卢氏八宝山花岗斑岩地球化学特征及成因研究

曾令君^{1,2}, 周 栋^{1,2}, 星玉才³, 赵太平¹, 姚军明¹, 包志伟^{1*} (1. 中国科学院 广州地球化学研究所 矿物学与成矿学重点实验室, 广东 广州 510640; 2. 中国科学院大学, 北京 100049; 3. 河南省地矿局 第一地质调查院, 河南 洛阳 471023)

摘 要:河南省卢氏县八宝山岩体位于华北克拉通南缘、东秦岭造山带西段。岩体呈筒状,可能为古火山机 构岩颈相的超浅成侵入体。岩体的形成时代为(146±2) Ma(LA-ICPMS 锆石 U-Pb 年龄)。岩体边缘相为钾长花 岗斑岩、中心相为黑云母二长花岗斑岩。岩体出现以铁为主的多金属矿化,与区内同时代成矿花岗岩有着显 著的差别。岩石 SiO₂含量较高(64.8% ~ 73.5%),ACNK 值为 0.98 ~ 1.56,属于准铝质-过铝质钾玄岩系列花岗 岩类。轻稀土相对富集(La/Yb)_N=2.29 ~ 23.8,Eu 异常不显著(*ð*Eu=0.61 ~ 1.39),Rb、Ba、U 和 K 等元素强烈富 集,Sr、Nb、Ti 和 P 等元素显著亏损,属于高分异的 I 型花岗岩,并且钾长花岗斑岩具有相对较高的演化分异 程度。岩体具有较低的_{6Nd}(*t*)初始值(-19.46 ~ -16.4)和较古老的二阶段模式年龄(2.49 ~ 2.27 Ga),与锆石 Hf 同 位素模式年龄一致,表明该岩体的源区物质以壳源物质为主。斑岩体为碰撞后的拉伸环境下地壳物质部分熔 融的产物。根据黑云母地质压力计估算,八宝山岩体的的侵位深度为 1.89 ~ 2.55 km,与该岩体浅成相的地质 产状一致,推测其深部可能存在有利于斑岩 Cu-Au-Mo-Pb-Zn 的多金属成矿区段。 关键词:高分异 I 型花岗岩;Nd 同位素;斑岩;八宝山岩体;华北克拉通南缘 中图分类号: P581; P597; P595 文献标识码:A 文章编号: 0379-1726(2013)03-0242-20

Geochemistry and petrogenesis of the Babaoshan granite porphyry in Lushi county, Henan Province

ZENG Ling-jun^{1,2}, ZHOU Dong^{1,2}, XING Yu-cai³, ZHAO Tai-ping¹, YAO Jun-ming¹ and BAO Zhi-wei^{1*}

1. Key Laboratory for Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou

3. No.1 Institute of Geological Survey, Geological Bureau of Henan Province, Luoyang 471023, China

Abstract: The Babaoshan granite porphyries in Lushi county, Henan province, is tectonically located at the southern margin of North China Craton, in the western part of the East Qinling orogen. The granite porphyries occur as circular column which might have been the neck of volcanic edifice. Formed at (146±2) Ma (LA-ICPMS zircon U-Pb), the intrusion is unique for the associated iron predominated ore deposit with accompanying Cu-Mo-Pb-Zn mineralization, which makes it a meaningful target for metallogenetic investigation in the East Qinling area. The Babaoshan granite intrusion is a zoned granitic stock consisting of syenogranite porphyry in the outer zone and biotite monzogranite porphyry in the inner part. The granite porphyries have high SiO₂ (64.8% - 73.5%) contents, with ACNK values varying between 0.98 - 1.56. It can be classified as metaluminous-peraluminous granite. The rocks are relatively enriched in LILE such as Rb, Ba, U, K and LREE ((La/Yb)_N= 2.29 - 23.8), depleted in Sr, Nb, Ti, and P, with insignificant Eu anomalies. The geochemical characteristics of the

^{510640,} China

^{2.} University of Chinese Academy of Sciences, Beijing 100049, China;

收稿日期(**Received**): 2012-11-14; 改回日期(**Revised**): 2013-01-14; 接受日期(**Accepted**): 2013-02-05 基金项目: 国家重点基础研究发展计划项目(2012CB416602)

作者简介: 曾令君(1989-), 女, 硕士研究生, 矿床学专业。E-mail: zenglingjun0213@163.com

^{*} 通讯作者(Corresponding author): BAO Zhi-wei, E-mail: baozw@gig.ac.cn, Tel: +86-20-85290105

Babaoshan granite porphyries suggest a highly fractionated I-type origin, while the syenogranite porphyry is more fractionated. The low $\varepsilon_{Nd}(t)$ (-19.46 - -16.4) and rather old model ages (Nd T_{DM2} = 2.46 Ga to 2.27 Ga) are consistent with Hf isotopic compositions. It demonstrates that the rocks might have been derived from partial melting of crustal material. It possibly derived from partial melting of the lower crust under extensional tectonic regime following the collision condition. Biotite geobarometer calculations show that the Babaoshan granite porphyries may form at depth of 1.89 km to 2.55 km, which is consistent with the sub-volcanic occurrence. We deduce that there might be an underlying porphyry Cu-Mo-Pb-Zn polymetallic mineralization section at depths.

Key words: highly fractionated I-type granite; Nd isotope; porphyry; Babaoshan granite; southern margin of the North China Craton

0 引 言

秦岭造山带是中国大陆中央造山带的重要组成 部分,总体上是由华北、秦岭和扬子三板块沿两个 主缝合带(商丹和勉略带)经历早古生代、晚古生代晚 期和中生代早期三次板块俯冲、碰撞造山作用形成 的;之后又经历了中新生代强烈的陆内造山作用叠 加,是一个典型的大陆复合造山带^[1]。秦岭造山带, 特别是华北克拉通南缘中生代花岗质岩浆活动强烈, 与之有关的 Mo、W、Pb、Zn 和 Au 等多金属矿产特 别发育,是我国最重要的多金属成矿带之一^[2-3]。华 北南缘中生代花岗岩时空分布、源区组成、成因演 化规律、成矿专属性及其与秦岭造山带演化和华北 克拉通中生代岩石圈减薄过程的联系一直是一个研 究的热点^[4-6]。

河南省卢氏县八宝山岩体位于华北克拉通南 缘、东秦岭造山带的西段,岩体为火山颈相的超浅 成斑岩,目前已发现的矿化类型以铁矿化为主,并 伴有少量的铜、钼和铅锌矿化。该岩体目前已获得 了精确的同位素年龄(146±2) Ma (LA-ICPMS 锆石 U-Pb^[7]),但是该岩体及有关矿床目前尚缺少深入的 地质、地球化学研究。为探讨岩体的地质、地球化 学特征及成因过程,本文在详细的野外地质工作基 础上,对八宝山岩体进行了岩石地球化学及同位素 地球化学研究,在此基础上探讨了岩体成因。

1 区域地质背景

秦岭造山带是中国大陆中央造山带的重要组成 部分,它由2个主缝合带(商丹和勉略缝合带)和3个 块体(华北、秦岭和扬子)组成^[1,8]。华北南缘是秦岭 造山带中最重要的中生代构造-岩浆-成矿带, 其范 围北至三宝断裂(三门峡-宝丰), 南部以栾川断裂为 界(图 1)。

卢氏八宝山地区的大地构造属于华北克拉通南 缘、东秦岭造山带的西段。华北南缘结晶基底为新 太古界太华群中深变质岩系,盖层为古元古界熊耳 群、中元古界官道口群、新元古界栾川群和陶湾群。 区内出露的地层主要是中元古代的碳酸盐岩和碎屑 岩。

八宝山地区主要发育了一系列近东西向的逆冲 断层和挤压破碎带及复式褶皱。并且其褶皱形态自 北向南由开阔逐渐变为线状紧密型,断裂密度相应 由小变大。区内成矿岩体均为中生代岩浆作用的产 物,岩性包括闪长岩、钾长花岗斑岩及二长花岗斑 岩。岩体出露面积为 0.6~1.3 km²,呈北北东向的近 平行排列,自西向东依次为:蒲镇沟闪长岩带、银家 沟-夜长坪花岗斑岩带、后瑶峪-八宝山花岗斑岩带、 银家河闪长岩带。工业矿床主要见于银家沟-夜长坪 花岗斑岩带和后瑶峪-八宝山花岗斑岩带上,而中性 闪长岩带仅发现零星的矿化。区内矿产较为丰富, 包括业已探明的曲里小型铁锌铜矿床^[10]、银家沟大 型多金属硫铁矿床^[11]、夜长坪大型钨钼矿床^[12]、后 瑶峪小型铁铅锌矿床^[13]及八宝山小型铁铜矿床。

2 岩体地质及岩相学特征

八宝山岩体位于河南省卢氏县境内。区内出露 的地层主要是中元古界官道口群含硅质条带、条纹 的白云岩。岩体侵入中元古界官道口群白云岩中, 与围岩边界平直,呈岩株状产出。岩体地表出露似 一头东尾西的鱼形,长约2km,面积约1.05km²。在 600 m标高以上,岩体与围岩接触带内倾,呈喇叭

Fig.1 Geological sketch map of the Qinling-Dabie orogen (after the reference [9]) 1-第三系; 2-中生代碎屑沉积岩; 3-古生代海相碳酸盐岩与陆源碎屑岩; 4-古元古界秦岭群黑云斜长片麻岩和斜长角闪岩; 5-中元 古界熊耳群火山岩及中上元古代海相碎屑沉积岩; 6-新太古界太华群片麻岩、麻粒岩和混合岩; 7-加里东期花岗岩; 8-白垩纪火山 岩; 9-燕山期花岗岩; 10-燕山期闪长岩; 11-推断断裂; 12-断裂; 13-城市。

形,600 m 标高以下接触带陡直呈筒状。铁矿体主要 产于岩体和围岩的接触带上。

岩体可分为两个岩相:中心相为黑云母二长花 岗斑岩、边缘相为钾长花岗斑岩,两岩相一般呈渐 变过渡关系,局部见指状穿插关系。铁矿化主要发 生在岩体与围岩的接触带。岩体及围岩中分布较多 不同岩性的岩脉,如正长斑岩脉、花岗斑岩脉、闪 长斑岩脉(图 2)。岩体与围岩接触带局部发育有夕卡 岩,但夕卡岩与铁矿化无明显的空间联系。据野外 产状及定年结果(LA-ICPMS 锆石 U-Pb, (146±2) Ma), 两种不同的岩性应为同期岩浆作用的产物^[7]。

黑云二长花岗斑岩呈灰白色,斑状结构,块状构造(图 3a)。斑晶主要是斜长石、钾长石、石英及 少量黑云母、角闪石(图 3b)。石英斑晶占 15%,大

据河南省卢氏县地质勘查研究所《1:2000河南省卢氏县八宝山铁铜矿区地形地质及工程布置图(2011年)》修改。1-第四系;2-中元古 界官道口群;3-黑云母二长花岗斑岩;4-钾长花岗斑岩;5-花岗斑岩;6-正长斑岩;7-闪长斑岩;8-断层。

图 3 八宝山岩体典型岩石的手标本和岩相学特征

Fig.3 Photos showing the petrography of the Babaoshan granite porphyries (a)黑云母二长花岗斑岩手标本特征; (b)黑云母二长花岗斑岩镜下特征; (c)他形石英, 边缘被熔蚀; (d)钾长石碳酸盐化; (e)黑云母绿泥石化; (f)钾长花岗斑岩手标本特征; (g)钾长花岗斑岩镜下特征; (h)钾长石的卡斯巴双晶, 发生泥化。

小 0.75~1.25 mm, 斑晶呈他形, 边缘有被熔蚀的现 象(图 3c); 斜长石斑晶占 30%, 颗粒较大, 约 2~3.5 mm, 自形程度较好, 主要为中长石, 具有环带构 造、常见聚片双晶和卡纳复合双晶, 也有少量更长 石, 具有细而密的聚片双晶, 有些斜长石完全被绢 云母置换, 呈斜长石的假像; 钾长石约 25%, 大小 0.6~2 mm, 钾长石表面较浑浊, 内部和边缘有熔蚀 现象, 有些钾长石内部发生了碳酸盐化、绢云母化 和泥化(图 3d)。黑云母和角闪石含量较少(约 5%), 镜 下可见角闪石的黑云母化及黑云母绿泥石化现象 (图 3e)。基质和斑晶成分相同, 主要是钾长石、斜长 石和石英, 含量约占 30%。副矿物以磁铁矿、榍石 和磷灰石为主, 含量很少。

钾长花岗斑岩呈肉红色,斑状结构,块状构造 (图 3f)。斑晶主要是钾长石和石英(图 3g),含量 55%。 石英斑晶 25%,粒度比黑云母二长花岗斑岩中的石 英斑晶稍大,约 1~2.5 mm,斑晶呈他形,石英斑晶 熔蚀现象明显;钾长石斑晶 30%,粒度较大 2~5 mm,钾长石具有卡斯巴双晶(图 3h),有些钾长石发 生泥化、绢云母化、碳酸盐化,并且多数钾长石和 石英斑晶的边缘有被熔蚀的现象,这是浅成斑岩特 有的现象^[14]。斑晶和基质成分相同,由钾长石和石 英组成,含量约占 45%。副矿物以黄铁矿、锆石和 金红石为主,含量很少。

3 分析方法

本文选取了 33 件较新鲜的花岗岩样品进行全 岩主元素和微量元素、Nd 同位素和黑云母电子探针 分析。

主元素和微量元素分析在中国科学院广州地球 化学研究所同位素地球化学国家重点实验室完成。 主元素采用碱熔玻璃片 X 射线荧光光谱法(XRF)测 试,分析仪器为 Rigaku ZSX 100e,分析精度优于 2%。样品处理工作主要包括样品的烧失、称样(0.7~ 1 g 的样品于一次性痰杯中,加入 8 倍量的 LiBO₄) 以及在 XRF 玻璃熔片震荡电热熔融炉中将样品熔成 玻璃片待测。微量元素分析采用酸溶法。用 ICP-MS 测试,所用质谱仪为 Thermo Plasma-Quad Excell ICP-MS。在质谱分析过程中用 Rh 元素作为内标来 进行内部校正,纯的元素标样作为外部校正^[15]。实 验室标样 BHVO-2(玄武岩)、GSR-1(花岗岩)、 GSR-2(花岗岩)和 GSR-3(花岗岩)作为参考标准,分 析精度优于 5%, 详细分析流程见刘颖等^[16]。

Nd 同位素分析测试在中国科学院广州地球化 学研究所同位素地球化学国家重点实验室的 Micromass ISOPROBE 型多接收电感耦合等离子体 质谱仪(MC-ICPMS)上进行。对 Nd 同位素分析所需 样品采用酸淋滤法进行预处理,以减少后期蚀变作 用对同位素比值的影响。对 Sm 和 Nd 的分离和纯化 是用石英交换柱用 1.7 mL Teflon 粉末作为交换介质 完成的。实验所用的 Nd 标样为国际标样 Shin-Etsu JNdi-1^[17]。¹⁴³Nd/¹⁴⁴Nd 比值用 ¹⁴³Nd/¹⁴⁴Nd=0.72190 进行校正。详细的实验流程和分析方法见梁细荣 等^[18]和韦刚健等^[19]。

电子探针定量分析在南京大学内生金属矿床成 矿机制研究国家重点实验室完成,使用的仪器是 JEOL JXA-8800M 电子探针。工作条件为:加速电压 15 kv,加速电流 10 nA,束斑直径小于 1 μ m,所有 测试数据都进行了 ZAF (atomic number effect, absorption effect and fluorescence effect)修正。使用的 标样均为美国国家标准局的矿物标样。详细的实验 流程和分析方法见 Amli *et al.*^[20]和 Roeder^[21]。

4 分析结果

4.1 全岩主元素和微量元素地球化学

八宝山斑岩体岩石主元素和微量元素分析结果 见表 1。

由于岩石普遍、强烈的蚀变作用(绢云母化、高 岭土化和碳酸盐化等),样品的烧失量较高,因此在 进行地球化学投图时将样品去除烧失量后,重新换 算为100%。钾长花岗斑岩和黑云母二长花岗斑岩都 比较富硅, SiO2变化于 64.8%~73.5%之间。岩体碱 含量较高, 钾长花岗斑岩的 Na₂O 和 K₂O 含量分别 为 0.24% ~ 1.98%和 8.00% ~ 11.7%, K₂O+Na₂O 总量 为 8.32% ~ 13.0%; 黑云母二长花岗斑岩的 Na₂O 和 K₂O 含量分别为 2.02% ~ 3.88%和 3.93% ~ 5.76%, K₂O+Na₂O 总量为 8%左右。在 TAS 岩石分类图解上 (图 4)样品位于碱性系列和亚碱性系列的过渡区。其 中, LSB-31 样品由于钾长石化较强烈, K₂O 含量较高, 导致在 TAS 图解上落入正长岩范围。其余的点主要 落入花岗岩和石英二长岩范围, 与岩石的实际矿物 组成的定名基本一致。由于岩体富钾,钾长花岗斑 岩(K₂O/Na₂O=4.97 ~ 24.7)和黑云母二长花岗斑岩 (K₂O/Na₂O=1.01~2.79)样品落入钾玄岩系列(图 5)。

				1able 1	I he analyze	data of maj	OT (%), Fare	earth and tra	ce elements	(µg/g) for th	e Babaoshan	granite porp	hyries				
样母								铮	甲长花岗斑岩	գլո		×-					
;	LSB-8	LSB-10	LSB-11	LSB-15	LSB-19	LSB-20	LSB-26	LSB-31	LSB-32	LSB-33	LSB-39	LSB-40	LSB-43	LSB-44	LSB-47	LSB-51	LSB-67
SiO ₂	71.0	70.6	69.8	70.2	69.1	68	69.7	66.4	71.4	69.5	71.1	72.6	72.1	73.5	73.4	70.7	71.5
TiO2	0.30	0.22	0.50	0.22	0.18	0.13	0.14	0.23	0.18	0.22	0.13	0.12	0.16	0.12	0.16	0.25	0.15
Al_2O_3	14.9	14.5	16.4	14.6	14.2	14.6	13.1	16.3	14.6	14.6	15	14.9	15.3	14.8	14.2	14.9	14.1
$\mathrm{Fe_2O_3}^\mathrm{T}$	1.45	1.5	0.65	1.96	1.58	1.18	2.39	1.19	1.54	2.97	1.21	1.08	0.52	0.77	0.5	1.57	0.62
MnO	0.01	0.01	0.05	0.02	0.03	0.05	0.07	0.01	0	0	0	0	0	0	0	0.02	0.01
MgO	0.24	0.2	0.58	0.19	0.56	0.55	09.0	0.20	0.14	0.08	0.29	0.15	0.14	0.18	0.15	0.24	0.52
CaO	0.14	0.08	0.55	0.23	1.48	0.51	0.76	0.32	0.09	0.09	0.37	0.1	0.11	0.15	0.13	1.23	0.89
Na ₂ O	0.41	0.47	0.47	0.57	0.6	1.98	0.65	1.32	0.39	0.44	0.57	0.5	0.6	0.32	0.51	0.34	0.63
K_2O	9.42	10.5	10.0	9.74	9.16	9.85	69.6	11.6	9.68	10.2	8.6	8.4	8.99	8	9.79	6.82	9.79
P_2O_5	0.05	0.02	0.25	0.1	0.06	0.04	0.04	0.09	0.05	0.03	0.01	0.01	0.02	0.01	0.03	0.12	0.04
IOI	1.61	1.26	1.82	1.61	2.53	2.59	2.27	1.62	1.36	1.19	2.15	1.65	1.49	1.74	0.66	3.28	1.19
Total	9.66	99.5	99.3	99.5	9.66	9.66	99.5	5'66	9.66	99.5	9.66	9.66	9.66	9.66	9.66	9.66	9.66
K ₂ O/Na ₂ O	22.9	21.9	20.9	16.8	15.2	4.97	14.7	8.81	24.4	23.1	15	16.7	14.9	24.7	18.9	19.9	15.5
ANK	1.36	1.19	1.40	1.27	1.3	1.04	1.13	1.1	1.31	1.23	1.47	1.5	1.42	1.6	1.24	1.87	1.21
ACNK	1.33	1.18	1.29	1.22	1.04	0.98	1.01	1.05	1.29	1.21	1.37	1.47	1.4	1.56	1.21	1.46	1.07
K ₂ O+Na ₂ O	9.83	11.0	10.5	10.3	9.76	11.8	10.3	13.0	10.0	10.7	9.17	8.9	9.6	8.32	10.3	7.17	10.4
D.I.	91.6	93.6	91.9	92.1	92.9	94.0	92.8	94.3	92.5	92.2	91.2	91.5	92.5	91.1	95.3	88.6	95.2
Rb	298	308	241	294	262	314	237	350	307	284	206	221	201	250	262	239	264
Ba	2424	3134	2646	2816	3391	6729	3968	3739	2811	4117	2255	2298	2339	1784	4395	2049	3994
Th	19.8	10.7	5.72	19.6	23.4	25.2	18.3	22.6	25.1	13.3	17.8	23.5	23.6	24.8	20.7	20.1	21.4
U	5	2.27	3.82	4.28	4.52	2.35	3.59	5.75	2.36	2.63	1.58	1.86	2.42	3.57	4.76	2.89	3.24
Nb	34.3	32.6	33.3	31.3	32.1	36.8	29.3	35.4	32.6	30.3	23.4	23.3	30.9	25.6	37.7	31.4	32.2
Sr	140	140	108	146	134	93.7	86.7	148	115	140	125	100	121	86.2	131	16	06
Zr	139	133	143	133	140	131	118	156	145	128	181	188	208	166	114	176	147
Та	3.31	2.72	2.94	2.7	2.85	4.45	3.09	2.88	3.06	2.84	1.65	1.65	2.33	2.97	3.68	2.88	3.01

III	1									并长化区址								
If is the independent of the independent of the independent of the independent inde	件亏	LSB-8	LSB-10	LSB-11	LSB-15	LSB-19	LSB-20	LSB-26	LSB-31	LSB-32	LSB-33	LSB-39	LSB-40	LSB-43	LSB-44	LSB-47	LSB-51	LSB-67
	Hf	3.93	3.84	4.08	3.76	3.82	3.83	3.32	4.39	3.96	3.46	4.77	5	5.35	4.72	3.55	4.39	4.13
Y(83(13)(12)(13)(11)(14)(13)(12)(13)(14)(13)(12)(13)(13)(14)(13)(13)(13)(14)(13)<	Ti	1686	1326	1277	1302	1071	826	816	1321	1031	1201	732	746	606	710	926	1399	915
(5a)91173181179174184151200166162179187186187179173179173179173179173179173 <th< td=""><td>$\mathbf{Y} = \mathbf{Y}$</td><td>18.3</td><td>13.0</td><td>14.2</td><td>17</td><td>13.3</td><td>10.1</td><td>14.6</td><td>21.3</td><td>12.0</td><td>11.7</td><td>8.01</td><td>11.8</td><td>13.8</td><td>15.6</td><td>19.3</td><td>14.2</td><td>9.62</td></th<>	$\mathbf{Y} = \mathbf{Y}$	18.3	13.0	14.2	17	13.3	10.1	14.6	21.3	12.0	11.7	8.01	11.8	13.8	15.6	19.3	14.2	9.62
1000-GMM 2.8 2.0 2.1 <th2.1< td=""><td>Ga</td><td>19.1</td><td>17.5</td><td>18.1</td><td>17.9</td><td>17.4</td><td>18.4</td><td>15.1</td><td>20.0</td><td>16.6</td><td>16.2</td><td>17.9</td><td>18.7</td><td>18.6</td><td>18.9</td><td>18.1</td><td>17.9</td><td>16.8</td></th2.1<>	Ga	19.1	17.5	18.1	17.9	17.4	18.4	15.1	20.0	16.6	16.2	17.9	18.7	18.6	18.9	18.1	17.9	16.8
1 1 7 1	1000*Ga/Al	2.48	2.22	2.07	2.31	2.31	2.37	2.18	2.30	2.14	2.09	2.25	2.37	2.28	2.44	2.4	2.26	2.23
Cc 740 185 441 381 596 105 714 823 744 723 224 435 134 819 811 819 811 819 811 819 819 811 819 819 811 819 819 819 811 819 819 819 819 819 819 819 819 819 819 819 819	La	41.2	7.67	23.5	16.7	35.5	4.94	7.55	8.73	20.2	27.2	17.8	12.3	24.9	68.8	33.9	49.7	7.24
IP80927500532601137237231536539131536539137538131536539131538531531531531531531531531531531531531531531531531531533<	Ce	74.0	18.5	44.1	38.1	59.6	10.5	17.4	18.2	43.2	47.4	27.3	22.4	45.2	128	68.1	87.9	11.9
Me 269 113 64 209 197 558 111 949 206 772 824 931 167 406 28 299 117 245 244 545 451 545 245 244 545 451 545 545 549 117 245 116 114 114 114 114 114 114 114 114 114	Pr	8.09	2.7	5.02	5.32	6.01	1.37	2.57	2.31	5.86	5.14	2.62	2.59	4.87	13.4	8.1	9.18	2.87
8m 418 226 238 396 306 141 273 224 310 234 310 235 43	PN	26.9	11.3	16.4	20.9	19.7	5.58	11.1	9.49	20.6	17.2	8.24	9.31	16.7	40.6	28	29.9	11.7
Ha1060.620.750.850.670.640.610.700.830.650.610.620.160.820.160.820.160.830.360.140.65170.360.340.340.330.340.330.340.350.340.350.36<	Sm	4.18	2.26	2.38	3.96	3.09	1.41	2.73	2.24	3.10	2.53	1.45	1.75	2.74	5.45	4.3	4.15	2.45
Gd 369 184 2.27 3.28 2.7 1.56 2.34 2.51 2.51 2.56 1.60 2.46 3.85 3.6	Eu	1.06	0.62	0.75	0.85	0.67	0.64	0.61	0.70	0.83	0.63	0.65	0.71	0.82	1.05	0.69	1.14	0.63
Tb0.560.340.340.350.410.250.440.550.360.360.360.360.360.360.360.370.360.370.360.370.360.370.360.360.370.360.370.360.360.360.360.360.360.360.360.360.370.360.3	Gd	3.69	1.84	2.27	3.28	2.7	1.36	2.34	2.51	2.51	2.36	1.29	1.61	2.48	4.6	3.85	3.6	1.93
Dy3.332.152.193.152.381.712.733.652.262.021.311.832.492.953.482.71.83Ho0.680.690.510.500.530.530.530.530.530.540.550.560.390.39Hr2.161.481.671.951.571.131.642.381.491.301.411.531.922.771.68Tm0.330.240.260.320.320.390.370.390.240.350.240.350.360.36Lu0.350.240.360.370.341.300.310.310.341.371.472.070.360.37Vb2.411.732.040.320.340.310.310.340.350.340.370.36Lu0.360.370.360.370.390.370.390.320.310.310.360.370.36Lu0.360.370.340.370.340.350.360.370.360.370.360.370.36Lu0.360.370.390.310.340.350.320.340.350.360.370.360.370.36Lu0.360.370.310.360.370.360.370.360.370.360.370.360.37Lu1.37 <th< td=""><td>Tb</td><td>0.56</td><td>0.34</td><td>0.34</td><td>0.52</td><td>0.41</td><td>0.25</td><td>0.44</td><td>0.52</td><td>0.39</td><td>0.36</td><td>0.19</td><td>0.29</td><td>0.41</td><td>0.6</td><td>0.59</td><td>0.51</td><td>0.32</td></th<>	Tb	0.56	0.34	0.34	0.52	0.41	0.25	0.44	0.52	0.39	0.36	0.19	0.29	0.41	0.6	0.59	0.51	0.32
Ho0.660.490.510.660.510.390.580.820.470.450.30.440.550.630.770.560.39Tr2.161.481.671.921.571.131.642.381.491.391.031.411.531.922.271.681.18Tr0.330.240.250.320.360.370.390.240.390.240.230.240.290.360.360.360.36Lu0.350.340.350.340.350.310.340.350.310.340.350.340.370.340.360.360.360.36Lu0.350.340.350.340.350.340.350.340.350.340.360.360.370.360.360.36Lu1.411.732.040.350.340.350.340.350.340.350.340.360.360.360.36Lu1.451.411.732.040.350.340.350.340.350.340.360.360.340.36Lu1.354.319.350.340.350.340.360.340.340.360.340.340.34Lu1.353.040.350.340.350.340.350.340.350.340.360.340.34Lu1.353.04 </td <td>Dy</td> <td>3.23</td> <td>2.15</td> <td>2.19</td> <td>3.15</td> <td>2.38</td> <td>1.71</td> <td>2.73</td> <td>3.65</td> <td>2.26</td> <td>2.02</td> <td>1.31</td> <td>1.83</td> <td>2.49</td> <td>2.95</td> <td>3.48</td> <td>2.7</td> <td>1.85</td>	Dy	3.23	2.15	2.19	3.15	2.38	1.71	2.73	3.65	2.26	2.02	1.31	1.83	2.49	2.95	3.48	2.7	1.85
Fr 216 148 167 195 1.57 1.13 1.64 2.38 1.49 1.39 1.41 1.53 1.92 2.27 1.68 1.13 Tm 033 024 026 032 029 027 039 024 023 024 026 033 024 026 033 034 033 024 029 031 037 031 035 035 034 033 031 031 032 034 033 031 034 033 031 034 033 031 035 034 033 034 033 034 033 031 <t< td=""><td>Но</td><td>0.68</td><td>0.49</td><td>0.51</td><td>0.66</td><td>0.51</td><td>0.39</td><td>0.58</td><td>0.82</td><td>0.47</td><td>0.45</td><td>0.3</td><td>0.44</td><td>0.55</td><td>0.63</td><td>0.77</td><td>0.56</td><td>0.39</td></t<>	Но	0.68	0.49	0.51	0.66	0.51	0.39	0.58	0.82	0.47	0.45	0.3	0.44	0.55	0.63	0.77	0.56	0.39
	Er	2.16	1.48	1.67	1.95	1.57	1.13	1.64	2.38	1.49	1.39	1.03	1.41	1.53	1.92	2.27	1.68	1.18
Yb2411.732042231.971.301.712072.541.961.46Lu0.360.290.310.310.330.210.250.430.280.250.240.30.310.370.310.370.310.33Lu0.360.360.310.340.330.210.260.430.280.240.30.210.310.370.310.370.310.33SREE16951.710198.413531.051.951.90.310.340.310.310.310.370.310.370.310.33LREE15543.192.385.912624.441.941.793.810058.149.195.227714.318243.1LREEHREE15485.896.212410165.793.810058.149.195.227714.318257.3LREEHREE11.485.896.212.410165.793.810058.179.297.514.411.675.3Bible15550.095.916.316.917.386.958.679.297.514.411.675.5Bible15350.097.916.717.386.958.679.297.514.316.975.5Bible15315316.711.617.911.5 </td <td>Tm</td> <td>0.33</td> <td>0.24</td> <td>0.26</td> <td>0.32</td> <td>0.26</td> <td>0.19</td> <td>0.27</td> <td>0.39</td> <td>0.24</td> <td>0.23</td> <td>0.19</td> <td>0.23</td> <td>0.24</td> <td>0.29</td> <td>0.36</td> <td>0.28</td> <td>0.2</td>	Tm	0.33	0.24	0.26	0.32	0.26	0.19	0.27	0.39	0.24	0.23	0.19	0.23	0.24	0.29	0.36	0.28	0.2
Lu 0.36 0.29 0.31 0.34 0.33 0.21 0.26 0.43 0.28 0.25 0.24 0.3 0.31 0.37 0.31 0	Yb	2.41	1.73	2.04	2.23	1.97	1.30	1.72	2.72	1.8	1.6	1.32	1.81	1.77	2.07	2.54	1.96	1.45
XREE16951.710198.413531.051.955.210310863.95710527015719351.3LREE15543.192.385.912624.441.941.793.810058.149.195.223714318243.7HREE13.485.89.6212.410.16.579.9813.49.478.695.867.929.7513.414.211.67.35ABEHREE11.55.029.996.8712.53.724.193.109.9111.59.916.29.7613.414.211.67.35ABEHREE11.55.029.996.8712.53.724.193.109.9111.59.916.29.7619.21015.65.79ABUNN0.800.900.970.700.701.390.710.900.880.781.411.289.916.372.721.910.87ABUNN6.362.186.372.727.412.251.782.514.206.947.928.156.372.721.91ABUNN6.362.180.911.211.130.861.110.791.241.251.789.591.721.91ABUNN6.362.180.911.211.130.861.110.791.911.921.911.92<	Lu	0.36	0.29	0.31	0.34	0.33	0.21	0.26	0.43	0.28	0.25	0.24	0.3	0.29	0.31	0.37	0.31	0.23
LREE 15 43.1 92.3 85.9 126 24.4 41.9 41.7 93.8 100 58.1 49.1 95.2 257 143 182 43.7 HREE 13.4 8.58 9.62 12.4 10.1 6.57 9.98 13.4 9.47 8.69 5.86 7.92 9.75 14.3 14.2 11.6 7.55 REPHREE 11.5 5.02 9.59 6.87 12.9 3.72 4.19 3.10 9.91 11.5 9.91 6.2 9.76 19.2 10.4 15.6 5.79 δTa 0.80 0.90 0.97 0.70 0.70 0.70 0.70 0.70 0.71 0.90 0.88 0.94 0.62 19.2 0.87 0.86 1.41 1.28 0.91 0.70 0.70 0.70 0.70 0.71 0.80 0.94 0.62 0.51 1.67 0.87 0.81 (La/Yb) 12.2 3.11	ZREE	169	51.7	101	98.4	135	31.0	51.9	55.2	103	108	63.9	57	105	270	157	193	51.3
HREE13.48.689.6212.41016.579.9813.49.478.695.867.929.7513.414.211.67.55LRE/HREE11.55.029.596.8712.53.724.193.109.9111.59.916.29.7619.21015.65.79Deu0.800.900.970.701.390.710.900.880.781.411.280.940.620.510.870.86Jave12.23.178.265.3312.92.703.132.298.0312.19.614.8710.12.389.5518.13.59(LaYb)N12.23.178.265.3312.92.703.132.298.0312.19.614.8710.12.389.5518.13.59(LaYb)N12.23.178.265.3312.92.703.132.298.0312.19.614.8710.12.389.5518.13.59(LaYb)N12.60.880.911.211.130.861.110.761.219.614.8710.12.389.5518.13.59(GdYb)N12.60.880.911.211.130.861.110.761.151.210.80.731.161.721.91(ZdYVb)N12.60.811.210.701.727.412.751.71807 <td>LREE</td> <td>155</td> <td>43.1</td> <td>92.3</td> <td>85.9</td> <td>126</td> <td>24.4</td> <td>41.9</td> <td>41.7</td> <td>93.8</td> <td>100</td> <td>58.1</td> <td>49.1</td> <td>95.2</td> <td>257</td> <td>143</td> <td>182</td> <td>43.7</td>	LREE	155	43.1	92.3	85.9	126	24.4	41.9	41.7	93.8	100	58.1	49.1	95.2	257	143	182	43.7
LREF/IRE 11.5 5.02 9.59 6.87 12.5 3.72 4.19 3.10 9.91 11.5 9.91 6.2 9.76 19.2 10 15.6 5.79 ∂Eu 0.80 0.90 0.97 0.70 1.39 0.71 0.90 0.88 0.78 1.41 1.28 0.94 0.62 0.51 0.87 0.86 $(LaYVb)_N$ 12.2 3.17 8.26 5.35 12.9 2.70 3.13 2.29 8.03 12.1 9.61 4.87 10.1 2.38 9.55 18.1 3.59 $(LaYvb)_N$ 6.36 2.12 7.41 2.25 1.78 2.51 4.20 6.94 7.92 4.87 10.1 2.38 9.55 18.1 3.59 $(LaYvb)_N$ 1.26 0.88 0.91 1.13 0.86 1.14 0.72 4.54 5.81 8.15 5.99 7.72 1.91 $(GdYVb)_N$ 1.26 0.88 0.73	HREE	13.4	8.58	9.62	12.4	10.1	6.57	9.98	13.4	9.47	8.69	5.86	7.92	9.75	13.4	14.2	11.6	7.55
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	LREE/HREE	11.5	5.02	9.59	6.87	12.5	3.72	4.19	3.10	16.6	11.5	16.6	6.2	9.76	19.2	10	15.6	5.79
	δEu	0.80	06.0	0.97	0.70	0.70	1.39	0.71	0.90	0.88	0.78	1.41	1.28	0.94	0.62	0.51	0.87	0.86
	(La/Yb) _N	12.2	3.17	8.26	5.35	12.9	2.70	3.13	2.29	8.03	12.1	9.61	4.87	10.1	23.8	9.55	18.1	3.59
	(La/Sm) _N	6.36	2.18	6.37	2.72	7.41	2.25	1.78	2.51	4.20	6.94	7.92	4.54	5.87	8.15	5.09	7.72	1.91
$T_{\rm Zr}({ m CC})$ 797 782 806 799 773 798 756 777 807 796 824 6 834 839 808 786 825 781	(Gd/Yb) _N	1.26	0.88	0.91	1.21	1.13	0.86	1.11	0.76	1.15	1.21	0.8	0.73	1.16	1.83	1.25	1.51	1.1
	$T_{\mathrm{Zr}}(^{\circ}\mathrm{C})$	<i>L6L</i>	782	806	66 <i>L</i>	773	798	756	<i>TTT</i>	807	962	824	834	839	808	786	825	781

.43 1.13	06 0.03 28 0.54 23 1.99 88 2.02 30 5.76 .28 0.13 .67 5.61 8.9 99.6	06 0.03 28 0.54 23 1.99 .88 0.54 .88 2.02 .30 5.76 .28 0.13 .67 5.61 .89 99.6 .10 2.79 .10 2.79 .10 2.79 .10 2.79 .10 2.79 .12 1.46 .13 1.06 .13 1.06 .13 1.06	06 0.03 28 0.54 23 1.99 .88 0.54 .88 2.02 .30 5.76 .67 5.61 .89 99.6 .10 2.79 .10 2.79 .10 2.79 .10 2.79 .10 2.79 .10 2.79 .11.46 1.46 .12 86.3 .13 1.06 .14 1.146 .13 1.166 .13 1.166 .136 3.6.3 .11 3.87 .20 2.4.5	06 0.03 28 0.54 23 1.99 88 0.54 29 5.76 .67 5.61 .67 5.61 .67 5.61 .99 9.6 .10 2.79 .13 7.78 .146 1.46 .13 7.78 .142 1.46 .13 7.78 .142 1.46 .13 7.78 .146 1.46 .13 7.78 .142 1.46 .136 2.79 .106 2.45 .106 1.865 .30 2.4.5 .31 2.4.5 .32 2.4.5 .33 2.4.5 .30 2.4.5 .31 100 .32 2.20
2.35 4. 0.01 0.	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	164 1. 1.76 3. 1.76 3. 1.76 3. 1.76 3. 1.76 3. 1.76 3. 1.17 1. 1.17 1. 1.18 9. 9.842 8 9.19 8 1.11 0. 1.133 1. 1.133 24 1.133 24 2.333 24 2.333 24 2.33 24 2.33 24 2.33 24 2.33 24	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11
.65 2 .07 0 .40 0	0.07 00 .93 5.228 .23 20 .23 20 .33 20 .01 01 .01 01	.07 00 .87 2 .93 5 .128 00 .9.8 9 .9.8 9 .98 1 1.98 1 .9.5 9 .9.5 9	00 007 00 1.28 2.87 0 1.28 0 1.28 0 1.28 0 1.28 0 1.28 0 1.10 2 1.10 2 1.10 2 1.10 2 1.10 2 1.10 2 1.25 2 2.258 2	.07 0 .07 0 .887 2 .93 5 .93 5 .93 5 .93 5 .93 5 .01 2 .02 0 .03 5 .04 1 .05 9 .06 1 .112 1 .2558 2 .2568 2 .2578 2 .2581 8 .663 1 .664 1 .664 1
4.44 - 4.	2.00 2.59 5.39 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	2.59 2.59 2.59 2.59 2.59 2.59 2.07 1.1.25 (1.1	2.06 2.59 2.59 0.20 0.20 99.7 99.7 99.7 1.41 1.41 1.41 1.41 1.41 1.02 89.3 89.3 89.3 89.3 89.3 89.3 81.1.02 1.4.5 1.1.02 1.4.5 1.1.02 1.4.5 1.1.02 1.4.5 1.1.02 1.1	2.59 2.59 2.59 99.7 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.
4.14 0.05 1.63 3.3	3.43 4.07 0.28 1.42 99.7	3.43 4.07 0.28 1.42 99.7 1.18 1.58 0.99 0.99 88.2	3.43 3.43 0.28 1.42 1.18 1.18 0.99 0.99 88.2 88.2 88.2 1491 1491 16.0 3.08	3.43 3.43 4.07 0.28 99.7 1.18 1.18 1.18 0.99 0.99 88.2 128 88.2 128 1491 16.0 16.0 3.08 5.3 6.46 646 11.80
2.09 0.04 0.79	0.53 9.60 0.04 99.5	0.53 9.60 0.04 1.79 99.5 1.19 1.19 1.05 1.05 93.4	0.53 9.60 0.04 1.79 99.5 1.19 1.10 1.10 1.10 2.64 93.4 2.64 3.02 3.70	0.53 9.60 0.04 1.79 99.5 1.19 1.10 1.10 1.10 1.01 93.4 264 2.629 20.4 3.70 20.5 3.72 3.72
2.53 0.02 0.10 0.20	0.64 10.3 0.10 99.5	0.64 10.3 0.10 99.5 11.15 1.11 1.11 22.8	0.64 10.3 0.10 99.5 11.15 11.11 11 11 11 19.7 6.52 6.52 31.2	0.64 10.3 0.10 99.5 15.9 1.11 1.11 1.11 1.15 33000 19.7 25.9 31.2 2.15 102 15.4
0.55 0.01 0.10 0.21	0.01 10.3 0.1 99.6	0.01 10.3 0.72 99.6 11.24 1.20 10.9 94.5	0.01 10.3 0.72 99.6 11.24 11.20 94.5 94.5 94.5 7.35 7.35 7.35	0.01 10.3 0.72 0.72 99.6 11.24 11.20 94.5 94.5 350 10.9 40.1 177 165 165
.43 (.88 (.66 (.65 (.45 (19. 1.15 1.61 9.4 9.4	911 115 9.4 11.9 11.9 11.9 0.3 0.3 2.8	115 115 9.4 11.9 11.9 0.3 333 337 7.8 833 77.8 77.8 77.8 77.8	(11) (11) (11) (11) (11) (11) (11) (11)
76 1 01 0 01 0 0.1 0 0.1 19 0 63 0	0.1 1.1 88 9.6 9.6 9.6	0.1 9 0.1 0 9.6 9 9.6 2 16 2 16 1 1.16 1 1.17 1 1.1	0.11 0 9.6 9.6 9 9.6 9.6 9 9.6 9 16 1 16 1 16 1 13 3 13 3 8.8 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 1	0.1 0 0.1 0 0.1 0 0.88 2 0.88 2 16 2 16 2 16 1 16 2 16 1 16 1 16 1 16 1 17 2 18 3 31 3 31 3 31 3 31 3 32 3 31 3 32 3 31 3 32 3 33 3 34 1 47 3 54 2
8 2 6 0 0 0	6 6 6 7 1 9 0 0 1 9 0 0 1			8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.3 0.0 0.1 0.2 0.2	9.3 0.1 2.2 99.	9.3 0.1 15 11.2 1.1 1.1 9.9 9.9	9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.0 27 7 7 7 7 2 8.1	9.3 9.9 1.1 1.1 1.1 2.4 9.9 9.9 9.9 9.9 9.9 9.0 2.2 1.1 2.2 1.3 32 2.2 1.3 32 2.2 1.3 32 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.
2.74 0 0.01 0.08 0.08	9.07 0.01 1.84 99.5	9.07 9.01 1.84 1.84 9.5 1.30 1.28 1.30 9.70 91.3	9.07 9.03 1.84 1.30 1.30 9.70 91.3 91.3 2049 2049 2049 2049 2010	9.07 9.01 1.84 1.30 1.30 1.30 9.70 91.3 91.3 150 150 2049 2049 2049 2011 2011 2011 2011 2011 2011 2011 201
1.71 0 0.111 0.08 0.08	9.58 0.03 1.44 99.6	9.58 0.03 1.44 99.6 14.9 1.25 1.25 1.23 10.2	9.58 0.03 1.44 1.45 1.25 1.25 1.25 1.25 93.0 93.0 93.0 93.0 13.8 13.8 13.8 13.8	9.58 0.03 1.44 99.6 14.9 1.25 1.25 93.0 240 23738 13.8 4.42 42.4 108 151 3.57
1.14 0 0.12 0.11 0.56	8.39 0.01 1.49 99.6	8.39 0.01 1.49 99.6 1.46 1.46 1.43 8.96 8.96	8.39 0.01 1.49 99.6 1.45 1.43 8.96 92.0 204 224 2327 1.5.8 15.8 1.5.8 2.327 1.94	8.39 0.01 1.49 99.6 1.46 1.43 8.96 92.0 224 2327 1.58 30.1 15.8 30.1 118 128 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7
1.95 0 0.07 0.07 0.53	9.46 0.01 99.6	9.46 0.01 4.6 99.6 1.26 1.25 9.99 89.6	9.46 0.01 4.6 99.6 17.6 1.25 9.99 89.6 89.6 21.8 21.8 21.8	9.46 0.01 4.6 99.6 17.6 1.25 9.99 89.6 9.99 89.6 1110 21.8 23.8 21.8 23.8 21.8 21.8 21.8 21.8 21.8 110 110
Fe ₂ O ₃ ^T MnO MgO CaO Na ₂ O	K2O P2O5 LOI Total	K ₂ O P ₂ O ₅ LOI Total K ₂ O/Na ₂ O ANK ACNK K ₂ O+Na ₂ O D.I.	K ₂ O P ₂ O ₅ LOI Total K ₂ O/Na ₂ O ANK K ₂ O+Na ₂ O D.I. Rb Ba Ba U U	K ₂ O P ₂ O ₅ LOI Total AONK ANK ACNK K ₂ O+Na ₂ O D.I. Rb Ba Ba Th VU Nb Zr Sr Ta

														AND DEPENDENT OF LAND AND AND AND AND AND AND AND AND AND		
IS1	B-68	LSB-75	LSB-76	LSB-78	LSB-79	LSB-80	LSB-87	LSB-92	LSB-93	LSB-94	LSB-12	LSB-13	LSB-46	LSB-48	LSB-7-1	LSB-7-16
000*Ga/Al 2.	.14	2.51	2.66	2.26	2.51	2.13	2.26	2.78	2.37	2.23	2.40	2.40	2.28	2.16	2.19	2.00
La 2(0.6	13.3	15.0	48.6	25.7	8.53	15.4	20.8	6.78	17.1	47.6	18.9	62.8	39.7	53.2	18.9
Ce 35	8.8	. 30.6	38.4	82.1	51.5	24.8	34.8	48.1	20.5	34.4	85.9	36.4	110	63.7	92.8	35.4
Pr 4.	.67	4.41	5.50	8.83	6.22	4.22	4.81	• 6.79	3.52	4.45	9.83	4.37	12	6.35	10	3.93
Nd It	6.6	18.3	21.4	29.6	22.2	16.9	19.7	26.5	16	16.5	34.3	16.6	41.1	19.4	32.4	12.8
Sm 3.	.19	3.61	3.84	4.42	3.75	3.48	3.99	5.04	3.7	3.26	5.31	2.68	5.88	2.68	5.30	2.17
Eu 0.	.61	0.87	0.84	1.06	0.98	0.67	1.10	1.15	0.78	0.76	1.43	1.06	1.69	0.61	1.27	0.56
Gd 2.	.80	3.29	3.22	3.8	3.38	2.79	3.84	4.21	2.79	2.85	4.40	2.32	4.96	2.64	3.64	1.59
Tb 0.	.47	0.65	0.54	0.53	0.55	0.44	0.61	0.69	0.49	0.48	0.60	0.33	0.69	0.38	0.53	0.25
Dy 2.	.76	4.31	3.19	2.75	3.21	2.5	3.74	3.98	2.91	2.88	3.33	1.85	3.57	2.30	2.91	1.52
Но 0.	.59	1.03	0.71	0.59	0.71	0.49	0.77	0.85	0.61	0.62	0.66	0.37	0.72	0.55	0.54	0.31
Er 1.	.74	3.09	2.22	1.64	2.09	1.41	2.18	2.38	1.75	1.76	1.87	1.09	1.90	1.60	1.65	1.04
Tm 0.	.27	0.45	0.35	0.26	0.34	0.23	0.34	0.37	0.28	0.28	0.27	0.15	0.31	0.25	0.27	0.20
Yb 2.	.02	3.16	2.42	1.82	2.38	1.66	2.57	2.56	1.93	1.93	1.73	1.12	2.10	1.81	1.73	1.35
Lu 0.	.33	0.49	0.37	0.30	0.4	0.27	0.36	0.40	0.29	0.29	0.27	0.18	0.31	0.26	0.28	0.23
ZREE 95	5.6	87.7	98.1	186	123	68.5	94.3	123	62.4	87.7	197	87.5	248	142	206	80.2
LREE 84	4.6	71.2	85	174	111	58.6	9.97	108	51.3	76.6	184	80.1	233	132	194	73.7
HREE 11	1.0	16.5	13.0	11.7	13	9.82	14.4	15.4	11.0	11.1	13.1	7.46	14.5	9.84	11.5	6.49
REE/HREE 7.	.68	4.31	6.51	14.9	8.54	5.97	5.53	7.01	4.62	6.88	14.0	10.7	16	13.4	16.8	11.3
ðEu 0.	.61	0.76	0.71	0.77	0.83	0.64	0.84	0.74	0.71	0.74	0.87	1.26	0.93	0.70	0.84	0.88
(La/Yb) _N 7.	.31	3.01	4.42	19.1	7.75	3.67	4.29	5.83	2.51	6.34	19.7	12.0	21.4	15.6	22.1	10.0
(La/Sm) _N 4.	.16	2.37	2.52	7.09	4.41	1.58	2.48	2.66	1.18	3.38	5.78	4.54	6.90	9.57	6.48	1.74
(Gd/Yb) _N 1.	.14	0.86	1.09	1.72	1.17	1.38	1.23	1.36	1.19	1.21	2.09	1.71	1.95	1.20	5.62	0.97
$T_{\rm Zr}(^{\circ}{\rm C})$ 8(103	796	66 <i>L</i>	811	780	161	798	803	788	796	785	783	790	745	769	761

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 5 八宝山花岗斑岩 K₂O-SiO₂ 图解(据文献[23], 样品 符号同图 4)

Fig.5 K₂O-SiO₂ diagram for the Babaoshan granite porphyries (after reference [23], symbols are same as in Fig.4)

尽管两类岩石在主元素的含量上有一定差异,但 其铝含量均较高(Al₂O₃=13.5% ~ 16.3%),ACNK (Al₂O₃/(CaO+Na₂O+K₂O),分子数比)=0.98 ~ 1.56, 在A/NK-A/CNK图解(图6)中,为准铝质-过铝质花 岗岩。因此,八宝山岩体为准铝质-过铝质的钾玄 质岩浆岩。

从图 7 可以看到, 八宝山花岗斑岩的主元素呈 连续演化的特征, TiO₂、Al₂O₃、Fe₂O₃^T、MgO、CaO 和 P₂O₅含量均随 SiO₂含量的增加而降低。中心相的 黑云母二长花岗斑岩到边缘相的钾长花岗斑岩 SiO₂ 含量依次增加, 除了 K₂O, 其他氧化物含量逐渐减 少, 暗示钾长花岗斑岩和黑云母二长花岗斑岩存在 结晶分异的演化关系, 且钾长花岗斑岩具有相对较

图6 八宝山花岗斑岩 A/NK-A/CNK 图解(据文献[24], 样 品符号同图 4)

Fig.6 A/NK-A/CNK diagram for the Babaoshan granite porphyries (after reference [24], symbols are same as in Fig.4)

高的演化程度。

八宝山花岗岩体的稀土元素总量较低, Σ REE 含 量变化范围在 51.3 ~ 271 µg/g 之间。在球粒陨石标 准化分布模式图上呈向右倾斜的平滑曲线(图 8a), LREE/HREE 值在 3.72 ~ 19.2 之间, (La/Yb)_N=2.29 ~ 23.8。黑云母二长花岗斑岩((La/Yb)_N=10.0~22.1)比 钾长花岗斑岩((La/Yb)_N=2.29 ~ 12.2,除了 LSB-44, (La/Yb)_N=23.8)的轻重稀土分馏明显。(La/Sm)_N 值为 1.18 ~ 9.57, (Gd/Yb)_N 值为 0.76 ~ 2.09,表明轻稀土 分馏程度较重稀土显著。岩石 Eu 异常不显著 (δ Eu=0.61 ~ 1.39)。其中钾长花岗斑岩的 Eu 负异常 (δ Eu=0.61 ~ 0.97,除了 LSB-20、LSB-39 以及 LSB-40) 比黑云母二长花岗斑岩(δ Eu=0.70 ~ 1.26)明显。两个 不同岩性斑岩的稀土元素组成的差异可能与早期独 居石等富轻稀土矿物及斜长石的分离结晶作用有关, 晚期岩相相对亏损轻稀土元素及 Eu。

在微量元素原始地幔标准化图解上(图 8b),表 现为 Rb、Ba、U 和 K 等大离子亲石元素的强烈富集、 高场强元素 Zr、Hf 和 Ta 无明显异常, Sr、Nb、Ti 和 P 等元素显著亏损。与黑云母二长花岗斑岩相比, 钾长花岗斑岩具有明显高的 Rb、Ba、Th、U 和 K 等大离子亲石元素含量,更高的 Rb/Sr 比值和更强 烈的 Ti 和 P 亏损(图 7 和图 8b),可能与岩浆分异过 程中斜长石和铁钛氧化物等矿物的结晶分异有关。

4.2 全岩 Nd 同位素组成

选取 10 个样品进行 Nd 同位素分析,结果见表 2。 八宝山岩体的¹⁴³Nd/¹⁴⁴Nd 初始比值介于 0.511560~

Geochimica Vol. 42 No. 3 pp. 242-261 May, 2013

	表 2 八宝山花岗岩体全岩 Nd 同位素分析测试结果
Table 2	The analyzed data of Nd isotopic composition for the Babaoshan granite porphyries

						min Perpiji		
样 号	$Sm (\mu g/g)$	Nd ($\mu g/g$)	$^{147}{ m Sm}/^{144}{ m Nd}$	$(^{143}Nd/^{144}Nd)_0$	2σ	$\varepsilon_{\rm Nd}(t)$	$t_{\rm DM2}({\rm Ga})$	$f_{\rm Sm/Nd}$
LSB-31	2.24	9.49	0.1501	0.511675	0.000008	-17.9	2.39	-0.24
LSB-10	2.26	11.4	0.1266	0.511730	0.000003	-16.4	2.27	-0.36
LSB-92	5.04	26.5	0.1207	0.511657	0.000005	-17.7	2.37	-0.39
LSB-80	3.48	17.0	0.1303	0.511657	0.000005	-17.9	2.39	-0.34
LSB-44	5.46	40.6	0.0852	0.511560	0.000004	-18.9	2.47	-0.57
LSB-12	5.32	34.4	0.0981	0.511560	0.000004	-19.2	2.49	-0.50
LSB-48	2.68	19.5	0.0874	0.511566	0.000005	-18.9	2.47	-0.56
LSB-13	2.69	16.6	0.1026	0.511628	0.000004	-17.9	2.39	-0.48
LSB-46	5.88	41.1	0.0907	0.511580	0.000004	-18.7	2.45	-0.54

0.511730 之间; $\varepsilon_{Nd}(t)$ =-19.2~-16.4,均为负值。在计算 Nd 模式年龄时,对于 $f_{Sm/Nd}$ 值在-0.5~-0.3 之间 的样品,用单阶段模式计算 t_{DM} 年龄是合适的,但对于和大陆地壳 Sm/Nd 比相差较大的样品,即 $f_{Sm/Nd}$ >-0.3 或<-0.5,用单阶段模式计算 t_{DM} 年龄就 会产生较大的偏差^[27]。在这种情况下,采用两阶段 Nd 模式年龄计算方法能有助于得到较合理的 t_{DM} 年龄值^[28-29]。八宝山岩体的 $f_{Sm/Nd}$ 信变化于-0.24~-0.57 之间,大部分样品的 $f_{Sm/Nd}$ <-0.5,与太古宙大陆地壳 $f_{Sm/Nd}$ 平均值(-0.4)^[30]相比偏差较大,为了最大限度减少因地壳演化阶段内 Sm-Nd 分馏对 Nd 模式年龄计算方法。 t_{DM2} 年龄介于 2.49~2.27 Ga 之间, 老的 Nd 两阶段模式年龄和负的 $\varepsilon_{Nd}(t)$ 值指示八宝山花岗岩体主要来源于古老的地壳物质。

4.3 黑云母电子探针分析结果

黑云母二长花岗斑岩中的黑云母具有富镁贫铁的特征,其 FeO 和 MgO 的质量分数分别为 11.5%~ 13.3% 和 13.8% ~ 18.6%, Al₂O₃ 的 质 量 分 数 为 13.3% ~ 14.6%。在 Mg²⁺-(Fe²⁺+Mn²⁺)-(Fe³⁺+Al³⁺+Ti⁴⁺) 三角图中(图 9),所有黑云母的成分投点均在镁质黑 云母区域内,表明本区黑云母的成分类型为镁质黑 云母。

5 讨 论

5.1 成因类型

八宝山花岗斑岩的暗色矿物主要是角闪石和黑 云母,岩体均具有高的 SiO₂ 含量(64.8% ~ 73.5%)和 全碱含量(K₂O+Na₂O=8.32% ~ 13.0%),岩石较高的 分异指数、LREE/HREE 及 Rb/Sr 比值的变化范围等 均表明它们经历了高程度的结晶分异。

对于 I 型、S 型花岗岩的划分, 铝饱和指数 ACNK=1.1 仅适用于未经强烈结晶分异的花岗岩^[33], 对于分异程度较高的八宝山花岗斑岩并不适合。实 验研究表明, P_2O_5 在弱过铝质和强过铝质岩浆中随 SiO₂增加变化趋势不同, 这种性质成功地用于区分 I 型和 S 型花岗岩类^[34–38]。本文的数据显示, 八宝山 花岗岩主要为准铝质到过铝质花岗岩, 在图 7 中 P_2O_5 与 SiO₂含量呈负相关关系, 与 I 型花岗岩演化 趋势一致。

A 型花岗岩的重要特征是形成温度高、无水、 铝质、富集 HFSE 和非造山成因, 尤其是高温、无水

ZENG Ling-jun et al.: Babaoshan granite porphyry in Lushi county, Henan Province Central China

特点, 是 A 型花岗岩区别于高分异花岗岩的重要参数^[39]。而八宝山花岗斑岩具有一系列不同于 A 型花 岗岩的特点: (1)八宝山岩体的 FeO_T/MgO 比值主要 介于 2~8, 有别于 A 型花岗岩显著富铁的特征 (FeO_T/MgO>10^[40]); (2)岩体的 Zr、Nb、Ce 和 Y 等元 素的含量均较低, Zr+Nb+Ce+Y = 192~340 µg/g, 小 于 350 µg/g^[40]。在区分 A 型花岗岩与分异的 I 型花 岗岩的有关判别图解上(图 10), 样品几乎全部落入 高分异花岗岩区域, 并且在 Ce-SiO₂ 判别图解中(图 7), 投点均落在 I 型花岗岩区域; (3) 虽然八宝山岩 体的岩浆温度很高(锆石饱和温度^[41]变化于 745~ 839 , 见表 1), 但由于其含有角闪石和黑云母等 含水矿物, 与 A 型花岗岩的定义不符。综上分析, 八 宝山岩体应属于高分异 I 型花岗岩。

个别黑云母二长花岗斑岩和钾长花岗斑岩样品 具有高 Sr 低 Y 的微量元素组成,显示埃达克质岩类 似的地球化学特征^[42-43],反映花岗岩源区可能存在 石榴子石残留相。事实上华北南缘不少150~130 Ma 的花岗岩具有不同程度的类似埃达克岩的组成特 点^[44-45],表明该时间段内华北南缘由扬子向华北克 拉通之下俯冲所形成的加厚下地壳尚未拆沉。

5.2 物质来源

八宝山岩体具有高的 SiO₂(64.8% ~ 73.5%),相 对低的 MgO 含量(0.10% ~ 1.40%)和 Mg[#] (8.78 ~ 49.3),显示出地壳来源的特征。全岩 Nd 同位素分析

for the Babaoshan granite porphyries (after the reference [40], symbols are same as in Fig.4) A-A 型花岗岩; FG-分异 M+I+S 型花岗岩; OGT-非分异 M+I+S 型花 岗岩。据文献[40], 样品符号同图 4。 结果显示岩体具有较低的 $\varepsilon_{Nd}(t)$ (-19.46~-16.4)和 较古老的模式年龄(Nd t_{DM2} =2.49~2.27 Ga)。

根据壳源岩石的 Nd 同位素研究,华北块体壳 源岩石 Nd 同位素模式年龄主要分布于 3.6~1.8 Ga 范围内,并且主要集中于 3.6~3.3 Ga、2.8~2.6 Ga 和 2.2~2.0 Ga 区段内,华北陆块主体形成于太古宙, 并以 2.8~2.6 Ga 时期为最强的陆壳增生期,其次, 古元古代也是较主要的地壳增生期^[46]。扬子块体壳 源岩石 Nd 同位素模式年龄主要分布于 2.4~1.0 Ga 范围内,在 3.4~2.5 Ga 区间内也有少量分布,这表 明扬子块体陆壳主体形成于 1.0 Ga 前的元古宙^[47-49], 太古宙古陆核较少^[47]。即扬子地壳的年龄相对年轻。

由于八宝山岩体产于华北克拉通南缘,其岩浆 源区可能为:(1)华北地块南缘的中-下地壳岩石(即 太华群和/或熊耳群)^[50];(2)俯冲于华北克拉通南缘 地壳之下的扬子陆壳及南秦岭陆壳^[51]。

八宝山花岗斑岩的两阶段 Nd 模式年龄主要介于 2.49~2.27 Ga 之间。 2.49~2.27 Ga 的模式年龄不同于华北克拉通主体形成于太古宙并以 2.8~2.6 Ga 为强烈的地壳增长期,而与扬子板块古元古代和中元古代为主的地壳生长期相符合。此外,八宝山岩体的 $\varepsilon_{Nd}(t)$ 值也与 Jahn *et al*. ^[52]归纳出来的华北克拉通古老下地壳的 $\varepsilon_{Nd}(t=130 \text{ Ma})$ 值(-44~-32)相差很多。因此,八宝山花岗岩体的岩浆源区更可能为扬子克拉通的地壳物质。

综上所述,可以推断八宝山岩体的源区可能是 俯冲的扬子克拉通及南秦岭陆壳与太华群和熊耳群 的混合,但主要来源于南秦岭和扬子陆块的部分熔 融,这与 Hf 同位素分析结果一致^[7]。

5.3 岩石成因

八宝山岩体的锆石定年结果表明, 钾长花岗斑 岩和黑云母二长花岗斑岩是同一期岩浆作用的产物, 只是经历了不同程度的结晶分异^[7]。从黑云母二长 花岗斑岩到钾长花岗斑岩, 岩石的矿物组成中石英 和碱性长石含量逐渐升高, 斜长石的含量逐渐减少, 铁镁矿物含量明显下降; 随着 SiO₂ 含量的升高, TiO₂、Al₂O₃、Fe₂O₃^T、MgO、CaO 和 P₂O₅逐渐降低, 而全碱含量逐渐升高, Nb/Ta 和 La/Y 没有什么变化 (图 7)。显示了黑云母二长花岗斑岩和钾长花岗斑岩 之间的同源岩浆分异演化的趋势。

在稀土元素分布模式和微量元素蛛网图上(图 8),两者具有一定的相似性及演化关系,据此推断

两者可能是由同一母岩浆分异形成的。这与两种岩 石的锆石 Hf 同位素和全岩的 Nd 同位素分析结果也 相当一致^[7]。例如、黑云母二长花岗斑岩和钾长花岗 斑岩轻、重稀土分馏和 Eu 负异常程度的差别显示独 居石和斜长石等结晶分异的影响, 这与主元素的分 析结果相一致。八宝山花岗斑岩具有富硅、明显亏 损 Nb、Sr、P、Ti 和 Eu 等地球化学特征、指示其母 岩浆经历了显著的分离结晶演化。Nb、Ti 元素的亏 损指示了富 Ti 矿物相的分离, 而 P 的强烈亏损表明 发生了磷灰石的分离结晶, Sr 和 Eu 的亏损与斜长石 和钾长石的分离结晶作用有关^[34]。与黑云母二长花 岗斑岩相比, 钾长花岗斑岩相对富集 Rb、Ba、Th、 U 和 K 等大离子亲石元素, 显示了强烈分异的地球 化学特征,表明两类花岗岩之间存在一定的分异演 化关系。钾长花岗斑岩的 Rb/Sr 和 Ba/Sr 比值明显高 于黑云母二长花岗斑岩(图 7),这也表明钾长花岗斑 岩具有更高程度的分异-演化。

在 Ba-Sr 对数图解上(图 11a), 钾长花岗斑岩和 黑云母二长花岗斑岩都落在钾长石和斜长石的结晶 演化线上, 这些数据的变化趋势也进一步证明了岩 体形成过程中主要经历了钾长石和斜长石的分异。 相对于主要矿物来说, 副矿物的结晶分异对稀土元 素含量变化影响较大。在(La/Yb)_N-La 变异图解上(图 11b), 从岩体样品点的分布来看, 八宝山花岗斑岩 存在独居石和褐帘石的结晶分异, 它们可能对稀土 元素的含量有一定影响。根据岩体的岩石地球化学 特征可以看出钾长花岗斑岩的演化程度更高。

5.4 构造意义

前人的研究指出,从晚侏罗世到早白垩世,秦 岭造山带处于挤压到伸展的转换阶段,并且大规模 发育钾长花岗岩和富碱中酸性火山岩^[1-2,5]。在 Pearce *et al.*^[58-59]提出的花岗岩构造背景判别图上 (图 12),钾长花岗斑岩和黑云母二长花岗斑岩都属 于碰撞后花岗岩范围。我们对华北南缘其他大型斑 岩矿床岩体地球化学数据做了总结(如金堆城、南泥 湖和东沟等),发现八宝山岩体的形成构造背景与华 北南缘的其他同时代岩体的形成构造背景一致(图 12)。

八宝山岩体岩石地球化学、锆石 U-Pb 定年和 Hf、Nd 同位素组成研究所获得的结论,也与秦岭造 山带的形成和演化的研究结果相吻合。秦岭造山带 是以新元古代到中生代初期的多板块、多类型碰撞 造山为主体,并遭受中新生代强烈陆内造山作用叠 加改造的一个复合型造山带^[1]。其形成和演化主要 经历了3个不同构造演化阶段:(1)晚太古代-古元古 代造山带前寒武纪结晶基底的形成演化;(2)新元古 代-中三叠世,以现代板块构造体制为基本特征的板 块构造演化;(3)中生代以来的陆内造山作用与构造 演化^[1]。原秦岭造山带的华北板块、扬子板块和秦 岭微板块在三叠纪中、晚期完成了全面碰撞造山后, 形成的强烈挤压缩短增厚的岩石圈根,在中生代新

for the Babaoshan granite porphyries (after the reference [53], symbols are same as in Fig.4) PlAn15-斜长石(An=15); PlAn50-斜长石(An=52); Ms-白云母; Bt-黑云母; Kfs-钾长石; Grt-石榴子石; Amp-角闪石; Allan-褐帘石; Mon-独居石; Ap-磷灰石; Zr-锆石; Sph-榍石。磷灰石的分配系数据文献[54]; 锆石分配系数据文献[55]; 褐帘石分配系数据文献[56]; 独居石分配系数据文 献[57]。

图 12 八宝山花岗岩体的构造环境判别图(底图据文献[58-59],数据来自文献[2,60-62],样品符号同图 4)

Fig.12 Discrimination diagram showing the tectonic setting of the Babaoshan granite porphyries; shadow zones are Jinduicheng, Tangjiaping, Nannihu, Donggou intrusions (after the references [58] and [59], and the datas after the references [2,60-62], symbols are same as in Fig.4)
ORG-大洋中脊花岗岩; WPG-板内花岗岩; VAG-火山弧花岗岩; Syn-COLG-同碰撞花岗岩; post-COLG-后碰撞花岗岩。 阴影区是金堆城、汤家 坪、南泥湖和东沟岩体。

的壳幔动力学系统中,发生强烈壳幔物质交换、伸展减薄,造成显著的岩石圈去根作用^[1,8],伴随大量 岩浆侵位发育了与陆内构造-岩浆活动有关的大规 模热液矿床的成矿作用。

八宝山岩体的形成年龄正对应于秦岭造山带在 晚侏罗世-早白垩世的挤压向伸展的转变阶段^[63-65]。 八宝山岩体的形成机制可概括为:在晚侏罗世-早白 垩世的挤压向伸展转换时期,至少在八宝山斑岩形 成时华北南缘加厚地壳尚未拆沉,而这种加厚的下 地壳可能主要源于俯冲于华北南缘陆壳之下的扬子 及南秦岭地壳,俯冲陆壳在上涌地幔热源影响下, 发生部分熔融形成的酸性岩浆上升侵位,从而形成 八宝山岩体碰撞后花岗岩。

5.5 岩体形成深度与找矿前景

对黑云母二长花岗斑岩中的黑云母进行了电子 探针分析,分析结果见表 3。利用黑云母中^TA1的含 量估算八宝山岩体形成的压力以及深度^[66](表 3)。黑 云母结晶的压力为 52~57 MPa,对应的侵位深度为 1.89~2.55 km,表明该岩体形成于较浅的环境,这 与岩相学显示的特征相符。而斑岩成矿系统的深度 一般在 1~6 km,最大成矿深度达 9 km。因此岩体 被剥蚀程度较低,可以推断八宝山斑岩成矿系统未 受到构造抬升的破坏,深部成矿和找矿潜力较大。

在八宝山岩体周围分布着一些燕山期的中酸性 小斑岩体,均呈北北东向有规律地平行排列。这些 岩体的展布具有明显的方向性、等距性和分带性规

律。特别是银家沟岩体在岩性和成岩成矿年龄与八 宝山岩体比较接近(表 4)。除了蒲阵沟岩体岩性为中

表 3 黑云母矿物的电子探针分析结果

Table 3	Electron microprobe analyses of biotites for the Babaoshan
	granite porphyries

样品	LSB-117	LSB-117	LSB-117	LSB-117	LSB-117
点号	1	2	3	4	5
K ₂ O	9.67	8.85	10.1	8.49	8.31
Na ₂ O	0.1	0.04	0.09	0.02	-
TiO ₂	1.6	1.63	1.67	1.54	1.71
Al_2O_3	14.0	14.6	14.1	13.3	14.2
CaO	0.19	0.06	0.22	0.04	-
SiO_2	42.0	44.3	44.2	43.3	43.9
FeO	12.1	13.2	11.5	13.3	13.3
MgO	17.9	18.6	13.8	17.2	17.7
MnO	0.08	0.05	0.08	0.04	-
Total	97.6	101	95.7	97.2	99.1
	以 22 个	氧原子为基	础计算的阳	离子系数	
K^+	1.76	1.54	1.85	1.54	1.47
Na ⁺	0.03	0.01	0.03	0.01	0.00
Al	0.17	0.17	0.18	0.16	0.18
Al	2.35	2.34	2.39	2.24	2.33
Ca ²⁺	0.03	0.01	0.03	0.01	0.00
Si^{4+}	5.99	6.04	6.37	6.15	6.10
Fe ²⁺	1.44	1.51	1.38	1.59	1.54
Mg^{2+}	3.80	3.77	2.96	3.64	3.67
Mn^{2+}	0.01	0.01	0.01	0.00	0.00
p (kbar)	0.58	0.56	0.7	0.25	0.52
<i>h</i> (km)	2.12	2.05	2.55	0.90	1.89

注: *p*(kbar)=3.03×^TAl-6.53(±0.33)^[66]; 上地壳静岩压力梯度=27.5 MPa/km; ^TAl 指在 O=22 基础上的黑云母中铝阳离子总数。

岩 体	岩 性	面积	成岩年齢	令 测记	「方法	矿床类型
		(km ²)	(Ma)			
蒲阵沟	石英闪长岩	2	149±1	LA-I 姓石	CPMS	夕卡岩型铅
	细长花岩斑			тан	0-10	计划床
银家沟	带 K 化 网 斑 岩、黑云母石 英二长花岗斑 岩、闪长玢岩、 石英闪长斑岩	<1	140±1 ~138±1	LA-I 锆石	CPMS U-Pb	斑岩-夕卡岩 型多金属硫 铁矿床
夜长坪	钾长花岗斑岩	<1	158±2	LA-I 锆石	CPMS U-Pb	斑岩-夕卡岩 型钨钼矿床
后瑶峪	钾长花岗斑岩	1	131±1	LA-I 锆石	CPMS U-Pb	接触交代铁 铅锌矿床、斑 岩型钼矿床
八宝山	花岗斑岩	1.05	146±2	LA-I 锆石	CPMS U-Pb	斑岩型铁铜 矿床
曲里	石 英 闪 长 斑 岩	4.2	118±2	LA-I 锆石	CPMS U-Pb	块状硫化物 型铁锌铜矿 床
岩体	矿石组合	成	矿年龄 (Ma)	测试 方法	矿床邞	见模 资料来源
蒲阵沟	磁铁矿、赤铁	矿	未知		小西	₫ [67—68]
银家沟	黄铁矿、黄铜 方铅矿、黄铜 磁铁矿、茨铁、 褐铁矿、闪锌 辉铜矿、斑铜 自然金、自然 金银矿	矿、 矿、 矿、 矿、 14 矿、 铜、	0~137	Re-Os	小酉	<u>⊎</u> [11], [69-71]
夜长坪	辉钼矿、白钨 黄铜矿、闪锌 磁铁矿、黄铁	矿、 矿、14: 矿	5.3±4.4	Re-Os	大型	<u>⊎</u> [12,68, 72]
后瑶峪	闪锌矿		未知		小型	≝ [13,68]
八宝山	褐铁矿、磁铁 黄铁矿、黄铜	矿、 矿	148	Re-Os	小型	业 本文
曲里	矿铁矿、闪锌 褐铁矿	犷、	未知		小盘	≝ [10,73]

表 4 卢氏地区岩体、矿体概况 Table 4 The rock and orebody profile for the Lushi region

酸性外,其余岩体的岩性均为酸性,并且矿体与钾 长花岗斑岩关系最为密切。通过与卢氏地区不同岩 体成矿特征的对比,我们推测这些岩体属于相似的 成矿体系。并且通过钻探和野外观察发现八宝山主 要是在岩体内部和围岩的接触带中发现有铁铜矿体, 可能在岩体的外围会有铅锌矿体存在。

八宝山岩体为含黑云母和角闪石的富水岩浆体 系,黑云母组成以较高的 Mg/Fe 比值、低铝、贫钙、 K/Na>>30(108 ~ 475)与全球典型的含矿斑岩特征一 致^[14]; 锆石 Ce⁴⁺/Ce³⁺的比值也很高(286 ~ 786)^[7], 这种高氧化性的富水岩浆有利于斑岩铜钼(金)矿床 的形成,所以其深部或边缘应存在有利的成矿部位, 如较大的岩枝、岩体外缘的突变部位。

6 结 论

(1)八宝山岩体主要由中心相的黑云母二长花岗 斑岩和边缘相的钾长花岗斑岩组成,属于准铝质-过 铝质,钾玄岩系列的高分异 I 型花岗岩类。两者具有 同源岩浆演化分异的趋势,并且钾长花岗斑岩演化 分异程度更高。

(2)全岩 Nd 同位素分析结果表明, 八宝山岩体 的源区可能主要来源于南秦岭和扬子陆块的部分熔 融, 但在岩浆形成过程中可能混入了少量太华群和 熊耳群的物质。

(3)根据黑云母地质压力计估算,八宝山岩体的 的侵位深度为 1.89~2.55 km,表明该岩体形成侵位 较浅,剥蚀程度较小,斑岩成矿体系可能得到很好 的保存,在其深部可能存在有利于斑岩 Cu-Au-Mo-Pb-Zn 的多金属成矿区段。

野外工作得到了卢氏县北方矿业有限公司的大 力支持; 主元素和微量元素分析、Nd 同位素分析得 到了中国科学院广州地球化学研究所同位素地球化 学国家重点实验室的支持; 黑云母电子探针分析得 到了南京大学内生金属矿床成矿机制研究国家重点 实验室的支持, 在此一并表示感谢。同时作者要特 别感谢两位审稿专家和责任编辑提出的建设性的修 改意见和宝贵的评论。

参考文献(References):

- 张国伟,张本仁,袁学诚,肖庆辉.秦岭造山带与大陆动力 学 [M].北京:科学出版社,2001:1-87.
 Zhang Guo-wei, Zhang Ben-ren, Yuan Xue-cheng, Xiao Qing-hui. Qinling Orogenic Belt and Continental Dynamics [M]. Beijing: Science Press, 2001: 1-87 (in Chinese).
- [2] Mao Jingwen, Wang Yitian, Zhang Zuoheng, Yu Jinjie, Niu Baogui. Geodynamic settings of Mesozoic large-scale mineralization in North China and adjacent areas — Implication from the highly precise and accurate ages of metal deposits [J]. Sci China (D), 2003, 46(8): 838–851.
- [3] 陈衍景.造山型矿床、成矿模式与找矿潜力 [J].中国地质, 2006, 33(6): 1181-1196.
 Chen Yan-jing. Orogenic-type deposits and their metallogenic model and exploration potential [J]. Geol China, 2006, 33(6): 1181-1196 (in Chinese with English abstract).
- [4] 卢欣祥,于在平,冯有利,王义天,马维峰,崔海峰.东秦

岭深源浅成型花岗岩的成矿作用及地质构造背景 [J]. 矿 床地质, 2002, 21(2): 168-178.

Lu Xin-xiang, Yu Zai-ping, Feng You-li, Wang Yi-tian, Ma Wei-feng, Cui Hai-feng. Mineralization and tectonic setting of deep-hypabyssal granites in east Qinling Mountain [J]. Mineral Deposit, 2002, 21(2): 168–178 (in Chinese with English abstract).

- [5] Mao J W, Xie G Q, Bierlein F, Qu W J, Du A D, Ye H S, Pirajno F, Li H M, Guo B J, Li Y F, Yang Z Q. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt [J]. Geochim Cosmochim Acta, 2008, 72(18): 4607–4626.
- [6] 陈衍景, 翟明国, 蒋少涌. 华北大陆边缘造山过程与成矿研究的重要进展和问题 [J]. 岩石学报, 2009, 25(11): 2695-2726.

Chen Yan-jing, Zhai Ming-guo, Jiang Shao-yong. Significant achievements and open issues in study of orogenesis and metallogenesisi surrounding the North Chian continent[J]. Acta Petrol Sinica, 2009, 25(11): 2695–2726 (in Chinese with English abstract).

- [7] 曾令君,星玉才,周栋,赵太平,姚军明,包志伟.河南卢 氏八宝山花岗斑岩 LA-ICP-MS 锆石 U-Pb 年龄和 Hf 同位素 组成特征 [J].大地构造与成矿学,2013,37(1):65-77.
 Zeng Ling-jun, Xing Yu-cai, Zhou Dong, Zhao Tai-ping, Yao Jun-ming, Bao Zhi-wei. LA-ICP-MS zircon U-Pb ages and Hf isotope composition of the Babaoshan granite porphyries in Lushi county, Henan Province [J]. Geotecton Metallogen, 2013, 37(1): 65-77 (in Chinese with English abstract).
- [8] Meng Q, Zhang G. Geological framework and tectonic evolution of the Qinling orogen, central China [J]. Tectophysics, 2000, 323(3/4): 183–196.
- [9] 罗铭玖,张辅民,董群英.中国钼矿床 [M].郑州:河南科 学技术出版社, 1991: 1-408.
 Luo Ming-jiu, Zhang Fu-min, Dong Qun-ying. The Mo Deposit of China [M]. Zhengzhou: Henan Science and Technology Press, 1991: 1-408 (in Chinese).
- [10] 杨德彬,许文良,王冬艳,王清海,裴福萍.河南三门峡市 曲里石英闪长斑岩锆石 SHRIMP U-Pb 定年及其地质意义
 [J]. 中国地质,2004,31(4):379-383.
 Yang De-bin, Xu Wen-liang, Wang Dong-yan, Wang Qing-hai,

Pei Fu-ping. SHRIMP zircon U-Pb dating of the Quli quartz diorite porphyry, Sanmenxia city, Henan, and its geological significance [J]. Geol China, 2004, 31(4): 379–383 (in Chinese with English abstract).

[11] 颜正信,孙卫志,张年成,周梅,黄智华. 河南灵宝银家沟 硫铁多金属矿床成矿地质条件及找矿方向 [J]. 地质调查 与研究, 2007, 30(2): 149–157.
Yan Zheng-xin, Sun Wei-zhi, Zhang Nian-cheng, Zhou Mei, Huang Zhi-hua. Geological condition and prospecting of the Yinjiagou pyeite-polymetallic deposit in Henan Province [J]. Geol Survey Res, 2007, 30(2): 149–157 (in Chinese with English abstract).

- [12] 肖中军,孙卫志.河南卢氏夜长坪钼钨矿床成矿条件及找 矿远景分析 [J]. 地质调查与研究, 2007, 30(2): 141-148.
 Xiao Zhong-jun, Sun Wei-zhi. Ore-forming conditions and prospecting of the Yechangping Mo-W deposit in Lushi county, Henan Province [J]. Geol Survey Res, 2007, 30(2): 141-148 (in Chinese with English abstract).
- [13] 印修章, 胡爱珍. 以闪锌矿标型特征浅论豫西若干铅锌矿成因 [J]. 物探与化探, 2004, 28(5): 413-417.
 Yin Xiu-zhang, Hu Ai-zhen. A tentative discussion on the genesis of some Pb-Zn deposits in western Henan based on typomorphic charateristics of sphalerite [J]. Geophys Geochem Explor, 2004, 28(5): 413-417 (in Chinese with English abstract).
- [14] Sinclair W D. Porphyry deposits [M]//Goodfellow W D. Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication No.5, 2007: 223–243.
- [15] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J]. Talanta, 2000, 51(3): 507–513.
- [16] 刘颖, 刘海臣, 李献华.用 ICP-MS 准确测定岩石样品中 40 余种微量元素 [J]. 地球化学, 1996, 25(6): 552-558.
 Liu Ying, Liu Hai-chen, Li Xian-hua. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS [J]. Geochimica, 1996, 25(6): 552-558 (in Chinese with English abstract).
- [17] Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihash S, Shimizu H. Jndi-1: A neodymium isotopic reference in consistency with Lajolla neodymium [J]. Chem Geol, 2000, 168(3): 279–281.
- [18] 梁细荣,韦刚健,李献华,刘颖. 利用 MC-ICP-MS 精确测定 ¹⁴³Nd/¹⁴⁴Nd 和 Sm/Nd 比值 [J]. 地球化学, 2003, 32(1): 91-96.
 Liang Xi-rong, Wei Gang-jian, Li Xian-hua, Liu Ying. Precise

measurement of ¹⁴³Nd/¹⁴⁴Nd and Sm/Nd ratios using multiple collectors inductively coupled plasma mass spectrometer (MC-ICP-MS) [J]. Geochimica, 2003, 32(1): 91–96 (in Chinese with English abstract).

 [19] 韦刚健,梁细荣,李献华,刘颖. (LA)MC-ICPMS 方法精确
 测定液体和固体样品的 Sr 同位素组成 [J]. 地球化学,2002, 31(3): 295-299.

Wei Gang-jian, Liang Xi-rong, Li Xian-hua, Liu Ying. Precise measurement of Sr isotopic composition of liquid and solid base using (LA)MC-ICPMS [J]. Geochimica, 2002, 31(3): 295–299 (in Chinese with English abstract).

- [20] Amli R, Griffin W L. Microprobe analysis of REE minerals using empirical correction factors [J]. Am Mineral, 1975, 60(7/8): 599–606.
- [21] Roeder P L. Electron-microprobe analysis of minerals for rare-earth elements: Use of calculated peak-overlap

corrections [J]. Can Mierol, 1985, 23: 263-271.

- [22] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geol Soc Spec Publ, 1989, 42(1): 313–345.
- [23] Peccerillo R, Taylor S R. Geochemistry of Eocene cal-alkaline volcanic rocks from the Kastamonu area, northern Turkey [J]. Contrib Mineral Petrol, 1976, 58(1): 63–81.
- [24] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids [J]. Geol Soc Am Bull, 1989, 101(5): 635–643.
- [25] Collins W J, Beams S D, White A J R, Chappell B W. Nature and origin of A-type granites with particular reference to southeastern Australia [J]. Contrib Mineral Petrol, 1982, 80(2): 189–200.
- [26] Lan T G, Fan H R, Santosh M, Hu F F, Yang K F, Yang Y H, Liu Y S. Geochemistry and Sr-Nd-Pb-Hf isotopes of the Mesozoic Dadian alkaline intrusive complex in the sulu orogenic belt, eastern China: Implications for crust-mantle interaction [J]. Chem Geol, 2011, 258(1-4): 97–114.
- [27] 李献华. Sm-Nd 模式年龄和等时线年龄的适用性与局限性
 [J]. 地质科学, 1996, 31(1): 97-104.
 Li Xian-hua. A discussion on the model and isochron ages of Sm-Nd isotopic systematics: Suitability and limitation [J]. Geol Sci, 1996, 31(1): 97-104 (in Chinese with English abstract).
- [28] 李献华,赵振华,桂训唐,于津生.华南前寒武纪地壳形成 时代的 Sm-Nd 和锆石 U-Pb 同位素制约 [J].地球化学, 1991,20(3):255-264.

Li Xian-hua, Zhao Zhen-hua, Gui Xun-tang, Yu Jin-sheng. Sm-Nd isotopic and zircon U-Pb constraints on the age of formation of the Precambrain crustin Southeast China [J]. Geochimica, 1991, 20(3): 255–264 (in Chinese with English abstract).

- [29] Liew T C Hofmann A W. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study [J]. Contrib Mineral Petrol, 1988, 98(2): 129–138.
- [30] McLennan S M, Hemming S. Samarium/neodymium elemental and isotopic systematics in sedimentary rocks [J]. Geochim Cosmochim Acta, 1992, 56(3): 887–898.
- [31] Forster M D. Interpretation of composition of trioctahedral micas [J]. U S Geology Survey Professional Paper, 1960, 354B: 1–49.
- [32] 郑巧荣. 由电子探针分析值计算 Fe³⁺和 Fe²⁺ [J]. 矿物学报, 1983 (1): 55-62.
 Zheng Qiao-rong. Calculation of the Fe³⁺ and Fe²⁺ contents in silicate and Ti-Fe oxide minerals from EPMA data [J]. Acta Mineral Sinica, 1983 (1): 55-62 (in Chinese with English abstract).
- [33] 吴福元,李献华,杨进辉,郑永飞.花岗岩成因研究的若干
 问题 [J]. 岩石学报,2007,23(6):1217-1238.
 Wu Fu-yuan, Li Xian-hua, Yang Jin-hui, Zheng Yong-fei.

Discussions on the petrogenesis of granites [J]. Acta Petrol Sinica, 2007, 23(6): 1217–1238 (in Chinese with English abstract).

- [34] Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? [J]. Lithos, 2007, 96(1/2): 186–204.
- [35] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites [J]. Lithos, 1999, 46(3): 535–551.
- [36] Wu F Y, Jahn B M, Wilder S A, Lo C H, Yui T F, Lin Q, Ge W C, Sun D Y. Highly fractionated I-type granites in NE China (1): Geochronology and petrogenesis [J]. Lithos, 2003, 66(3/4): 241–273.
- [37] Li X H, Li Z X, Li W X, Wang Y J. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian magmatic arc in the Hainan Island [J]. J Geol, 2006, 114(3): 341–353.
- [38] 李献华,李武显,李正祥. 再论南岭燕山早期花岗岩的成 因类型与构造意义 [J]. 科学通报, 2007, 50(9): 981–992. Li Xianhua, Li Wuxian, Li Zhengxiang. On the genetic classification and tectonic implications of the Early Yanshannian granitoids in the Nanling rang. South China [J]. Chinese Sci Bull, 2007, 50(9): 981–992 (in Chinese).
- [39] King P L, White A J R, Chappell B W, Allen C M. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia [J]. J Petrol, 1997, 38(3): 371–391.
- [40] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis [J]. Contrib Mineral Petrol, 1987, 95(4): 407–419.
- [41] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and compositional effects in variety of crustal magma types [J]. Earth Planet Sci Lett, 1983, 64(2): 295–304.
- [42] Drummond M S, Defant M J. A model for trondhjemite- tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons [J]. J Geophys Res, 1990, 95(B13): 21503-21521.
- [43] Castillo P R. Adakite petrogenesis [J]. Lithos, 2012, 134-135: 304–316.
- [44] Hu J, Jiang S-Y, Zhao H-X, Shao Y, Zhang Z-Z, Xiao E, Wang Y-F, Dai B-Z, Li H-Y. Geochemistry and petrogenesis of the Huashan granites and their implications for the Mesozoic tectonic settings in the Xiaoqinling gold mineralization belt, NW China [J]. J Asian Earth Sci, 2012, 56: 276–289.
- [45] Zhu X-Y, Chen F-K, Liu B-X, Siebel W. Zircon U-Pb and K-feldspar megacryst Rb-Sr isotopic ages and Sr-Hf isotopic composition of the Mesozoic Heyu pluton, eastern Qingling orogen, China [J]. Lithos, 2013, 156-159: 31–40.
- [46] 张本仁,高山,张宏飞,韩吟文.秦岭造山带地球化学 [M].北京:科学出版社,2002:47-49.

Zhang Ben-ren, Gao Shan, Zhang Hong-fei, Han Yin-wen. The Geochemistry of Qinling Orogenic Belt [M]. Beijing: Science Press, 2002: 47–49 (in Chinese).

- [47] Chen J F, Jahn B M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence [J]. Tectonophysics, 1998, 284(1/2): 101–133.
- [48] 沈其韩, 耿元生, 宋彪, 万渝生. 华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息 [J]. 地质学 报, 2005, 79(5): 616-627.
 Shen Qi-han, Geng Yuan-sheng, Song Biao, Wan Yu-sheng.

New information from the surface outcrops and deep crust of Archean rocks of the north China and Yangtze blocks, and Qinling-Dabie orogenic belt [J]. Acta Geol Sinica, 2005, 79(5): 616–627 (in Chinese with English abstract).

[49] 郑永飞,陈福坤,龚冰,赵子福.大别-苏鲁造山带超高压 变质岩原岩性质: 锆石氧同位素和 U-Pb 年龄证据 [J]. 科 学通报,2003,48(2):110-119.

Zheng Yongfei, Chen Fukun, Gong Bing, Zhao Zi-fu. Characters of metamorphic rocks protoliths in Dabie-Sulu terrane: Oxgen isotope and U-Pb dating of zircon [J]. Chinese Sci Bull, 2003, 48(2): 110–119 (in Chinese).

- [50] 齐秋菊, 王晓霞, 柯昌辉, 李金宝. 华北地块南缘老牛山杂 岩体时代、成因及地质意义-锆石年龄、Hf 同位素和地球化 学新证据 [J]. 岩石学报, 2012, 28(1): 279–301.
 Qi Qiu-ju, Wang Xiao-xia, Ke Chang-hui, Li Jin-bao.
 Geochronology and origin of the Laoniushan complex in the southern margin of North China Block and their implications: New evidences from zircon dation, Hf isotopes and geochemistry [J]. Acta Petrol Sinica, 2012, 28(1): 279–301 (in Chinese with English abstract).
- [51] 包志伟,曾乔松,赵太平,原振雷.东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约 [J]. 岩石 学报,2009,25(10):2523-2536.

Bao Zhi-wei, Zeng Qiao-song, Zhao Tai-ping, Yuan Zhen-lei. Geochemistry and petrogenesis of the ore-related Nannilu and Shangfanggou granite porphyries from east Qinling belt and their constaints on the molybdenum mineralization [J]. Acta Petrol Sinica, 2009, 25(10): 2523–2536 (in Chinese with English abstract).

- [52] Jahn B, Wu F Y, Lo C H, Tsai C H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China [J]. Chem Geol 1999, 157(1): 119–146.
- [53] Arth J G, Reston V. Behaviour of trace models and their applications: A summary of theoretical models and their applications [J]. J Res US Geol Sur, 1976, 4(1): 41–47.
- [54] Mahood G, Hildreth W. Large partion coefficients for trace elements in high-silica rhyolithes [J]. Geochim Cosmochim Acta, 1983, 47(1): 11–30.
- [55] Green T H, Pearson N J. Rare earth element partitioning be-

tween titanite and coexisting silicate liquid at high pressure and temperature [J]. Chem Geol, 1996, 55(1/2): 105–119.

- [56] Yurimoto H, Duck E F, Papike J J, Shearer C K. Are discontinuous chondrite-normalized REE patterns in pegmatitic granite systems the results of monazite fractionation? [J]. Geochim Cosmochim Acta, 1990, 54(7): 2141–2145.
- [57] Janousek V, Finger F, Roberts M, Fryda J, Pin C, Dolejs D. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely undepleted granulites from the Moldanubian Zone of the Bohemian Massif [J]. Trans R Soc Edinb: Earth Sci, 2004, 95(1/2): 141–159.
- [58] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. J Petrol, 1984, 25(4): 956–983.
- [59] Pearce J A. Sources and settings of granitic rocks [J]. Episodes, 1996, 19(4): 120–125.
- [60] 朱赖民,张国伟,郭波,李犇.东秦岭金堆城大型斑岩钼矿 床 LA-ICP-MS 锆石 U-Pb 定年及成矿动力学背景 [J]. 地质 学报,2008,82(2):204-220.

Zhu Lai-min, Zhang Guo-wei, Guo Bo, Li Ben. U-Pb (LA-ICP-MS) zircon dating for the large Jinduicheng porphyry Mo deposit in the east Qinling, China, and its metallogenetic geodynamical setting [J]. Acta Geol Sinica, 2008, 82(2): 204–220 (in Chinese with English abstract).

 [61] 杨泽强. 北大别山商场汤家坪富钼花岗斑岩体地球化学特 征及构造环境 [J]. 地质评论, 2009, 55(5): 745-752.
 Yang Ze-qiang. Geochemistry and tectonic setting of Tang-

jiaping Mo-riched granodiorite porphyry in the northern Dabie Mountains [J]. Geol Rev, 2009, 55(5): 745–752 (in Chinese with English abstract).

- [62] 高昕宇. 华北克拉通南缘外方山和伏牛山地区早白垩世花 岗岩成因研究 [D]. 广州:中国科学院广州地球化学研究 所, 2012.
 Gao Xin-yu. Geochemistry, geochronology and petrogenesis of Early Cretaceous granites in southern margin of the North China Craton [D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2012 (in Chinese with English abstract).
 [62] Chen Y, LLi C, Zhang LLi Z, Wang HH, Sr and O isotopia
- [63] Chen Y J, Li C, Zhang J, Li Z, Wang H H. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type [J]. Sci China (D), 2000, 43(S1): 82–94.
- [64] 周新华.中国东部中、新生代岩石圈转型与减薄研究若干问题 [J]. 地学前缘, 2006, 13(2): 50-64.
 Zhou Xin-hua. Major transformation of subcontinental lithosphere beneath eastern China in the Cenozoic-Mesozoic: Review and prospect [J]. Earth Sci Front, 2006, 13(2): 50-64 (in Chinese with English abstract).
- [65] 王涛,郑亚东,张进江,王新社,曾令森,童英.华北克拉 通中生代伸展构造研究的几个问题及其在岩石圈减薄研究

中的意义 [J]. 地质通报, 2007, 26(9): 1154-1166.

Wang Tao, Zheng Ya-dong, Zhang Jin-jiang, Wang Xin-she, Zeng Ling-sen, Tong Ying. Some problems in the study of Mesozoic extensional structure in the North China craton and its significance for the study of lithospheric thinning [J]. Geol Bull China, 2007, 26(9): 1154–1166 (in Chinese with English abstract).

- [66] Uchida E, Endo S, Makino M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits [J]. Resour Geol, 2007, 57(1): 47–56.
- [67] 谢红洁,杜五虎,孙少波,李宏伟.河南省蒲阵沟铅锌矿地 质特征及找矿标志 [J].科学之友,2011 (24): 6-7, 8.
 Xie Hong-jie, Du Wu-hu, Sun Shao-bo, Li Hong-wei. The geological features and prospecting criteria of lead-zinc ore Po in Puzhen Ditch, Henan Province [J]. Friend of Science Amateurs, 2011 (24): 6-7, 8 (in Chinese with English abstract).
- [68] 胡浩,李建威,邓晓东. 洛南-卢氏地区与铁铜多金属矿床 有关的中酸性侵入岩锆石 U-Pb 定年及其地质意义 [J]. 矿 床地质, 2012, 30(6): 979–1001.
 Hu Hao, Li Jian-wei, Deng Xiao-dong. LA-ICP-MS zircon

U-Pb dating of granitoid intrusions related to ironcopper polymetallic deposits in Luonan-Lushi area of southern North China Craton and its geological implications [J]. Mineral Deposit, 2012, 30(6): 979–1001 (in Chinese with English abstract).

 [69] 陈衍景,郭抗衡. 河南银家沟矽卡岩型金矿的地质地球化 学特征及成因 [J]. 矿床地质, 1993, 12(3): 265-272.
 Chen Yan-jing, Guo Kang-heng. Geology, geochemistry and genesis of the Yinjiagou skarn type gold deposit, Henan province [J]. Mineral Deposit, 1993, 12(3): 265–272 (in Chinese with English abstract).

- [70] 张孝民,乔翠杰,蔡晓荻,张向卫,王温灵,张春红,张元厚.河南银家沟岩浆脉动侵位多金属硫铁矿矿床特征[J].世界地质,2008,27(2):139-144.
 Zhang Xiao-min, Qiao Cui-jie, Cai Xiao-di, Zhang Xiang-wei, Wang Wen-ling, Zhang Chun-hong, Zhang Yuan-hou. Characteristics of Yinjiagou polymetal-pyrite deposit related to pulse magmatic intrusions in Henan, China [J]. Global Geol, 2008, 27(2): 139-144 (in Chinese with English abstract).
 - [71] 胡浩,李建威.豫西银家沟多金属矿床地质矿化特征和成矿时代 [J]. 矿床地质, 2010, 29(增刊): 450-451.
 Hu Hao, Li Jian-wei. Mineralization characteristic and metallogenic epoch of the Yinjiagou polymetallic deposit, Henan Province [J]. Mineral Deposit, 2010, 29 (Suppl): 450-451 (in Chinese).
 - [72] 毛冰, 叶会寿, 李超, 肖中军, 杨国强. 豫西夜长坪钼矿床 辉钼矿铼-锇同位素年龄及地质意义 [J]. 矿床地质, 2012, 30(6): 1069–1074.

Mao Bing,Ye Hui-shou, Li Chao, Xiao Zhong-jun, Yang Guo-qiang. Molybdenite Re-Os isochron age of Yechangping Mo deposit in western Henan Province and its geological implications [J]. Mineral Deposit, 2012, 30(6): 1069–1074 (in Chinese with English abstract).

[73] 温同想. 华北地台南缘活动带铅锌矿类型 [J]. 河南地质, 1992, 10(3): 168-171.
Wen Tong-xiang. The Pb-Zn ore classification of the active belt in southern margin of the North China Block [J]. Geol Henan, 1992, 10(3): 168-171 (in Chinese with English abstract).