 算 结果表明大草滩岩体的 Th/Nb 比值变化主要受 A 型花 岗岩的混染控制,但混染程度较低,约为 1%~5%(图8)。

图 5 大草滩地区一、二号岩体样品 C1 球粒陨石标准化稀土元素配分图(a、c) 和原始地幔标准化微量元素配分图(b、d) (标准化值据 Sun and McDonough, 1989)

Fig. 5 Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element patterns (b, d) for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area (normalization values after Sun and McDonough , 1989)

图 6 大草滩一号(a)、二号岩体(b) 原始地幔标准化亲铜元素配分图

标准化数据和 N-MORB2 据 Barnes and Maier (1999); N-MORB1, OIB, 科马提岩和苦橄岩数据据 Barnes and Lightfoot (2005)

Fig. 6 Primitive mantle-normalized chalcophile element patterns for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

Normalization values and N-MORB2 values are from Barnes and Maier (1999). Values of N-MORB1, komatiite, OIB and picrite are from Barnes and Lightfoot (2005)

图7 大草滩一、二号岩体 Sr-Nd 同位素图解 东天山镁铁-超镁铁岩体据 Qin et al. (2011); DM 和 EM 据 Zindler and Hart (1986) Fig. 7 Whole-rock Sr-Nd isotopic compositions of the rocks

from the No. 1 and No. 2 intrusions in the Dacaotan area Reference area for East Tianshan mafic-ultramafic intrusions is after Qin et al. (2011). DM (depleted mantle) and EM (enriched mantle) data are from Zindler and Hart (1986)

5.3 硫化物饱和与不混熔硫化物的熔离

号岩体橄榄岩 一号岩体辉长岩 二号岩体橄榄岩

10

在 Pt/Y-Pd/Cr 图解中(图9) 2 个岩体样品具有一致变 化趋势 Pt/Y 与 Pd/Cr 呈正相关。在硫不饱和条件下 ,岩浆 分离结晶过程中 Cr 一般进入早期结晶的铬铁矿而 Pd 对于

铬铁矿是高度不相容元素(Peck and Keays, 1990; Wang and Zhou, 2006) 从而使得残余岩浆 Pd/Cr 比值升高; 另一方面, Pt、Y在铬铁矿结晶过程中为不相容元素(Peck and Keays, 1990; Wang and Zhou, 2006) 随着铬铁矿的结晶, Pt/Y 比值 基本保持不变。但在硫饱和条件下,硫化物熔离使得残余相 中的 Pd 和 Pt 含量显著降低 因此 Pd/Cr 和 Pt/Y 比值迅速下 降而呈现正相关关系。因此大草滩一、二号岩体 Pt/Y 和 Pd/ Cr 比值的正相关关系表明岩浆经历了硫化物饱和过程。

铂族元素(PGE) 在硫化物/硅酸盐熔体中具有很高的分 配系数(10⁴~10⁵)(Fleet et al., 1996, 1999) 因此岩浆发生 硫化物饱和时, PGE 在硫化物中强烈富集,导致残余岩浆极 度亏损 PGE 较小程度的硫化物熔离(0.57%)就能够使残余 岩浆 PGE 显著亏损(Lightfoot and Keays, 2005)。因此可以 利用岩石中的 PGE 含量来判断岩浆的硫饱和状态。在硫不 饱和条件下 Cu、Pd 均表现为不相容元素 随着岩浆的结晶 分异 Cu、Pd 在残余岩浆中富集 ,残余岩浆中 Cu/Pd 比值不 会产生明显变化(Barnes, 1990)。在硫化物饱和条件下,亲 铜元素均在硫化物富集 但是 Cu 在硫化物/硅酸盐熔体中的 分配系数(D^{硫化物/硅酸盐})在100~1000之间,而PGE的分配系 数则在 10³~10⁵之间(Barnes and Maier, 1999) 因此残余岩 浆中的 Cu/Pd 比值会显著升高。大草滩一、二号岩体的 PGE 相对 Ni 和 Cu 显示强烈的亏损特征(图 6) 具有较高且变化 一致的 Cu/Pd 比值,比原始地幔值(Cu/Pd = 7000) 高一至两 个数量级(图 9),表明岩体强烈亏损 PGE。前人研究表明, 造成岩体中 PGE 含量低的原因主要有三种: 1) 岩浆源区亏 损 PGE; 2) 母岩浆源区发生低程度部分熔融,形成硫饱和岩 浆 ,硫化物残留在源区(Naldrett, 1999; Barnes and Lightfoot, 2005);3) 岩体母岩浆在深部岩浆房发生了硫化物熔离。如 前所述,该区域内广泛分布赋存铜镍硫化物矿床的镁铁-超

图 8 大草滩地区一、二号岩体样品 Th/Nb-Nb/Yb 图解(a) 和地壳混染模拟(b)

DMM 数据自 Zindler and Hart (1986); Upper crust 数据自 Rudnick and Gao (2003); A-type granite 数据自 Chen and Jahn (2004) Fig. 8 Plots of Th/Nb versus Nb/Yb ratios (a) and (Th/Nb) PM versus $\mathcal{E}_{Nd}(t)$ values (b) for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

15

Data sources: DMM (depleted MORB mantle) from Zindler and Hart (1986); Upper crust from Rudnick and Gao (2003); A-type granite from Chen and Jahn (2004)

图 9 大草滩地区一、二号岩体样品 Cu-Cu/Pd 图解(a) 和 Pd × 100/Cr-Pt/Y 图解(b) 原始地幔(PM) 数据自 Barnes and Maier (1999)

Fig. 9 Plots of Cu versus Cu/Pd ratio (a) and Pd \times 100/Cr versus Pt/Y ratios (b) for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

Data of PM from Barnes and Maier (1999)

镁铁岩体,证明地幔源区不应该是 PGE 亏损的。大草滩地 区一、二号岩体 Sr-Nd 同位素特征显示其岩浆源区与成矿岩 体一致(图 7),因此其源区性质应与该区域内其它岩体 类似。

高程度的地壳混染是造成岩浆发生深部硫化物熔离、 PGE 亏损的主要原因。由于硫在岩浆中的溶解度是温度、压 力、氧逸度、硫逸度的函数(Naldrett et al., 2012), 地壳混染 作用会导致地壳硫加入岩浆中,从而导致岩浆达到硫饱和 (Naldrett, 1999)。另外,实验研究表明,硫的溶解度还与 SiO2 含量有关,当地壳中富Si物质加入,也会导致硫在岩浆 中溶解度降低而造成硫饱和(Irvine, 1975)。因此,当母岩浆 在上升过程中如果受到高程度的地壳混染,可以达到硫化物 饱和 PGE 强烈富集在不混熔的硫化物中,从而使得残余岩 浆亏损 PGE 例如中亚造山带内的黄山东、喀拉通克、红旗岭 等岩体(图 10) (Keays, 1995; Zhou et al., 2004; Li et al., 2012a; Wei et al., 2013)。如上所述,大草滩岩体在上升过 程中经历了低程度地壳混染(<5%)(图8),因此不可能造 成大规模的硫化物饱和、熔离。另外,如果岩体母岩浆发生 了深部硫化物熔离,由于 PGE 强烈赋存在硫化物中,岩体中 PGE 应与硫化物含量呈现明显的相关性。但是,一、二号岩 体中 PGE 与 S 含量之间没有明显的相关性(图 11),表明 PGE 没有赋存在硫化物中。另外 如果母岩浆在上升过程中 发生了硫化物饱和 ,其 Cu/Pd 会出现较大的变化范围 ,而大 草滩岩体 Cu/Pd 比值虽然很高,但变化范围较为一致(图 9) 由此也可以判断 ,大草滩岩体母岩浆可能没有经历深部 岩浆房的硫化物饱和作用。

根据前人研究 地幔大约含有 150×10⁻⁶ ~ 250×10⁻⁶的 S ,而硅酸盐岩浆中S的溶解度在 1000×10⁻⁶左右,因此当地

图 10 大陆造山带内镁铁-超镁铁质岩体亲铜元素配分 型式对比

喀拉通克数据自 Li et al. (2012a);黄山东数据自 Zhou et al. (2004);红旗岭数据自 Wei et al. (2013);周庵数据自 Wang et al. (2013)

Fig. 10 Comparison of primitive mantle-normalized chalcophile elements patterns of mafic-ultramafic intrusions in orogenic belts

Data sources: Kalatongke from Li *et al.* (2012a), Huangshandong from Zhou *et al.* (2004), Hongqiling from Wei *et al.* (2013), and Zhouan from Wang *et al.* (2013)

幔发生低于 25% 的部分熔融时,会造成硫化物残留在源区, 使得部分熔融岩浆亏损 PGE(Keays,1995)。如前所述,大 草滩一、二号岩体的母岩浆成分与 N-MORB 相似,通常 N-MORB 代表亏损地幔 10% ~15% 部分熔融,因此 N-MORB 通 常代表硫化物饱和的岩浆(Keays,1995; Li *et al.*,2012b)。

图 11 大草滩一、二号岩体样品 S 含量与 Ir, Pd 相关性 图解

Fig. 11 Plots of Ir and Pd versus S for the rocks from the No. 1 and No. 2 intrusions in the Dacaotan area

岩体较为一致的 Cu/Pd 也显示了硫化物残留在源区的特征, 这一现象在扬子北缘新元古代的周庵岩体也有报导(图 10) (Wang *et al.*,2013)。因此,大草滩岩体母岩浆的 PGE 亏损 很可能是源区低程度部分熔融导致硫化物残留在源区造成的。

5.4 含矿性

镁铁-超镁铁质岩体是寻找岩浆型铜镍硫化物矿床的重要对象。根据前人研究,形成该类型矿床需要具备以下条件:(1)亏损地幔源区高程度的部分熔融;(2)在岩浆上升过程中没有发生硫化物饱和、熔离;(3)岩浆侵位后由于地壳混染或地壳硫加入造成硫化物饱和、熔离;(4)不混熔的硫化物熔体与足够大体积的硅酸盐熔体发生反应,从而进一步富集亲铜元素;(5)硫化物熔体在适当的空间聚集成矿(Fleet and Pan,1994; Keays,1995; Naldrett,1999; Maier *et al.*,2001; Barnes and Lightfoot,2005)。

将大草滩一、二号岩体与中亚造山带内赋存铜镍硫化物 矿床的黄山东、喀拉通克、红旗岭岩体以及扬子北缘周庵岩 体进行对比发现,这些岩体的 PGE 配分型式均呈现相对 Cu 和 Ni 的亏损型式(图 10)。如前所述,导致这些岩体 PGE 亏 损的原因可能并不相同。黄山东、喀拉通克、红旗岭等成矿 岩体之所以能够形成较大的矿床是因为富含金属元素的母 岩浆在深部岩浆房发生硫化物饱和,造成大规模矿化;而大 草滩一、二号岩体和周庵岩体的母岩浆由于低程度部分熔 融,硫化物残留在源区 岩浆本身硫化物含量很低,加之其在 上升过程中没有经历大规模地壳混染,没有经历大规模的硫 化物饱和,因此基本不具备形成具经济价值铜镍硫化物矿床 的可能。

6 结论

(1)大草滩一、二号镁铁-超镁铁质岩体形成于二叠纪早期,成岩年龄分别为279±2Ma和278±2Ma,与该地区其他 镁铁-超镁铁质岩体形成时代一致。

(2)大草滩一、二号岩体来源于亏损地幔的低程度部分 熔融,硫化物残留在地幔源区,岩浆在上升过程中没有经历 大规模地壳混染、没有经历硫化物饱和,因此不具备形成具 经济价值铜镍硫化物矿床的潜力。

致谢 中国地质调查局南京地质矿产研究所张传林研究 员在野外工作和论文成文过程中给予了大量的帮助;中国科 学院广州地球化学研究所赵太平研究员对本文的完善提出 了宝贵意见;在此一并致以诚挚的感谢。

References

- Barnes SJ, Naldrett AJ and Gorton MP. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology , 53(3-4): 303-323
- Barnes SJ. 1990. The use of metal ratios in prospecting for platinum– group element deposits in mafic and ultramafic intrusions. Journal of Geochemical Exploration, 37(1): 91–99
- Barnes SJ and Maier WD. 1999. The fractionation of Ni , Cu and the noble metals in silicate and sulfide liquids. In: Keays RR , Lesher CM , Lightfoot PC *et al.* (eds.). Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploration. Geological Association of Canada , Short Course Notes Volume 13: 69 – 106
- Barnes SJ and Lightfoot PC. 2005. Formation of magmatic nickel sulfide ore deposits and processes affecting their copper and platinum group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). Society of Economic Geology 100th Anniversary Volume 34: 179 – 214
- Chai F. 2006. Comparison on petrologic geochemistry of three maficultramafic intrusions associated with Ni-Cu sulfide deposits in northern Xinjiang. Ph. D. Dissertation. Beijing: University of Geosciences (in Chinese with English summary)
- Chen B and Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane , NW China: Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences , 23 (5): 691 – 703

- Fleet ME and Pan YM. 1994. Fractional crystallization of anhydrous sulfide liquid in the system Fe-Ni-Cu-S, with application to magmatic sulfide deposits. Geochimica et Cosmochimica Acta, 58 (16): 3369 – 3377
- Fleet ME, Crocket JH and Stone WE. 1996. Partitioning of platinumgroup elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta, 60(13): 2397 – 2412
- Fleet ME , Crocket JH , Liu MH and Stone WE. 1999. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos , 47(1-2): 127 142
- Irvine TN. 1975. Crystallization sequences in the Muskox intrusion and other layered intrusions-II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta , 39(6-7): 991-1008, IN1009-IN1010, 1009-1020
- Keays RR. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos , 34(1-3): 1 18
- Li C , Zhang M , Fu P , Qian Z , Hu P and Ripley HM. 2012a. The Kalatongke magmatic Ni-Cu deposits in the Central Asian Orogenic Belt , NW China: Product of slab window magmatism? Mineralium Deposita , 47(1-2): 51-67
- Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry ,25(7): 1107 – 1113
- Li XH, Sun M, Wei GJ, Liu Y, Lee CY and Malpas J. 2000. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: Evidence for an extremely depleted mantle in the Paleoproterozoic. Precambrian Research , 102 (3-4): 251-262
- Li XH, Qi CS, Liu Y, Liang X, Tu XL, Xie LW and Yang YH. 2005a. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chinese Science Bulletin, 50 (21): 2481 – 2486
- Li XH , Su L , Chung SL , Li ZX , Liu Y , Song B and Liu DY. 2005b. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit: Associated with the $\sim 825 Ma$ South China mantle plume. Geochemistry , Geophysics , Geosystems , 6 (11): 1-16
- Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochemistry Geophysics, 10 (4): Q04010
- Li YQ, Li ZL, Sun YL, Santosh M, Langmuir CH, Chen HL, Yang SF, Chen ZX and Yu X. 2012b. Platinum-group elements and geochemical characteristics of the Permian continental flood basalts in the Tarim Basin , Northwest China: Implications for the evolution of the Tarim Large Igneous Province. Chemical Geology , 328: 278 – 289
- Lightfoot PC and Keays RR. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril'sk Region: Implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology, 100(3): 439 – 462
- Ludwig K. 2001. User's manual for Isoplot/Ex (rev. 2. 49): A geochronological toolkit for Microsoft Excel. Berkeley, CA: Berkleley Geochronology Center, Special Publicarion, No. 1a: 55
- Maier WD , Li CS and De Waal SA. 2001. Why are there no major Ni-Cu sulfide deposits in large layered mafic-ultramafic intrusions? Canadian Mineralogist , 39(2): 547 – 556
- Mao JW , Pirajno F , Zhang ZH , Chai FM , Yang JM , Wu H , Chen SP , Cheng SL and Zhang CQ. 2006. Late Variscan post-collisional Cu-

Ni sulfide deposits in East Tianshan and Altay in China: Principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica , 80(7): 925 - 942 (in Chinese with English abstract)

- Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng SL, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and oreforming processes. Journal of Asian Earth Sciences, 32(2-4): 184 -203
- Mao QG , Xiao WJ , Han CM , Sun M , Yuan C , Yan Z , Li JL , Yong Y and Zhang JE. 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan , Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica ,22(1): 153 – 162(in Chinese with English abstract)
- Naldrett AJ. 1999. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Mineralium Deposita , 34(3): 227 240
- Naldrett AJ, Wilson A, Kinnaird J, Yudovskaya M and Chunnett G. 2012. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints. Mineralium Deposita, 47(3): 209 – 232
- Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48
- Peck DC and Keays RR 1990. Insights into the behavior of precious metals in primitive, S-undersaturated magmas: Evidence from the Heazlewood River complex, Tasmania. The Canadian Mineralogist, 28(3): 553 – 577
- Qian ZZ, Sun T, Tang ZL, Jiang CY, He K, Xia MZ and Wang JZ. 2009. Platinum-group elements geochemistry and its significances of the Huangshandong Ni-Cu sulfide deposit, east Tianshan, China. Geological Review, 55(6): 873 – 884 (in Chinese with English abstract)
- Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237 – 260
- Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). Treatise On Geochemistry, Vol 3: The Crust. Amsterdam: Elsevier, 1 – 64
- Song XY and Li XR. 2009. Geochemistry of the Kalatongke Ni-Cu-(PGE) sulfide deposit, NW China: Implications for the formation of magmatic sulfide mineralization in a postcollisional environment. Mineralium Deposita, 44(3): 303 – 327
- Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2): 207 – 221
- Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345
- Sun YL, Yuan SY and Du AD. 1998. Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation. Spectrochimica Acta Part B: Atomic Spectroscopy ,53(10): 1463 – 1467
- Sun YL and Sun M. 2005. Nickel sulfide fire assay improved for preconcentration of platinum group elements in geological samples: A practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry. Analyst, 130(5): 664 – 669

- Tang DM , Qin KZ , Sun H , Qi L , Xiao QH and Su BX. 2009. PGE geochemical characteristics of Tianyu magmatic Cu-Ni deposit: Implications for magma evolution and sulfide segregation. Acta Geologica Sinica, 83 (5): 680 - 697 (in Chinese with English abstract)
- Wang CY and Zhou MF. 2006. Genesis of the Permian Baimazhai magmatic Ni-Cu-(PGE) sulfide deposit, Yunnan, SW China. Mineralium Deposita , 41(8): 771 - 783
- Wang MX, Wang CY and Sun YL. 2013. Mantle source, magma differentiation and sulfide saturation of the ~637Ma Zhouan maficultramafic intrusion in the northern margin of the Yangtze Block, Central China. Precambrian Research , 228: 206 - 222
- Wei B , Wang CY , Li C and Sun Y. 2013. Origin of PGE-depleted Ni-Cu sulfide mineralization in the Triassic Hongqiling No. 7 orthopyroxenite intrusion, Central Asian Orogenic Belt, NE China. Economic Geology , in press
- Zhang CL , Li ZX , Li XH , Xu YG , Zhou G and Ye HM. 2010. A Permian Large Igneous Province in Tarim and Central Asian Orogenic Blet (CAOB), NW China: Results of a ca. 275Ma mantle plume? GSA Bulletin , 112(11-12): 2020-2040
- Zhang CL and Zou HB. 2013. Comparison between the Permian mafic dykes in Tarim and the western part of Central Asian Orogenic Belt (CAOB) , NW China: Implications for two mantle domains of the Permian Tarim Large Igneous Province. Lithos , 174: 15 - 27
- Zhou MF , Lesher MC , Yang Z , Li J and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district , Eastern Xinjiang , Northwest China: Implications for the tectonic evolution of the Central Asian

orogenic belt. Chemical Geology, 209(3-4): 233-257

Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571

附中文参考文献

- 柴凤梅. 2006. 新疆北部三个与岩浆型 Ni-Cu 硫化物矿床有关的镁 铁-超镁铁质岩的地球化学特征对比.博士学位论文.北京:中 国地质大学
- 毛景文, Pirajno F, 张作衡, 柴凤梅, 杨建民, 吴华, 陈世平, 程松 林,张长青.2006.天山-阿尔泰东部地区海西晚期后碰撞铜镍 硫化物矿床: 主要特点及可能与地幔柱的关系. 地质学报,80 (7): 925 - 942
- 毛启贵,肖文交,韩春明,孙敏,袁超,闫臻,李继亮,雍拥,张继 恩. 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石 U-Pb 同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制 约. 岩石学报, 22(1): 153-162
- 钱壮志,孙涛,汤中立,姜常义,何可,夏明哲,王建中.2009.东天 山黄山东铜镍矿床铂族元素地球化学特征及其意义. 地质论 评,55(6):873-884
- 唐冬梅,秦克章,孙赫,漆亮,肖庆华,苏本勋.2009.东疆天宇岩 浆 Cu-Ni 矿床的铂族元素地球化学特征及其对岩浆演化、硫化 物熔离的指示. 地质学报, 83(5): 680-697