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Rapid Mesozoic–Early Cenozoic crustal growth in the Gangdese area, southern Tibet, has commonly been
attributed to pre-collisional and syn-collisional underplating of mantle-derived magmas. Here, we report on
adakitic magnesian charnockites (i.e., hypersthene-bearing diorites and granodiorites) near Milin, in eastern
Gangdese, that provide new insights into the crustal growth process of the region. Zircon U–Pb analyses of
seven charnockite samples indicate that they were generated in the Late Cretaceous (100–89 Ma). They exhibit
variable SiO2 (53.9 to 65.7 wt.%) contents, high Na2O/K2O (1.6 to 14.4) and Sr/Y (27.2 to 138.7) ratios, low Y (6.5
to 18.5 ppm), heavy rare earth element (e.g., Yb = 0.6 to 1.6 ppm) and Th (0.20–2.39 ppm) contents and Th/La
(0.02–0.23) ratios, with relatively high Mg# (46 to 56) and MgO (2.0 to 4.5 wt.%) values. They are characterized
isotopically by high and slightly variable εNd(t) (+2.4 to +4.0) and εHf(t) (+10.1 to +15.8) values with
relatively low and consistent (87Sr/86Sr)i (0.7042 to 0.7043) ratios. Their pyroxenes have high crystallization
temperatures (876 to 949 °C). The Milin charnockites were most probably produced by partial melting of
subductedNeo-Tethyan oceanic crust thatwas followedby adakiticmelt–mantle interaction,minor crustal assim-
ilation and fractional crystallization of amphibole + plagioclase. The upwelling asthenosphere, triggered by the
roll-back of subductedNeo-Tethyan oceanic lithosphere, provided the heat for slabmelting. Therefore, we suggest
that, in addition to pre-collisional and syn-collisional underplating of mantle-derived magmas, the recycling of
subducted oceanic crust has also played an important role in continental crustal growth in southern Tibet.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Earth differs from other planets in our solar system in that it
possesses continental crust (e.g., Hawkesworth and Kemp, 2006). The
relative contributions of individual continental crust-forming processes,
however, remain the topic of considerable debate (e.g., Hawkesworth
and Kemp, 2006; Rudnick, 1995). Various processes have been proposed
for the growth of continental crust, such as partialmelting of underplated
basaltic lower crust, subduction erosion, lower crustal delamination and
recycling of oceanic lithosphere (e.g., Atherton and Petford, 1993; Clift
e terms of the Creative Com-
orks License, which permits
in any medium, provided the

blished by Elsevier B.V. All rights re
and Vannucchi, 2004; Clift et al., 2009; Jahn et al., 2000; Rudnick, 1995;
Tang et al., 2012). Despite arguments that the volume of the continental
crust has been essentially uniform since the Precambrian (particularly
since 2.5 Ga) (e.g., Armstrong, 1991; Fyfe, 1978; Jahn et al., 2000), Phan-
erozoic juvenile crust has been increasingly recognized in recent de-
cades (e.g., Jahn et al., 2000; Wang et al., 2007; Wu et al., 2000).

The well-known Gangdese batholith in the southern Lhasa block
mainly consists of Jurassic–Early Eocene intermediate-felsic intrusive
rocks (especially granites) (Fig. 1; Chu et al., 2006; Chung et al., 2005;
Debon et al., 1986; Harris et al., 1990; Ji et al., 2009a,b; Wen et al.,
2008a,b; Zhu et al., 2011, 2012, and references therein). Numerous
studies have shown that the Gangdese batholith is characterized by
high and positive εNd(t) (up to +5.5) and εHf(t) (up to +16.5) values
(Chu et al., 2006, 2011; Chung et al., 2005; Harris et al., 1988a,b; Ji
et al., 2009a,b; Ma et al., 2013-a,b; Mo et al., 2007; Wen et al., 2008a,
b; Zhu et al., 2011), indicating remarkable crustal growth in the Phaner-
ozoic. Previous studies have indicated that large-scale Cenozoic and
served.
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Fig. 1. (a) Diagram showing the Lhasa block in the context of the Tibetan Plateau (modified from Zhu et al. (2011)). (b) Geological map of the Lhasa block (modified from Chung
et al. (2009)). (c) Detailed occurrences of Late Cretaceous (ca. 100–78 Ma)magmatic rocks from the Xietongmen–Nyingchi section of the Gangdese batholith with sampling locations (mod-
ified from Ma et al. (2013)). (d) Geological map of the Milin area, southern Tibet (modified from Yin et al. (in press)), showing the sampling locations and ages. The data of Late Cretaceous
(~100–78 Ma) mgmatic rocks in Fig. 1(c) were collected from these references (Chu et al., 2006; Geng et al., 2006; Guan et al., 2010, 2011; Guo, 2011; Guo et al., 2011; Ji et al., 2009a,b;
Jiang et al., 2012; Kang et al., 2010; Ma et al., 2013-a,b; Qu et al., 2007; Quidelleur et al., 1997; Scharer et al., 1984; Wen et al., 2008a,b; Xu, 2010; Zhang et al., 2010a; Zhu et al., 2011, this
study and our unpublished data). The data of 84–78 Ma Langxian adakitic rocks are from Wen et al. (2008b) and Guan et al. (2010). The data of 90–86 Ma Zhongsha charnockites are from
Zhang et al. (2010a). Abbreviations here are: JSSZ = Jinsha suture zone; BNSZ = Bangong–Nujiang suture zone; SNMZ = Shiquan River-Nam TsoMélange Zone; LMF = Luobadui–Milashan
Fault; IYSZ = Indus–Yarlung Suture Zone; SL = Southern Lhasa sub-block, CL = Central Lhasa sub-block; and NL = Northern Lhasa sub-block.
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early Late Cretaceous (ca. 100–80 Ma) underplating from mantle-
derivedmagmas played an important role in crustal growth of southern
Tibet (e.g., Guan et al., 2010, 2011; Ji et al., 2009a,b; Ma et al., 2013-a,b;
Mo et al., 2005, 2006, 2007;Wen et al., 2008a,b; Zhang et al., 2010a; Zhu
et al., 2011). However, the triggering mechanism for these mainly Late
Cretaceous magmatic events, and the crustal growth associated with
them, remains a highly controversial issuewith little consensus. For ex-
ample, geodynamic models proposed to account for early Late Creta-
ceous magmatism and the tectonic evolution of the southern Lhasa
block include low-angle or flat oceanic slab subduction (e.g., Coulon
et al., 1986; Wen et al., 2008a,b), oceanic ridge subduction (e.g., Guan
et al., 2010, 2011; Zhang et al., 2010a, 2011; Zhu et al., 2011, 2012)
and roll-back of subducted oceanic slab (e.g., DeCelles et al., 2007; Ma
et al., 2013-a).

Charnockites are broadly defined as granitoids containing
orthopyroxene (or fayalite + quartz) and, typically, perthite, meso-
perthite or antiperthite (Le Maitre, 2002). The distinctive conditions
associated with their formation (low aH2O (±high CO2), high tem-
perature) and their atypical granitoid mineral assemblages (Opx or
fayalite and commonly Cpx) provide unique criteria for deciphering
the tectonic events associated with their petrogenesis (e.g., Feio
et al., 2013; Frost et al., 2000; Grantham et al., 2012; Janardhan et
al., 1982). Zhang et al. (2010a,b) first reported Late Cretaceous (90–
85 Ma) charnockites associated with the Gangdese batholith, in
the Zhongsha area (Fig. 1). In this paper, we report on adakitic
charnockites (hypersthene-bearing diorites and granodiorites) from
theMilin area, eastern Gangdese batholith (Fig. 1). We present detailed
petrology, mineral compositions, geochronology that extends the
known age range of the charnockites (100–89 Ma), whole rock major
and trace element data that expands on the previously reported compo-
sitional range for charnockites in the region, and the first Sr–Nd–Hf
isotope data for these rocks. The results offer an important opportunity
to delineate the tectonic evolution and genetic relationships between
early Late Cretaceous geodynamic processes and crustal growth in the
Gangdese area, southern Tibet.

2. Geological background and rock characteristics

From south to north, Tibet consists of theHimalaya, Lhasa, Qiangtang,
Songpan–Ganze, and Kunlun–Qaidam blocks (Fig. 1a). The Lhasa block
is bounded by the Indus–Yarlung Tsangpo suture (IYS) to the south
and the Bangong–Nujiang suture (BNS) to the north (Fig. 1a) (Yin and
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Harrison, 2000). It is generally accepted that the BNS formed during the
Late Jurassic–Middle Cretaceous (Yin and Harrison, 2000). The IYS has
been ascribed ages ranging from the Late Cretaceous to latest Eocene
(>65 Ma to b40 Ma) and remains the subject of debate (Aitchison et
al., 2000, 2007, 2008; Dewey et al., 1988; Garzanti, 2008; Zahirovic et
al., 2012). The IYSmarks the closure of the Tethys, and lies on the south-
ern boundary of an extensive Andean-type calc-alkaline magmatic belt
(the Yeba, Sangri, Linzizong volcanic rocks and Gangdese batholith) in
the Lhasa block (Fig. 1b) (e.g., Coulon et al., 1986; Mo et al., 2008;
Murphy et al., 1997; Scharer et al., 1984; Zhu et al., 2008). Based on
the distribution of different sedimentary cover rocks and ophiolites,
the Lhasa block has recently been divided into northern, central, and
southern sub-blocks, separated by the Shiquan River-Nam Tso Mélange
Zone (SNMZ) and the Luobadui–Milashan Fault (LMF), respectively
(Fig. 1a) (Pan et al., 2006; Zhu et al., 2011).

The Trans-Himalayan magmatic belt exposed along the southern
margin of the Lhasa block extends from the Kohistan–Ladakh batholith
in the west through the Gangdese batholith to the Chayu–western
Yunnan–Burma batholith in the east, with a total length of over
3000 km (e.g., Yin and Harrison, 2000). The Gangdese batholith, mainly
consisting of Jurassic–Early Eocene intermediate-felsic intrusive rocks,
is the largest individual body in the Trans-Himalayan magmatic belt
and one of the most important constituents of the southern Lhasa
sub-block (e.g., Chu et al., 2006; Chung et al., 2003, 2009; Debon et al.,
1986; Harris et al., 1990; Ji et al., 2009a; Wen et al., 2008a,b). Recent
studies on Gangdese intermediate-felsic intrusive rocks demonstrated
that an early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up”
took place in the southern Gangdese area (Chu et al., 2006; Chung
et al., 2005; Harris et al., 1988a,b; Ji et al., 2009a; Ma et al., 2013-a; Mo
et al., 2007; Wen et al., 2008a,b; Zhu et al., 2011, 2012). Some Late
Cretaceous mafic intrusive rocks in the Gangdese were also reported,
e.g., ~94 MaGabbros and diorites in the Zhengga area, central Gangdese
(Ma et al., in press-b), and 98–88 Ma mafic intrusive rocks and
~94–92 Ma Milin norites and hornblendites in the Milin and Langxian
area, eastern Gangdese (Guan et al., 2011; Ma et al., 2013-a). Such
Late Cretaceous mafic–felsic magmatic rocks are widely distributed
along the southern margin of the Gangdese region (south of 29° 30′
N) in proximity to the IYS (e.g., Ma et al., 2013-a; Zhu et al., 2012)
(Fig. 1c).

In this study,we report on newly identified charnockites (hypersthene-
bearing diorites and granodiorites) in the Milin area, outcropping on both
the south and north sides of the Yarlung Zangbo River and intruding the
Bala Formation of the Nyainqentanglha Group (Fig. 1d). They are com-
posed of diorites and granodioriteswith aheterogeneous granular texture
(Fig. 2a, b). These intrusive rocks are closely associated with the norite–
hornblendite suites (Ma et al., 2013-a) (Fig. 2a, b). The diorites and grano-
diorites exhibit a gradual transitional relationship, indicating that they
formed coevally. The diorites display massive structure with granular
or mosaic texture (Fig. 2a, c) and generally consist of plagioclase
(35–45 vol.%), hypersthene (10 vol.%), clinopyroxene (5–10 vol.%), am-
phibole (20–30 vol.%), quartz (5 vol.%) andminor biotite andmagnetite
(3–5 vol.%) (Fig. 2a, c, d). The subhedral–anhedral hypersthene
and clinopyroxenegrains are closely associatedwith plagioclase and am-
phibole (Fig. 2c, d), suggesting that they are early crystallization mag-
matic minerals. The granodiorites show subhedral granular texture
and comprise plagioclase (50 vol.%), quartz (15 vol.%), hypersthene
(10–15 vol.%), clinopyroxene (10 vol.%), high-Ti biotite (5 vol.%) with
minor epidote, magnetite and titaniferous magnetite (Fig. 2e, f). The
lack of reaction rims between the pyroxenes and associated minerals
(plagioclase and biotite) indicates that the latter are primary igneous
minerals (Fig. 2e, f).

3. Analytical methods

All silicate mineral analyses were carried out at the State Key Labo-
ratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences (SKLIG GIG CAS) using a JXA-8100 elec-
tron microprobe. An accelerating voltage of 15 kV, a specimen current
of 2.0 × 10−8 A, and a beam size of 1–2 μmwere employed. The analyt-
ical errors are generally less than 2%. The analytical procedures were
described in detail in Huang et al. (2007).

Zircons were separated using standard density and magnetic separa-
tion techniques. Zircon grainswere handpicked andmounted in an epoxy
resin disk, and then polished and coatedwith gold. Cathodoluminescence
(CL) images were taken at SKLIG GIG CAS with a JEOL JXA-8100
Superprobe for inspecting internal morphology of individual zircons
and for selecting positions for U–Pb and Lu–Hf isotope analyses. Zircon
U–Pb dating was conducted at the MC-ICPMS laboratory of the Institute
of Geology and Geophysics, Chinese Academy of Sciences (IGG CAS) in
Beijing. Detailed operating conditions for the laser ablation system and
the ICP-MS instrument and data reduction were the same as those
described in Xie et al. (2008). An Agilent 7500a quadruple (Q)-ICPMS
and a Neptune multi-collector (MC)-ICPMS with a 193 nm excimer ArF
laser-ablation system (GeoLas Plus) attachedwere used for simultaneous
determination of zircon U–Pb ages.

In situ Hf isotope measurements were subsequently undertaken
using LA-ICPMS with a beam size of 60 μm and laser pulse frequency
of 8 Hz with age determinations at the MC-ICPMS laboratory of IGG
CAS. Details of instrumental conditions and data acquisition were
given in Wu et al. (2006). The isobaric interference of 176Lu on 176Hf is
negligible due to the extremely low 176Lu/177Hf in zircon (normally b

0.002). During the analyses for this study, GJ-1 as an unknown sample
yielded a weighted 206Pb/238U age of 609.7 ± 6.3 Ma (2σn, MSWD =
0.97, n = 12) and a weighted 176Hf/177Hf ratio of 0.282015 ± 0.000003
(2σn, MSWD = 1.12, n = 94), which is in good agreement with the
recommended U–Pb age and Hf isotopic ratio (Black et al., 2003;
Wu et al., 2006). During data acquisition of Hf isotopes, 176Hf/177Hf ra-
tios of the zircon standard (MUD) were 0.282504 ± 0.000003 (2σn,
MSWD = 0.71, n = 82).

Rock samples were examined by optical microscopy and selected
whole-rock samples were sawed into small chips and ultrasonically
cleaned in distilled water with b3% HNO3 and then in distilled water
alone, and subsequently dried and handpicked to remove visible contam-
ination. The rocks were crushed and ground in a tungsten carbide ring
mill, and the resulting powder was used for analyses of major and trace
elements, and Sr–Nd isotopes, at SKLIG GIG CAS. Major-element oxides
were analyzed using a Rigaku RIX 2000 X-ray fluorescence spectrometer
at SKLIG, GIG-CAS on fused glass beads. Calibration lines used in quantifi-
cation were produced by bivariate regression of data from 36 reference
materials encompassing a wide range of silicate compositions (Li et al.,
2005), and analytical uncertainties are between 1% and 5%. Trace ele-
mentswere analyzed by inductively coupled plasmamass spectrometry
(ICP-MS), using a Perkin-Elmer Sciex ELAN 6000 instrument at SKLIG
GIG CAS. Analytical procedures are the same as those described by Li
et al. (2002). Repeated runs give b3% RSD (relative standard deviation)
for most elements of reference materials for ICP-MS analysis.

Sr andNd isotopic compositions of selected sampleswere determined
using aMicromass Isoprobemulti-collectormass spectrometer (MC-ICP-
MS) at SKLIG, GIG-CAS. Analytical procedures are similar to those
described in Li et al. (2004) and Wei et al. (2002). The 87Sr/86Sr ratio of
the NBS987 standard and 143Nd/144Nd ratio of the Shin Etsu JNdi-1
standard measured were 0.710288 ± 28 (2σ m) and 0.512115 ± 7
(2σ m; Tanaka et al., 2000), respectively. All measured 143Nd/144Nd
and 86Sr/88Sr ratios are fractionation corrected to 146Nd/144Nd =0.7219
and 86Sr/88Sr = 0.1194, respectively.

4. Results

4.1. Zircon U–Pb geochronology

The LA-ICP-MS in situ zircon U–Pb isotopic data are given in
Supplementary file 1. Zircons from the two granodiorite and five
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diorite samples have crystal lengths of ~100–300 μm and length-to-
width ratios from 1:1 to 2:1, respectively (Fig. 3). The analyzed zircon
grains from seven samples have variable U (17.7–541 ppm) and Th
(9.2–606 ppm) contents, with Th/U ratios ranging from 0.29 to 1.34,
indicating a magmatic origin (Hoskin and Black, 2000).

Zircon U–Pb age data for the seven samples are shown in Fig. 3.
Thirteen and sixteen zircon U–Pb analyses for granodiorite samples
09 TB36 and 09 TB45-1 yielded concordant 206Pb/238U ages of 97 to
100 Ma and 92 to 97 Ma, with weighted mean ages of 99.5 ± 1.1 Ma
(MSWD = 0.11) and 94.7 ± 1.0 Ma, respectively (Fig. 3f, g; Supplemen-
tary file 1). Sixteen zircon U–Pb analyses for diorite sample 09 TB47-1
gave concordant 206Pb/238U ages of 83 to 91 Ma, with a weighted mean
age of 88.5 ± 1.5 Ma (Fig. 3c). Fifteen, fourteen, thirteen and fourteen
analyses were conducted on the other four diorite samples (09 TB21-2,
09 TB42-1, 09 TB46-2 and 09 TB51-2), respectively, giving weighted
mean ages of 91.6 ± 1.0 Ma, 93.6 ± 1.2 Ma, 92.0 ± 1.1 Ma and
91.2 ± 1.4 Ma. Thus, LA-ICP-MS in situ zircon U–Pb dating for the
seven samples suggests that these rocks were generated in the early
Late Cretaceous (100–89 Ma) (Fig. 3, Supplementary file 1) and were
approximately contemporaneous with, though slightly earlier than,
the 90–86 MaZhongsha charnockites (Zhang et al., 2010a). Collectively,
the U–Pb data indicate that charnockites in the eastern Gangdese area
were emplaced over a somewhat longer period (100 to 86 Ma) than
previously recognized.

4.2. Mineral compositions

Major oxide compositions of clinopyroxene and orthopyroxene
are listed in Table 1. Clinopyroxenes grains in the diorites and grano-
diorites mainly consist of augite and diopside, with compositions of
Wo41.0–45.6En35.0–37.6Fs15.7–19.2 and Wo41.0–45.6En34.6–38.2Fs14.0–18.6,
respectively (Table 1). Clinopyroxene grains from the granodiorites
display slightly more variable chemical compositions (Mg-number
[Mg# = Mg2+ / (Fe2+ + Mg2+) × 100] = 70.9–76.4; SiO2 = 48.83–
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52.77 wt.%) than those from the diorites (Mg# = 70.3–73.7; SiO2 =
50.31–51.34 wt.%). All orthopyroxene grains are hypersthenes, with a
composition of Wo1.0–2.3En55.6–61.5Fs36.9–42.3 (Table 1). The hypersthene
grains in the granodiorites also have slightly variable chemical composi-
tions and relatively high Mg# (Mg# = 62.7–66.2; SiO2 = 47.52–
53.58 wt.%) compared to those of the diorites (Mg# = 61.0–64.1;
SiO2 = 50.40–52.23 wt.%). Plagioclase from the dioritesmainly consists
of andesine (Ab49.8–60.46An36.3–48.3) and minor oligoclase (Ab77.0An22.7).
Plagioclase from the granodiorites is composed of andesine with com-
positions of Ab64.2–65.7An31.3–32.6.
4.3. Major and trace element geochemistry

Chemical compositions of the Milin diorites and granodiorites are
listed in Table 2. They have variable SiO2 (53.9–65.7 wt.%), high Al2O3

(16.4–21.1 wt.%), and TiO2 (0.7–0.9 wt.%) contents. They are charac-
terized by variable Mg# (36–56) values, Cr (3.5–95.5 ppm) and Ni
(6.5–44.1 ppm) contents (Table 2). On a total alkalis versus silica
(TAS) diagram, the Milin intrusive rock samples plot in the fields of
gabbroic diorites, diorites and granodiorites (Fig. 4a). Gabbroic diorites
and diorites are hereinafter referred as diorites. Apart from one sample



Table 1
Representative electron probe analyses of clinopyroxene and orthopyroxene phenocrysts.

Sample SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O K2O Cr2O3 Total Mg# Wo En Fs

Othropyroxene
09TB51-2 (2) 50.75 0.03 1.19 25.98 1.06 20.36 0.54 0.08 0.02 0.04 100.05 62.17 1.07 56.74 41.89
09TB51-2 (3) 50.40 0.02 1.35 25.61 1.03 20.19 1.14 0.06 – 0.02 99.80 62.31 2.29 56.27 41.24
09TB51-2 (11) 50.99 0.05 1.35 25.98 1.22 20.15 0.60 0.04 0.01 0.01 100.40 61.93 1.21 56.33 42.34
09TB51-2 (17) 51.02 0.03 1.31 24.83 1.03 20.38 0.56 0.12 0.03 0.03 99.36 63.25 1.14 57.62 40.78
09TB51-2 (21) 51.32 0.09 1.32 24.52 1.10 20.90 0.65 0.03 0.02 0.01 99.96 64.13 1.32 58.55 40.02
09TB51-2 (22) 51.17 0.06 1.32 24.45 1.05 20.62 0.66 0.05 0.01 0.02 99.41 63.87 1.33 58.26 40.22
09TB51-2 (26) 50.58 0.04 1.33 26.23 0.97 20.30 0.57 0.06 0.02 0.02 100.11 61.88 1.13 56.56 42.09
09TB45-2 (1) 50.89 0.08 1.19 24.95 1.18 20.00 0.60 0.15 0.06 0.17 99.26 62.70 1.22 56.82 41.41
09TB45-2 (12) 51.80 0.06 1.28 23.27 1.36 20.83 0.61 0.05 0.02 0.01 99.27 65.25 1.24 59.30 39.29
09TB45-2 (14) 52.41 0.06 1.30 24.36 1.35 19.97 0.65 0.06 0.05 0.07 100.27 63.23 1.33 57.16 41.31
09TB45-2 (21) 53.58 0.12 1.26 23.51 1.09 20.39 0.51 0.09 0.03 0.03 100.61 64.53 1.06 58.67 39.92
09TB45-2 (22) 53.23 0.05 1.19 22.60 1.06 21.33 0.71 0.07 0.02 0.05 100.32 66.43 1.44 60.54 37.75
09TB45-2 (29) 51.60 0.10 1.11 24.16 1.02 21.22 0.65 0.06 0.02 0.02 99.95 64.81 1.30 59.25 39.21
09TB45-2 (30) 51.31 0.06 1.20 23.17 1.10 21.67 0.57 0.07 0.01 0.07 99.22 66.24 1.14 60.71 37.89

Clinopyroxene
09TB50 (4) 51.24 0.10 1.95 10.76 0.61 12.69 21.95 0.71 0.03 0.01 100.05 71.21 44.18 35.53 17.69
09TB50 (1) 50.85 0.16 1.30 10.03 0.64 13.32 22.58 0.63 0.02 – 99.52 73.58 44.74 36.71 16.29
09TB50 (3) 51.03 0.01 1.62 10.30 0.78 12.69 23.01 0.73 – – 100.17 72.10 45.54 34.95 16.89
09TB51-2 (4) 50.31 0.10 1.91 9.84 0.44 13.16 22.94 0.60 0.04 0.00 99.34 73.73 45.64 36.44 15.74
09TB51-2 (10) 50.89 0.11 1.42 11.30 0.53 13.31 21.50 0.56 0.01 0.03 99.65 71.17 42.87 36.92 18.20
09TB51-2 (14) 51.34 0.13 1.24 10.15 0.46 13.56 23.45 0.49 – 0.01 100.83 73.69 45.64 36.72 15.91
09TB51-2 (15) 50.99 0.13 1.67 12.14 0.51 13.67 20.77 0.62 0.01 0.01 100.53 70.26 41.01 37.55 19.23
09TB45-2 (5) 50.96 0.07 2.01 10.25 0.58 13.03 22.76 0.92 – 0.01 100.59 72.72 44.73 35.63 16.36
09TB45-2 (7) 50.50 0.07 2.22 10.66 0.58 13.45 22.03 0.90 0.05 0.04 100.49 72.56 43.21 36.68 16.91
09TB45-2 (8) 51.37 0.07 1.66 10.13 0.59 13.40 22.53 0.79 0.01 0.04 100.57 73.51 44.30 36.67 16.23
09TB45-2 (9) 50.88 0.09 1.64 10.14 0.54 13.55 22.27 0.78 0.01 0.01 99.90 73.70 43.89 37.15 16.18
09TB45-2 (19) 50.67 0.13 2.28 8.57 0.48 13.20 22.97 0.90 0.02 0.00 99.23 76.35 45.99 36.77 13.96
09TB45-2 (24) 51.31 0.15 1.51 9.40 0.43 13.12 22.78 0.73 0.03 – 99.46 74.53 45.62 36.55 15.20
09TB45-2 (28) 51.87 0.11 1.81 9.26 0.42 13.07 22.82 0.83 0.01 0.02 100.20 74.76 45.64 36.38 14.97
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(09TB47-1) with the lowest K2O content (0.36 wt.%), other diorite
and granodiorite samples have medium K2O (0.78–2.08 wt.%) and low
K2O/Na2O (0.20–0.49) values (Figs. 4b and 8a; Table 2), and plot within
the medium-K calc-alkaline field on the SiO2 versus K2O diagram
(Fig. 4b) and in the low-Fe and medium-Fe fields on the SiO2 versus
FeOtotal/MgO diagram (Fig. 4a).

The Milin diorites and granodiorites display low concentrations of
heavy rare earth elements (HREEs) and Y (e.g., Yb = 0.58–1.7 ppm;
Y = 6.5–18.5 ppm) and high Sr (456–907 ppm) contents with high
Sr/Y (27.2–139) and La/Yb (6.0–12.3) ratios, indicating that they
have adakitic affinities (Fig. 4d; Table 2) as defined by Defant and
Drummond (1990). The granodiorite samples have higher Sr, Sr/Y
and La/Yb values than those of most diorite samples with the exception
of one sample 09TB47-1 (Figs. 4d, 5; Table 2). On the chondrite-
normalized rare earth element (REE) diagrams, the diorite samples
show subparallel patterns with relatively enriched ([La/Yb]N = 4.3–7.1)
light REEs (LREEs) and slightly depleted HREEs ([Gd/Yb]N = 1.5–2.0)
(Fig. 5a). Apart from two samples (09TB47-1 and09TB51-2)with obvious
positive Eu anomalies (Eu/Eu* (EuN=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SmN� GdN2
p

) = 1.51 and 1.28),
other diorite samples display negligible Eu anomalies (Eu/Eu* = 0.87–
1.16) (Fig. 5a). These diorites are geochemically characterized by the
enrichment of large ion lithophile elements (LILEs) and the depletion
of HFSEs (Fig. 5b). The granodiorites display more variable REEs
([La/Yb]N = 7.3–10.4) with no to clearly positive Eu anomalies
(Eu/Eu* = 1.00–1.21) (Fig. 5c). All diorites and granodiorites exhibit
strong negative Ta–Nb–Ti anomalies (e.g., [Nb/La]N = 0.18–0.38) and
positive Sr anomalies (Fig. 5d).

4.4. Sr–Nd–Hf isotope geochemistry

Initial isotopic ratios of the Milin diorites and granodiorites were
calculated based on the mean formation age of 92.8 Ma, and the
whole rock Sr–Nd and zircon Hf isotopic composition data are given
in Table 3 and Supplementary file 2, respectively. The Milin diorites
and granodiorites exhibit low and constant initial 87Sr/86Sr isotopic
ratios (0.7042–0.7043) and slightly variable εNd(t) values (+2.4 to
+4.0, average +3.4), which are comparable to those of the Tethyan
basalts (e.g., Mahoney et al., 1998; Xu and Castillo, 2004; Zhang
et al., 2005) (Fig. 6a). They display εNd(t) values that are relatively
high, compared to those of Late Cretaceous (94 Ma) gabbros in the
Zhengga area (Figs. 1c, 6a) (Ma et al., in press-b) and Late Cretaceous
(84–78 Ma) adakitic rocks generated by melting of thickened juvenile
mafic lower crust in the Langxian area (Figs. 1c, 6a) (Wen et al., 2008b).
They have high and variable εHf(t)zircon values (+10.1 to +15.8) and
positive ΔεHf(t) values (+4.5 to +8.2) [where ΔεHf(t) = εHf(t) −
(1.59εNd(t) + 1.28)] and plot close to or above the mantle array
[εHf(t) = 1.59εNd(t) + 1.28] of Chauvel et al. (2008) in the εHf(t) versus
εNd(t) diagram (Fig. 6c). They also have high and positive εHf(t)zircon
values, overlapping with those of zircons from the Ladakh − Kohistan
batholiths (Fig. 6c; Ravikant et al., 2009; Schaltegger et al., 2002).

5. Discussion

5.1. Rock types and tectonic setting

The Milin adakitic charnockites display low FeO / (FeO + MgO)
(0.58–0.67) (Fig. 7a) and A/CNK (0.80–1.01, except for samples 09TB45-
2 and 09TB41-1 with values of 1.07 and 1.10, respectively) (Table 2 and
Fig. 7a). The Milin adakitic charnockites and the Zhongsha charnockites
(Zhang et al., 2009, 2010b) are magnesian and calcic to calc-alkalic
(Fig. 7a–b), consistent with their generation in an arc setting (Frost
and Frost, 2008). Other evidence also support a setting related to the
subduction of the Neo-Tethyan oceanic lithosphere, such as: (1) the
occurrence of the Late Cretaceous Indus–Yarlung Tsangpo ophiolites
(e.g., Malpas et al., 2003; Zhang et al., 2005); (2) the recognition of
Late Cretaceous (ca. 90 Ma) Gangdese belt adakites generated by
melting of subducted slab (e.g., Jiang et al., 2012; Kang et al., 2010;
Zhang et al., 2010b); and (3) the arc magmatic affinity of all early
Late Cretaceous magmatic rocks of the Gangdese batholith, including
mafic rocks (e.g., the enrichment of LREE, LILE and negative Nb–Ta–



Table 2
Major (wt %) and trace element (ppm) data for the Milin granitoids.

Sample 09TB21-2 09TB22 09TB38-1 09TB39 09TB40 09TB41-3 09TB42-1 09TB45-3 09TB46-1 09TB46-2 09TB47-1

Rock type Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite Diorite

Longitude 94° 08′ 37″ 94° 08′ 32″ 94° 03′ 33″ 94° 03′ 26″ 94° 03′ 19″ 94° 03′ 15″ 94° 03′ 10″ 93° 59′ 22″ 93° 58′ 27″ 93° 58′ 27″ 93° 56′ 00″

Latitude 29° 12′ 00″ 29° 12′ 01″ 29° 12′ 38″ 29° 12′ 34″ 29° 12′ 32″ 29° 12′ 31″ 29° 12′ 35″ 29° 09′ 56″ 29° 10′ 58″ 29° 10′ 58″ 29° 10′ 39″

SiO2 56.03 53.99 56.05 59.56 56.4 55.74 56.9 57.34 55.05 55.68 57.95
TiO2 0.69 0.78 0.84 0.67 0.79 0.75 0.77 0.74 0.86 0.83 0.85
Al2O3 17.56 18.1 17.6 17.76 18.18 17.9 17.74 18.55 16.79 18.01 21.09
Fe2O3* 8.03 8.91 7.89 6.21 7.2 7.79 7.53 8.07 9.16 8.47 5.5
MnO 0.12 0.13 0.15 0.1 0.12 0.12 0.12 0.11 0.13 0.12 0.06
MgO 3.58 3.98 4.32 3.19 3.81 3.85 3.6 3 4.54 3.81 1.31
CaO 7.59 7.81 7.4 6.94 7.5 7.61 7.32 6.82 7.58 7.28 6.87
Na2O 3.46 3.16 3.15 3.39 3.36 3.57 3.82 3.36 3.13 3.3 5.17
K2O 1.41 1.01 1.41 1.16 0.92 1.01 0.78 1.15 1.54 1.4 0.36
P2O5 0.14 0.11 0.27 0.21 0.2 0.23 0.23 0.17 0.16 0.17 0.15
LOI 1.08 1.7 0.61 0.57 1.25 1.14 0.91 0.42 0.73 0.65 0.46
Total 99.71 99.69 99.69 99.75 99.74 99.7 99.72 99.74 99.68 99.72 99.77
Mg# 50.98 51.02 56.07 54.48 55.24 53.50 52.73 46.40 53.62 51.17 35.73
A/CNK 0.84 0.88 0.87 0.91 0.90 0.86 0.87 0.97 0.82 0.89 0.99
Sc 17.1 18.4 15.8 12.9 15.1 16.4 13.7 13.9 22.8 17.4 6.8
V 172 213 143 123 141 4175 4254 4004 5067 4640 4801
Cr 18.8 22.8 95.5 40.5 57.2 49.5 38.7 7.91 79.7 33.0 9.91
Co 44.9 58.7 45.6 52.1 54.0 927 967 835 1071 898 467
Ni 16.0 22.2 44.1 23.7 31.6 26.8 26.6 9.41 30.5 19.5 6.49
Ga 17.0 18.8 17.7 16.8 18.1 28.0 42.6 50.6 36.7 31.0 8.74
Ge 1.13 1.22 1.34 0.989 1.12 1.18 1.15 1.03 1.27 1.18 0.712
Rb 30.5 21.7 25.8 22.7 16.5 14.2 8.57 21.3 42.8 37.1 3.05
Sr 479 551 498 592 606 571 644 516 456 509 907
Y 14.9 14.0 18.3 13.0 15.1 16.5 12.3 18.5 16.1 14.9 6.54
Zr 7.38 26.0 32.7 36.3 29.4 30.1 31.8 57.9 39.4 55.6 8.92
Nb 2.56 1.68 5.53 3.67 3.89 3.83 3.15 2.70 3.55 3.79 2.48
Cs 2.26 1.79 0.852 0.335 0.360 0.224 0.273 1.65 2.17 2.24 0.317
Ba 267 217 218 279 253 210 191 187 353 281 108
La 9.88 7.96 13.9 11.0 11.7 11.9 10.8 9.46 12.5 13.2 7.15
Ce 23.0 17.8 33.3 24.3 26.7 28.1 23.8 22.2 27.9 28.6 14.3
Pr 3.04 2.46 4.52 3.21 3.81 3.88 3.30 3.29 3.72 3.70 1.78
Nd 12.6 10.5 19.0 13.2 15.6 15.7 13.7 14.4 15.1 15.1 6.95
Sm 2.79 2.44 3.92 2.76 3.32 3.30 2.92 3.45 3.39 3.23 1.43
Eu 0.772 0.923 1.13 0.941 1.07 1.06 1.00 0.951 1.03 1.03 0.635
Gd 2.61 2.40 3.76 2.58 3.08 3.14 2.75 3.52 3.28 3.05 1.37
Tb 0.443 0.417 0.574 0.406 0.504 0.507 0.422 0.598 0.536 0.490 0.208
Dy 2.61 2.44 3.26 2.40 2.88 2.94 2.32 3.48 3.01 2.68 1.19
Ho 0.536 0.508 0.647 0.476 0.566 0.600 0.467 0.684 0.607 0.543 0.242
Er 1.49 1.38 1.78 1.29 1.52 1.62 1.26 1.81 1.61 1.43 0.637
Tm 0.213 0.199 0.265 0.186 0.219 0.237 0.176 0.252 0.222 0.209 0.0870
Yb 1.42 1.33 1.70 1.21 1.38 1.51 1.16 1.58 1.46 1.34 0.579
Lu 0.221 0.218 0.255 0.190 0.222 0.245 0.185 0.246 0.229 0.205 0.0920
Hf 0.392 0.835 1.04 0.976 0.899 0.880 0.890 1.586 1.082 1.42 0.347
Ta 0.261 0.208 0.326 0.339 0.279 0.252 0.217 0.278 0.320 0.331 0.346
Pb 10.7 7.73 4.75 4.59 3.68 4.54 4.51 9.08 7.25 7.97 9.49
Th 2.30 1.90 1.24 0.464 0.208 0.203 0.442 1.19 2.01 2.70 0.724
U 0.885 0.603 0.132 0.0920 0.0650 0.0800 0.226 0.479 0.509 0.712 0.360
Sr/Y 32.15 39.36 27.21 45.54 40.13 34.61 52.36 27.89 28.32 34.16 138.69
La/Yb 6.96 5.98 8.18 9.09 8.48 7.88 9.31 5.99 8.56 9.85 12.33
Eu*/Eu 0.87 1.16 0.90 1.08 1.02 1.01 1.08 0.83 0.94 1.00 1.40

Sample 09TB47-3 09TB50 09TB51-1 09TB51-2 09TB36 09TB38-2 09TB41-1 09TB45-1 09TB45-2 09TB48-1

Rock type Diorite Diorite Diorite Diorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite

Longitude 93° 56′ 00″ 93° 52′ 12″ 93° 50′ 10″ 93° 50′ 10″ 94° 04′ 34″ 94° 03′ 33″ 94° 03′ 15″ 94° 04′ 33″ 93° 59′ 22″ 93° 54′ 48″

Latitude 29° 10′ 39″ 29° 07′ 06″ 29° 07′ 24″ 29° 07′ 24″ 29° 12′ 41″ 29° 12′ 38″ 29° 12′ 31″ 29° 11′ 50″ 29° 09′ 56″ 29° 09′ 47″

SiO2 54.51 57.91 55.31 53.91 62.47 63.18 64.09 64.39 65.74 63.67
TiO2 0.94 0.68 0.78 0.81 0.64 0.58 0.54 0.55 0.48 0.54
Al2O3 17.07 17.06 18.32 18.50 16.73 17.01 17.53 16.36 16.47 16.46
Fe2O3* 9.78 7.07 8.74 9.66 5.74 5.21 4.81 5.66 4.9 5.81
MnO 0.14 0.11 0.13 0.16 0.10 0.10 0.07 0.10 0.08 0.08
MgO 4.17 2.96 3.58 3.92 2.74 2.38 2.24 2.38 2.01 2.23
CaO 7.45 6.40 7.64 8.06 5.66 5.72 5.29 5.03 4.26 5.30
Na2O 3.39 4.83 3.22 3.24 3.15 3.23 3.16 3.35 3.31 3.65
K2O 1.42 1.67 0.90 0.91 1.61 1.55 0.98 1.48 2.08 1.40
P2O5 0.21 0.17 0.18 0.21 0.20 0.18 0.17 0.12 0.11 0.13
LOI 0.58 0.88 0.90 0.30 0.73 0.64 1.01 0.39 0.37 0.50
Total 99.67 99.73 99.7 99.67 99.78 99.78 99.88 99.79 99.81 99.77
Mg# 49.82 49.41 48.82 48.6 52.67 51.58 52.05 49.52 48.9 47.25

(continued on next page)
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Table 2 (continued)

Sample 09TB47-3 09TB50 09TB51-1 09TB51-2 09TB36 09TB38-2 09TB41-1 09TB45-1 09TB45-2 09TB48-1

Rock type Diorite Diorite Diorite Diorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite Granodiorite

Longitude 93° 56′ 00″ 93° 52′ 12″ 93° 50′ 10″ 93° 50′ 10″ 94° 04′ 34″ 94° 03′ 33″ 94° 03′ 15″ 94° 04′ 33″ 93° 59′ 22″ 93° 54′ 48″

Latitude 29° 10′ 39″ 29° 07′ 06″ 29° 07′ 24″ 29° 07′ 24″ 29° 12′ 41″ 29° 12′ 38″ 29° 12′ 31″ 29° 11′ 50″ 29° 09′ 56″ 29° 09′ 47″

A/CNK 0.83 0.80 0.91 0.88 0.97 0.98 1.10 1.01 1.07 0.96
Sc 19.8 14.3 19.0 17.8 10.1 8.48 8.12 10.7 9.03 8.01
V 4901 3845 4402 4636 115 95.1 87.3 3094 2810 3046
Cr 27.7 9.52 5.17 3.50 37.9 24.0 28.0 10.3 10.0 13.9
Co 1028 854 1035 1174 55.3 45.2 57.2 720 698 644
Ni 18.0 12.5 11.8 11.5 21.6 16.4 16.1 8.73 8.98 10.2
Ga 45.8 47.3 71.2 57.1 16.9 15.0 15.7 6.83 30.6 4.94
Ge 1.22 1.19 1.15 1.20 1.15 1.02 1.01 1.22 1.19 1.03
Rb 28.0 41.6 18.0 17.5 35.2 29.2 21.0 38.8 46.4 29.5
Sr 468 480 514 560 511 517 598 380 387 495
Y 16.4 13.6 14.5 11.1 11.8 10.0 8.77 10.1 9.60 9.05
Zr 21.0 46.1 34.4 23.5 54.6 26.4 45.2 32.0 67.2 30.2
Nb 3.46 2.96 2.82 2.56 4.86 3.76 2.86 2.64 2.52 1.88
Cs 1.77 2.05 1.38 1.64 0.656 0.425 0.426 1.32 0.651 1.01
Ba 269 312 215 212 287 399 258 239 409 349
La 12.4 11.0 10.4 10.0 13.9 12.5 11.5 10.3 11.7 10.3
Ce 28.0 24.1 23.2 21.6 29.5 25.4 22.4 20.7 23.3 20.8
Pr 3.80 3.15 3.06 2.71 3.76 3.28 2.85 2.60 2.83 2.61
Nd 15.4 12.8 12.4 10.6 14.4 12.8 10.5 10.0 10.6 10.0
Sm 3.35 2.78 2.69 2.12 2.84 2.55 2.03 2.01 2.02 2.00
Eu 0.949 0.818 0.913 0.877 0.947 0.902 0.784 0.636 0.686 0.764
Gd 3.21 2.65 2.75 2.05 2.62 2.28 1.91 1.91 1.90 1.95
Tb 0.518 0.416 0.443 0.342 0.396 0.351 0.285 0.303 0.300 0.301
Dy 2.96 2.45 2.59 1.94 2.22 1.97 1.63 1.72 1.68 1.61
Ho 0.594 0.499 0.531 0.408 0.444 0.395 0.328 0.363 0.357 0.329
Er 1.62 1.33 1.49 1.09 1.20 1.02 0.843 1.02 1.01 0.871
Tm 0.236 0.196 0.208 0.156 0.170 0.149 0.121 0.152 0.146 0.142
Yb 1.43 1.25 1.41 1.07 1.13 0.966 0.788 1.01 1.00 0.849
Lu 0.227 0.193 0.234 0.177 0.172 0.153 0.115 0.170 0.173 0.132
Hf 0.635 1.17 0.980 0.683 1.36 0.710 1.13 0.881 1.95 0.829
Ta 0.303 0.277 0.315 0.348 0.432 0.329 0.309 0.317 0.317 0.262
Pb 7.60 9.25 8.11 6.80 5.56 5.85 4.36 8.63 11.0 6.39
Th 1.91 1.03 2.40 2.05 0.875 0.230 0.239 1.72 2.39 1.29
U 0.515 0.289 0.676 0.569 0.205 0.0850 0.0880 0.638 0.640 0.407
Sr/Y 28.54 35.29 35.45 50.45 43.31 51.70 68.19 37.62 40.31 54.70
La/Yb 8.67 8.80 7.38 9.35 12.30 12.89 14.56 10.20 11.70 12.12
Eu*/Eu 0.89 0.92 1.02 1.29 1.06 1.14 1.21 1.00 1.08 1.18

Fe2O3* = Total Fe2O3 content; Mg# = Mg2+ / (Mg2++Fe2+) ∗ 100; δEu = EuN / (SmN × GdN)1/2.
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Zr–Hf–Ti anomalies) (e.g., Ji et al., 2009a; Ma et al., 2013-a,b; Wen
et al., 2008a,b). In summary, geological evidence overwhelmingly
suggests that the Milin adakitic charnockites were generated in an
arc setting.

5.2. Petrogenesis

As noted above, the Milin charnockites have adakitic affinities,
e.g., high SiO2, Sr contents, Sr/Y and La/Yb ratios and low Y and Yb
contents (Fig. 4d). It is now widely recognized that adakitic rocks
may be generated by a variety of mechanisms (Castillo, 2006, 2012),
such as melting of subducted young and hot oceanic crust (Defant and
Drummond, 1990), partial melting of thickened basaltic lower crust
(Atherton and Petford, 1993; Kay andKay, 1993;Wen et al., 2008b), par-
tial melting of subducted continental crust (Wang et al., 2008), crustal
assimilation and low-pressure fractional crystallization from parental
basaltic magmas (Castillo et al., 1999; Li et al., 2009), high-pressure
crystallization (involving garnet) of mafic magmas derived frommantle
wedge peridotites (Macpherson et al., 2006), and magma mixing
between felsic and basaltic magmas (Streck et al., 2007). We consider
these alternative processes in the following sections with specific refer-
ence to the Milin adakitic charnockites.

First, the Milin adakitic charnockites could not be generated by
high- or low pressure crystallization from parental basaltic magmas.
Given that high-pressure crystallization involving garnet will cause
a decrease in HREE and Y contents, the Sr/Y and Dy/Yb ratios in the
residual magmas will increase with increasing SiO2 contents (Davidson
et al., 2007; Macpherson et al., 2006). However, the Milin adakitic
rocks do not show such trends in their chondrite-normalized rare earth
element patterns (Fig. 5a) or on Sr/Y and Dy/Yb vs. SiO2 diagrams
(Fig. 8c–d). During low-pressure fractional crystallization involving
olivine and pyroxene, the derivedmagmas should show a clear decrease
in Mg# values as well as Cr and Ni contents with the increasing SiO2

contents (Castillo et al., 1999), but the Mg# values of the Milin adakitic
charnockites are relatively constant (Fig. 4f). The decrease of MgO and
FeO contents with increasing SiO2 suggest that the Milin adakitic rocks
probably underwent amphibole fractionation. However, amphibole
fractionation is seldom isolated and is typically accompanied by plagio-
clase removal in natural systems (Moyen, 2009), and the net effect of
amphibole and plagioclase fractionation is an increase in La/Yb, decrease
in Dy/Yb, and moderate increase or even decrease in Sr/Y, which is
observed in most arc adakites (Moyen, 2009). In addition, although
amphibole is rather efficient in changing the trace element budget, the
amount of amphibole that can be formed is limited by the Fe and Mg
budget to a small mass fraction (in the region of 20%), strongly reducing
its potential effect (Moyen, 2009). Themodeling calculation for the sim-
ilar Archean TTGs also indicates that this sort of fractionation is appar-
ently not enough to evolve a non-adakitic suite into an adakitic one
(Moyen et al., 2007). Therefore, amphibole + plagioclase fractionation
can contribute to the geochemical trends observed, but has little or no
potential to actually yield adakitic signatures in the first place (Moyen,
2009).
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Second, it is also unlikely that magma mixing between felsic and
basaltic magmas produced the Milin adakitic charnockites. The magma
mixing model generally needs mantle-derived basaltic and crust-
derived felsic end-members (e.g., Streck et al., 2007). In the Milin area,
candidates for mantle-derived basaltic and crust-derived felsic end-
members are most plausibly represented by the 95–90 Ma Gangdese
mafic intrusive rocks (Guan et al., 2011; Ma et al., 2013-a,b) and the
84–78 Ma Langxian adakitic granites derived by melting of thickened
continent crust (Guan et al., 2010; Wen et al., 2008b), respectively.
However, some Milin adakitic granodiorite samples (e.g., 09TB45-1,
09TB45-2 and 09TB48-1) with the highest SiO2 contents have the
highest εNd(t) and εHf(t) values. Their εHf(t) values are higher than
those of the reported coeval basaltic and felsic endmembers (Figs. 4f, 6
and 8), which are inconsistent with the magma mixing model (e.g.,
Streck et al., 2007). In addition, the diorites and granodiorites with var-
iable SiO2 (54 to 66 wt.%) contents have approximately constant Sr–
Nd–Hf isotopic compositions (Fig. 6), which are also inconsistent with
the model of magma mixing.

Third, theMilin adakitic charnockites could not have been generated
by partial melting of thickened, delaminated or subducted continental
lower crust. Thickened continental lower crust-derived adakitic rocks
occur widely in southern Tibet (e.g., Chung et al., 2003, 2009; Guan
et al., 2012; Guo et al., 2007; Hou et al., 2004; Ji et al., 2012; Wen
et al., 2008a). For instance, the Late Cretaceous (84–78 Ma) Langxian
adakitic rocks derived from thickened lower crust (Wen et al., 2008a)
are slightly younger than the ~90 Ma Milin adakitic charnockites.
Commonly, adakitic rocks derived from thickened lower crust are char-
acterized by relatively lowMgO orMg# values similar to those of exper-
imental melts frommetabasalts and eclogites (Rapp andWatson, 1995;
Rapp et al., 1999; Sen and Dunn, 1994). Previous studies also showed
that adakitic rocks generated by melting of thickened lower crust
have lower MgO, HREE, Y contents and higher Sr/Y, (La/Yb)N and
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(Dy/Yb)N ratios than those of adakites derived from subducted oceanic
slabs (e.g., Chen et al., 2011; Guan et al., 2012; Macpherson et al., 2006;
Wang et al., 2006, 2007). Thus, the slightly higher MgO, HREE and Y
contents, lower SiO2 and K2O contents, and lower Sr/Y, (La/Yb)N and
(Dy/Yb)N ratios of the Milin adakitic charnockites are inconsistent
with them being derived from thickened lower crust (Figs. 4 and 5).
On the other hand, the Milin adakitic charnockites have εNd(t) values
(+2.4 to +4.2) overlapping with those (+0.9 to +3.2 and −0.2 to
+4.1) of Late Cretaceous thickened lower crust-derived adakitic rocks
(Wen et al., 2008a) and mantle-derived mafic rocks in southern Tibet
(Guan et al., 2011;Ma et al., in press-b)within analytical error, although
Table 3
Sr and Nd isotope data for the Milin granitoids.

Sample Rock type
87
Rb/86Sr 87Sr/86Sr ± 2σ (87Sr/86Sr)i 1

09TB21-2 Diorite 0.1844 0.704579 ± 12 0.704335 0
09TB22 Diorite 0.1138 0.704521 ± 12 0.704371 0
09TB38-1 Diorite 0.1495 0.704561 ± 12 0.704363 0
09TB39 Diorite 0.1108 0.704430 ± 11 0.704283 0
09TB41-3 Diorite 0.0720 0.704427 ± 11 0.704332 0
09TB45-3 Diorite 0.1191 0.704448 ± 11 0.704291 0
09TB46-2 Diorite 0.2109 0.704496 ± 12 0.704218 0
09TB47-1 Diorite 0.0097 0.704231 ± 14 0.704218 0
09TB47-3 Diorite 0.1730 0.704451 ± 12 0.704223 0
09TB50 Diorite 0.2501 0.704564 ± 14 0.704234 0
09TB51-2 Diorite 0.0904 0.704346 ± 14 0.704227 0
09TB36 Granodiorite 0.1992 0.704668 ± 14 0.704405 0
09TB38-2 Granodiorite 0.1632 0.704559 ± 13 0.704344 0
09TB41-1 Granodiorite 0.1017 0.704411 ± 10 0.704277 0
09TB45-1 Granodiorite 0.2954 0.704592 ± 12 0.704202 0
09TB45-2 Granodiorite 0.3472 0.704645 ± 11 0.704187 0
09TB48-1 Granodiorite 0.1727 0.704475 ± 13 0.704247 0

87Rb/86Sr and 147Sm/144Nd are calculated using whole-rock Rb, Sr, Sm and Nd contents in T
εNd(t) = [(143Nd/144Nd)sample/(143Nd/144Nd)CHUR−1] × 10000. TDM = ln[(143Nd/144Nd)sam
In the calculation, (143Nd/144Nd)CHUR = 0.512638, (147Sm/144Nd)CHUR = 0.1967, (143Nd/14
with slightly higher and more homogeneous εNd(t) values (Fig. 6c).
Moreover, they also exhibit slightly higher and more homogeneous
εHf(t) values (+12 to +16, corresponding to Indian Ocean MORB)
than those of the Zhengga gabbros and Langxian adakitic rocks (+2.9
to +11.1 and +6.6 to +20.0, respectively) (Fig. 6c). They also have
clearly lower Th (0.20–2.39 ppm) and Th/La (0.02–0.23) values and
higher Mg# (46–56) than those (1.84–6.95 ppm, 0.14–0.32, 32–39) of
the thickened lower crust-derived Langxian adakitic rocks (Fig. 9 and
Table 2).

Overall, all lines of evidence indicate that the Milin charnockites are
different from adakitic rocks derived from thickened lower crust, and
47Sm/144Nd 143Nd/144Nd ± 2σ (143Nd/144Nd)i εNd(t) TDM (Ma)

.1342 0.512788 ± 6 0.512707 3.68 698

.1410 0.512786 ± 6 0.512700 3.55 768

.1246 0.512750 ± 6 0.512674 3.03 688

.1270 0.512737 ± 6 0.512660 2.77 729

.1269 0.512754 ± 7 0.512677 3.09 700

.1444 0.512797 ± 6 0.512709 3.71 783

.1294 0.512760 ± 6 0.512681 3.17 710

.1241 0.512768 ± 8 0.512693 3.41 653

.1316 0.512775 ± 5 0.512695 3.45 701

.1307 0.512767 ± 7 0.512687 3.30 708

.1203 0.512781 ± 13 0.512708 3.70 605

.1194 0.512714 ± 6 0.512641 2.40 709

.1201 0.512738 ± 6 0.512665 2.87 674

.1168 0.512738 ± 7 0.512667 2.89 652

.1214 0.512794 ± 7 0.512720 3.94 591

.1157 0.512796 ± 7 0.512725 4.04 555

.1203 0.512790 ± 7 0.512717 3.88 591

able 3.
ple–(143Nd/144Nd)DM]/[(143Sm/144Nd)sample–(147Sm/144Nd)DM]/λ (DePaolo, 1988).
4Nd)DM = 0 · 51315, (147Sm/144Nd)DM = 0 · 2136 and t = 92.8 Ma.
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could not have originated from a thickened mafic lower crust. In addi-
tion, their geochemical characteristics (Figs. 4b and 6a, Table 2) also do
not match those (εNd(t) b−3.0; K2O >3.0 wt.%; Th = 8.0–30.4 ppm;
Th/La = 0.15–0.71) of high-K calc-alkaline adakitic rocks derived from
subducted continental crust (Wang et al., 2008) or delaminated conti-
nental lower crust (e.g., Wang et al., 2006; Xu et al., 2002).

We suggest that theMilin adakitic charnockites weremost probably
generated by partial melting of subducted Neo-Tethyan oceanic crust.
All the Milin adakitic charnockites have higher SiO2 (54 to 66 wt.%)
contents (Table 2). Apart from one diorite sample (09 TB47-1) with
the lowestMg# (35.7) andMgO (1.31 wt.%), the diorite and granodiorite
samples have high Mg# (46.4 to 56.1) values and MgO (2.01 to
4.54 wt.%) contents similar to those of slab-derived adakitic melts
(Mg# > ~47;Martin, 1999; Smithies, 2000), indicating that themagmas
interacted with themantle wedge peridotites during ascent. In addition,
the Milin adakitic magmatic rocks have depleted Nd isotope composi-
tions (εNd(t) = +2.4 to +4.0) (Table 3) comparable to those of the
Tethyan basalts (εNd(t) = +3.01 to +12.3; e.g., Mahoney et al., 1998;
Xu and Castillo, 2004; Zhang et al., 2005) (Fig. 6a). Their higher Hf
isotope compositions (εHf(t)zircon = +10.1 to +15.8) (Supplementary
File 2) are also similar to those of Indian Ocean MORB (Ingle et al.,
2003). The slightly higher MgO, HREE and Y contents and lower SiO2,
K2O and Th contents and Sr/Y, Th/La, (La/Yb)N and (Dy/Yb)N ratios of
the Milin adakitic charnockites are consistent with those of adakites de-
rived from subducted oceanic crust (e.g., Chen et al., 2011; Guan et al.,
2012; Macpherson et al., 2006; Wang et al., 2006, 2007) (Figs. 4, 5 and
9). In addition, they have lowTh andTh/La values similar to those of typ-
icalMORB (Fig. 9a), indicating that they contain amain component from
subducted basaltic oceanic crust (Wang et al., 2006, 2007, 2008). There-
fore, all evidence suggests that they were probably derived from partial
melting of subducted oceanic crust. In addition, their primitive-mantle-
normalized trace element patterns are comparable to high SiO2 adakite
(HSA) (Martin et al., 2005) and typical adakites as defined by Defant
et al. (1991) (Fig. 10).
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On the discrimination diagrams for low-SiO2-adakites (LSAs) and
high-SiO2-adakites (HSAs) (Fig. 11), the Milin adakitic samples mainly
plot in the field of HSAs derived from interactions between slab-derived
melts andmantle peridotites (e.g.,Martin et al., 2005; Rapp et al., 1999).
Their relatively variable εNd(t) values and correlations between SiO2

contents and 147Sm/144Nd ratios or εNd(t) values (Fig. 8e and g) suggest
thatminor crustal contamination may have occurred during the forma-
tionof someMilin adakitic rocks.However, the relativelyuniform initial
87Sr/86Sr ratios and negative correlations between Mg# and εNd(t)
values are inconsistent with extensive crustal contamination. Thus, we
suggest that the Milin adakitic rocks likely underwent a two-stage
contamination-evolution process: 1) slab-derived melts were first
contaminated bymantle peridotite duringmelt ascent, which increased
their MgO and compatible elements contents (Fig. 4e); and 2) themelts
then underwent minor contamination with assimilated metamorphic
basement rock and fractional crystallization of amphibole + plagioclase
during passage through the crust. In this study, three adakitic granodio-
rite samples (09TB45-1, 09TB45-2 and 09TB48-1) with higher εNd(t)
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(+3.9–+4.0) and εHf(t) (+12.8–+15.8) values were probably directly
from subducted oceanic slab, whereas the other three adakitic granodio-
rite sampleswith lower εNd(t) (+2.4–+2.9) and εHf(t) (+10.6–+12.2)
values possibly underwent minor crustal contamination or had a minor
sedimentary contribution (Fig. 6; Table 3). The Milin adakitic diorites
with high MgO contents (3.0–4.5 wt.%) were probably generated by
interactions between slab-derived melts and mantle peridotite (Fig. 6).

5.3. Geodynamic processes and implications for continental crustal growth

5.3.1. Geodynamic processes
Zircon U–Pb dating results indicate that a Late Cretaceous (ca.

100–80 Ma) magmatic “flare up” occurred in the southern Lhasa block
(e.g., Ji et al., 2009a; Ma et al., 2013-a; Wen et al., 2008b). Various
geodynamic models have been proposed for this magmatic event,
such as normal-angle subduction (100–85 Ma) and subsequent
low-angle or flat-slab subduction (85–80 Ma) (e.g., Wen et al.,
2008a), oceanic ridge subduction (e.g., Guan et al., 2010; Zhang et al.,
2010b) and roll-back of subducted slab (e.g., Ma et al., 2013-a).
All these processes have the potential to generate the adakites
(e.g., Defant and Drummond, 1990; Guivel et al., 2003; Gutscher et
al., 2000; Kay et al., 1993; Tang et al., 2012; Yogodzinski et al., 1995).

The early Late Cretaceous mafic magmas (e.g., Guan et al., 2011;
Ma et al., 2013-a,b; Wen et al., 2008b) and adakites (e.g., Jiang et al.,
2012; Kang et al., 2010; Zhang et al., 2010a and this study) found in
the region are consistent with the mid-ocean ridge subduction model
in some aspects, given that the rocks indicate high temperatures and
require mantle contributions that could be attributed to mantle up-
welling through a slab window (Thorkelson and Breitsprecher,
2005; Sisson et al., 2003). If the mid-ocean ridge subduction model
is correct, the lack of any age trend in the distribution of mafic
rocks and adakites (Fig. 1c; e.g., Guan et al., 2011; Jiang et al., 2012;
Kang et al., 2010; Ma et al., 2013-a,b; Wen et al., 2008b; Zhang et al.,
2010a and this study) would imply a spreading ridge sub-parallel to
the trench. However, the subduction of a spreading ridge that is sub-
parallel to the trench is likely to cease because of the dominance of
young buoyant oceanic crust (e.g., Thorkelson, 1996), rather than lasting
for over 15 Ma.

Although the ca. 100–85 Ma “normal-angle” subduction model
(Wen et al., 2008a) can account for the magmatism over a wide area,
partialmelting of subducted oceanic crust occurs only under a restricted
set of circumstances (800–1000 °C at depths of 70–80 km, Peacock
et al., 1994; Sen and Dunn, 1994). A simple normal-angle subduction
model does not explain the occurrence of the Milin adakitic rocks
and the restriction of a contemporary magmatic “flare-up” to only the
Gangdese sector of the southern Lhasa block (Ma et al., 2013-a).

We therefore prefer amodel where subduction of Neo-Tethyan oce-
anic lithosphere occurred at low-angle up to the early Late Cretaceous
as discussed in detail in Ma et al. (2013-a). If slab roll-back began at
this time, then it can readily account for the contemporary Gangdese
magmatic “flare-up” and subsequent underplating of mafic magmas
based on the following evidence.

Late Jurassic–Early Cretaceous magmatic rocks occur widely in the
central and northern Lhasa sub-block (Zhu et al., 2008, 2009a,b, 2011,
2012), whereas contemporaneous magmatic rocks only occur sporad-
ically in the southern Lhasa sub-block (Wen et al., 2008a), suggesting
that the magmatic front moved further north due to flat or low-angle
subduction in the Early Cretaceous (Fig. 12) (Coulon et al., 1986; Kapp
et al., 2005; Zhang et al., 2004, 2012). In our recent study, we reported
on the high-temperature (up to 1340 °C) norites in the Milin area,
which originated from asthenosphere–lithosphere interactions due
to the asthenospheric upwelling as a result of the roll-back of
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subducted Tethyan oceanic slab (Ma et al., 2013-a). The descending slab,
migrating backwards in the asthenospheric mantle (i.e., roll-back), left
low-pressure regions resulting in the upwelling of asthenosphere
(Gvirtzman and Nur, 1999). This is consistent with the ~93 Ma Milin
norites that contain a high-temperature and depleted asthenospheric
component (flat REE patterns and high εHf(t) values) (Ma et al.,
2013-a). Yogodzinski et al. (2001) suggested that adakites can be
formedwhenever the edge of a subducting plate is warmed up or ablat-
ed by mantle flow. Asthenospheric upwelling or the triggered mantle
flow probably provided the high thermal regime (800–1000 °C at
depths of 70–80 km, Sen and Dunn, 1994) required for partial melting
the subducting oceanic crust to generate theMilin adakitic charnockites
(Fig. 13).

We used the two-pyroxene geothermometer (Taylor, 1998) to
estimate the formation temperature of the Milin adakitic charnockites.
Our temperature calculations suggest that the Milin charnockitic
diorites and granodiorites have high crystallization temperatures of
876 to 949 °C and 889 to 914 °C, respectively. Collectively, the
coeval occurrence of high-temperature noritic and charnockitic
magmatism (Ma et al., 2013-a; Zhang et al., 2010b and this study)
and granulite-facies metamorphism (Zhang et al., 2010a) in the
Milin area provide strong evidence for an early Late Cretaceous re-
gional thermal event, consistent with the asthenospheric upwelling
as a result of the roll-back of subducted Tethyan oceanic slab (Ma et al.,
2013-a).

5.3.2. Implications for continental crustal growth
Tonalite–trondhjemite–granodiorite (TTG) comprise a large propor-

tion of Archean felsic crust (Martin, 1999, Martin et al., 2005; Mints et
al., 2010) and many compositional features of the TTGs are shared by
Cenozoic adakites, which are commonly inferred to have formed by
partialmelting of a subducted young and hot oceanic slab. The Cenozoic
rocks have been viewed as partial analogs of the Archean TTG series, al-
though their contribution to post-Archean crustal growth is generally
considered to have been minor (Defant and Drummond, 1990;
Drummond and Defant, 1990; Drummond et al., 1996; Martin, 1999;
Martin andMoyen, 2002; Martin et al., 2005). In recent years, however,
the contribution of recycled oceanic crust to Phanerozoic crustal growth
has been demonstrated by a number of studies (e.g., Collins et al., 2011;
Drummond et al., 1996; Martin et al., 2005; Tang et al., 2012). Several
dynamic models have been proposed to provide the thermal require-
ments needed for slab melting, such as subduction of young and hot
slab (e.g., Defant andDrummond, 1990), ridge subduction–slabwindow
processes (e.g., Sisson et al., 2003; Tang et al., 2012) and low-angle or



Fig. 13. The conceptual diagram illustrating the tectonic and magmatic rock evolution of the Gangdese during the early Late Cretaceous (~100–89 Ma). The upwelling astheno-
sphere, triggered by roll-back of subducted Neo-Tethyan oceanic lithosphere, provides the required high thermal regime for slab melting.
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flat-slab subduction (e.g., Gutscher et al., 2000). Based on the results of
this study, we suggest that the asthenospheric upwelling as a result of
the roll-back of subducted Tethyan oceanic slab can also provide the
required high thermal regime for partial melting of subducting oceanic
crust (Fig. 13).

Both the Mesozoic–Early Tertiary Gangdese and the Ladakh batho-
liths along the southern margin of the Lhasa block consist mainly of
granites with high and positive εNd(t) (up to +5.5) and εHf(t) (up to
+16.5) values (e.g., Chu et al., 2011; Chung et al., 2005; Debon et al.,
1986; Harris et al., 1988a,b, 1990; Ji et al., 2009a; Mo et al., 2007;
Ravikant et al., 2009; Wen et al., 2008b; Zhu et al., 2011, 2012, and ref-
erences therein). Previous studies suggested that they were generated
by remelting of underplated juvenile basaltic crust (e.g., Chu et al.,
2011; Chung et al., 2003, 2009; Ji et al., 2009a; Mo et al., 2005, 2007;
Wen et al., 2008a). Mo et al. (2008) first suggested the contribution of
syncollisional “slab melts” to continental crustal growth in southern
Tibet. The pre-collisional (ca. 90 Ma) adakite belt, thought to have
been derived from melting of subducted oceanic slab, stretches a
>200 km length in the eastern Gangdese batholith along the IYTS
(Fig. 1c) (e.g., Guan et al., 2010; Kang et al., 2010; Zhang et al., 2010a,
b; Jiang et al., 2012 and this study). The similarities in the isotopic com-
positions of these slab-derived adakites to those of granitoids in the
Gangdese and Ladakh batholiths (Fig. 6b) thus suggest that, in addition
to mantle-derived components (Chu et al., 2006; Ji et al., 2009a,b; Ma
et al., 2013-a,b; Wen et al., 2008a,b; Zhu et al., 2011), recycled oceanic
crustal components also played significant role in the evolution and
growth of the continental crust in the southern Lhasa block in the
Mesozoic (Fig. 13).

6. Conclusions

The Milin adakitic charnockites were emplaced in the early Late
Cretaceous (99–89 Ma), simultaneous with the early Late Cretaceous
(ca. 100–80 Ma) magmatic “flare-up” in the southern Gangdese area.
They were most probably produced by partial melting of subducted oce-
anic crust, followed by subsequent adakitic melt–mantle interactions,
minor crustal assimilation, and fractional crystallization of amphibole +
plagioclase. The upwelling asthenosphere, which was triggered by the
roll-back of flatly subducted slab, provided the required heat for slab
melting. In addition to pre-collisional and syn-collisional underplating
of mantle-derived magmas, the results of this study demonstrate that
recycling of subducted oceanic crust also played a significant role in
continental crustal growth in southern Tibet.
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