

动动动击动电体和论亡同合素在购及

桂东北苗儿山-越城岭南西部岩体和矿床同位素年龄及 华南印支期成矿分析

伍静¹,梁华英^{11*},黄文婷¹⁰⁵,王春龙¹⁰⁵,孙卫东¹,孙亚莉²,李晶¹⁰³,莫济海⁴,王秀璋¹

中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广州 510640;
中国科学院广州地球化学研究所,同位素地球化学国家重点实验室,广州 510640;
紫金矿业集团股份有限公司,厦门 364200;
广东核工业地质局,广州 510800;
中国科学院研究生院,北京 100049
*联系人, E-mail: lianghy@gig.ac.cn

2011-10-09 收稿, 2011-12-28 接受

中国科学院知识创新工程重大项目(KZCX1-YW-15-3)、中国科学院战略性先导科技专项(XDA08130202)、国土资源部深部矿产资源立体探测技术及实验研究(SinoProbe-03-01)和国家自然科学基金(41172080, 41121002)资助

摘要 桂东北苗儿山-越城岭岩体是南岭成矿带西段出露面积最大的复式岩体,出露面积超过 3000 km²,由早期岩基及晚期小岩体组成.早期岩基主要为中粒斑状黑云母花岗岩,晚期岩体主 要为白云母花岗斑岩及白云母二长花岗岩.岩基内外接触带发育一系列 W-Sn-Mo-Pb-Zn-Cu 矿 床,形成矿集区.本文分析了苗儿山-越城岭南西部早期岩基、产于岩基中云头界晚期赋矿岩体及 云头界 W-Mo 矿床同位素年龄.苗儿山-越城岭岩基锆石 LA-ICP-MS U-Pb 年龄:228.7±4.1 Ma, MSWD=2.49,可能发育一期锆石 LA-ICP-MS U-Pb 年龄为 243.0±5.8 Ma, MSWD=2.62 的岩浆活 动.云头界晚期赋矿岩体锆石 LA-ICP-MS U-Pb 年龄为 243.0±5.8 Ma, MSWD=2.62 的岩浆活 动.云头界晚期赋矿岩体锆石 LA-ICP-MS U-Pb 年龄 216.8±4.9 Ma, MSWD=1.44; 云头界 W-Mo 矿床辉钼矿 Re-Os 等时线年龄 216.8±7.5 Ma, MSWD=11.3. 苗儿山-越城岭南西部岩基、晚期赋 矿岩体及矿床同位素年龄表明南西部岩基、晚期岩体及相关矿床都是印支期形成的,苗儿山-越 城岭岩基内外接触带矿床主要和晚期岩浆活动有关;实验获得的同位素年龄及前人华南印支期 花岗岩及矿床同位素年龄表明,华南不但经历了燕山期大规模岩浆成矿事件,也经历了印支期 《中国科学》杂志社

SCIENCE CHINA PRESS

南岭成矿带是世界最重要的钨锡铍铌钽成矿带, 国内外学者对华南地区主要花岗岩及矿床的时空分 布规律做了大量的工作^[1-26].但过去的工作主要集中 在南岭中段及东段,而对南岭西段的工作则相对较 少;华南燕山期成矿受到广泛重视,而对印支期成矿 则探讨不多.苗儿山-越城岭复式岩体是南岭成矿带 西段出露面积最大的岩体,近年来在该岩体及其内 外接触带发现一系列大型钨锡及铜铅锌多金属矿床 (图1),围绕岩体形成矿集区.目前对该岩体缺少精 确同位素定年,多数观点认为其是加里东期形成 的^[10],也有学者认为其属印支期或燕山期的产物^[27,28];而对该岩体内外接触带矿床形成时代未见报道.开展对该岩体及有关矿床精确同位素定年,分析岩浆形成演化与矿床形成的关系,对整体了解南岭成矿带成岩成矿演化及分析苗儿山-越城岭复式岩体内外接触带矿床的成因等都有着较重要的意义.

1 区域地质简介

苗儿山-越城岭岩体是南岭成矿带西段出露面积 最大岩体,出露面积超过 3000 km². 岩体分布于复式

英文版见: Wu J, Liang H Y, Huang W T, et al. Indosinian isotope ages of plutons and deposits in southwestern Miaoershan-Yuechengling, northeastern Guangxi and implications on Indosinian mineralization in South China. Chin Sci Bull, 2012, 57: 1024–1035, doi: 10.1007/s11434-011-4968-z

图 1 苗儿山-越城岭岩体位置(a)、地质(b)及云头界 W-Mo 矿床(c)地质简图

1,中生代地层; 2,古生代地层; 3,元古代地层; 4,早期岩基; 5,晚期岩体; 6,钨矿床(点); 7,钨钼矿床(点); 8,铜矿床(点); 9,铅锌矿床(点); 10, 多金属矿床(点); 11,锡矿床(点); 12,铅矿床(点); 13,钨锡矿床(点); 14,控制及推测矿体和编号; 15,断裂; 16,采样位置

背斜的轴部,呈椭圆形,岩体长轴方向呈北北东向展 布,与区域构造线方向基本一致(图1). 苗儿山-越城 岭岩体是一个多期次多阶段岩浆活动形成的复式岩 体,早期为岩基,晚期岩体规模相对较小,主要以小 岩体、岩脉或岩株等分布于岩基中及其边部(图1). 在 苗儿山-越城岭岩体内外接触带发育一系列 W-Sn-Mo-Pb-Zn-Cu 矿床,形成矿集区(图1).

研究区位于苗儿山-越城岭岩基南西部,早期岩体样品采自苗儿山岩体西南侧的引水隧洞口,地理坐标:26°04'11.5"N,110°24'20.2"E. 通过约2km地下引水隧洞及地表约2km地质剖面观察,发现早期岩基为灰白色,风化后黄灰、棕灰色;岩性变化不大,以中粒斑状黑云母花岗岩为主,局部有中粒斑状黑云母二长花岗岩,似斑状结构、块状构造.斑晶矿物

粒度在 2~30 mm 之间, 基质矿物粒度多小于 2 mm. 斑晶杂乱分布于基质中, 斑晶和基质矿物组成基本 相同. 主要矿物有斜长石(22%~27%)、钾长石(32%~ 34%)、石英(33%~39%)、黑云母(8%~11%). 副矿物 为锆石, 磷灰石及独居石.

晚期岩体样品采自苗儿山-越城岭南西部和云头 界 W-Mo 矿床关系密切的小岩体,样品地理坐标: 26°03′48″N,110°23′01″E.晚期岩体与早期岩体具明 显的侵入接触关系(图2).晚期岩体与早期岩体接触 部位见冷凝边,靠近早期岩体接触界线附近岩石矿 物粒度明显较细,远离接触带矿物粒度增大,显示接 触带附近相对降温较快,晚期岩体是在早期岩体冷 却后侵位的.晚期岩体主要为细粒白云母二长花岗 斑岩、细粒电气石白云母花岗斑岩及中粒含黑云母的

图 2 早期岩体与晚期岩体接触界线 晚期岩体与早期岩体接触处见冷凝边.1,早期岩体;2,晚期岩体与 早期岩体接触处冷凝边;3,晚期岩体

白云母二长花岗岩.岩石为浅白色,块状构造,斑状 结构及粒状结构.斑状结构者斑晶主要为白云母、斜 长石、石英,大小在 0.5~2 mm 之间,基质成分和斑 晶的相同,其主要矿物为:条纹长石(19%~27%)、斜 长石(19%~27%)、石英(32%~50%)、白云母(4%~8%) 及少量黑云母;副矿物主要为锆石.岩石多发生钠长 石化,绢云母化及绿泥-绿帘石化.

云头界钨钼矿床位于苗儿山-越城岭岩体的南西端,钨金属量预计可达万吨^[29],达中型钨矿床规模. 云头界钨钼矿床矿化主要为脉状及浸染状产于晚期 的细粒白云母花岗斑岩中及其与早期中粗粒斑状黑 云母花岗岩体的接触带内;矿区已发现了 5 个矿体 (图1)^[29].矿体长100~200 m,脉宽20~30 cm.矿化具 一定分带性,上部以钨矿化为主,下部为钨钼矿化, 由上往下钼的含量明显增加.云头界钨钼矿床矿金 属矿物主要为黑钨矿、白钨矿、辉钼矿及少量的黄铜 矿、闪锌矿及黄铁矿等,脉石矿物主要为石英及电气 石,蚀变主要有云英岩化及电气石化等.

2 样品及分析方法

辉钼矿 6个样品分别采自云头界矿区的①号矿 脉(图 1),每个样品重约 1 kg. 先对样品进行挑选,辉 钼矿是用刀片等工具直接从手标本上挑选的,从手 标本上剥离后在显微镜下做进一步的检查与选纯至 纯度达 99%以上.辉钼矿 Re-Os 同位素组成在中国科 学院广州地球化学研究所实验测试中心完成.采用 Carius 管封闭溶样分解样品,样品分解以及 Re 和 Os 的分离等化学处理过程参见文献[30],质谱分析仪器 是美国热电公司生产的 X7 型 ICPMS,采用 Ir 和 Os 天然丰度进行在线监测和校正仪器测试过程中的 Re 和 Os 同位素分馏.

锆石选自岩石新鲜样品,分析样品重约1 kg,将 样品破碎过筛, 经磁选及重液的分离, 再经手选. 将 精选的锆石装入环氧树脂中, 然后抛光. 用光学显微 镜及扫描电子显微镜阴极发光(CL)观察,选出晶形 较好、没有裂纹及包裹体不发育的锆石晶体进行测定. 锆石的 U-Pb 年龄分析在中国科学院广州地球化学研 究所 ICP-MS 实验室完成. 采用美国 Resonetics 公司 生产的 RESOlution M-50 激光剥蚀系统和 Agilent 7500a 型的 ICP-MS 联机,并带有一个独特的可以减 少样品分馏的双室(two-volume cell)样品室和一个平 滑激光剥蚀脉冲的 Squid 系统^[31]. 测试时使用 Ar 和 He作为载气, 激光能量为 80 mJ, 剥蚀斑束直径 31 µm, 频率 8 Hz. 每个样品分别测试 25 粒锆石. 测定一个 点的时间为60s,其中前20s关闭激光,后40s打开 激光.为了减少继承铅、铅丢失等对年龄的影响,在 ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U图中谐和度低于90%的年龄数据 点在计算年龄是将被排除掉.此外,如果分析点 La 含量或P含量较高,表明激光熔样点含有磷灰石包裹 体,由于磷灰石含有较多普通铅,这些分析数据点也 要排除^[32,33]. LA-ICP-MS 法速度快, 测得的数据点较 多,可用累积概率统计图对数据进行处理.在累积概 率图上, 主群组年龄多沿直线分布, 其年龄代表岩体 锆石年龄, 位于直线上方的被认为继承铅, 位于直线 下方的多被认为是铅丢失^[32,33].为了获得更精确的 年龄,在计算岩体年龄时,只计算主群组锆石年龄, 一般来说主群组锆石年龄的 MSWD 多小于 2.0. 年龄 计算及谐和图的绘制用 Isoplot 软件完成.

3 分析结果与讨论

3.1 分析结果

南岭西段苗儿山-越城岭岩基、岩基中云头界晚 期赋矿岩体锆石 LA-ICP-MS U-Pb 同位素年龄见表 1,表2及图3;云头界钨钼矿床辉钼矿 Re-Os 同位素 年龄分析结果见表3.

3.2 讨论

(i) 苗儿山-越城岭岩基形成时代. 苗儿山-越

					表1 苗儿	L山-越城屿	海西部岩基	長皓石 LA	-ICP-MS 分	析结果 "					
序号	U (bpm)	Th/U	$^{207}\text{Pb}/^{235}\text{U}$	± 1S.E.	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	± 1S.E.	²⁰⁸ Pb/ ²³² Th	± 1S.E.	²⁰⁷ Pb/ ²³⁵ U 年龄 (Ma)	± 1S.E.	²⁰⁶ Pb/ ²³⁸ U 年龄 (Ma)	± 1S.E.	²⁰⁸ Pb/ ²³² Th 年龄 (Ma)	± 1S.E.	谐和度
YSD-1-01	396	0.87	0.21920	0.01706	0.03365	0.00059	0.01065	0.00042	201.2	14.2	213.4	3.7	214.1	8.4	94%
YSD-1-02	2027	0.14	0.26656	0.01218	0.03623	0.00046	0.01385	0.00065	239.9	9.8	229.4	2.9	277.9	12.9	95%
YSD-1-03	412	0.93	0.95183	0.06211	0.08854	0.00275	0.03689	0.00136	679.1	32.3	546.9	16.3	732.3	26.6	78%(排除)
YSD-1-04	708	0.21	0.23682	0.01375	0.03533	0.00062	0.01136	0.00063	215.8	11.3	223.8	3.9	228.4	12.6	96%
YSD-1-05	425	0.49	0.23650	0.01913	0.03511	0.00094	0.01091	0.00060	215.5	15.7	222.4	5.9	219.3	11.9	<i>2</i> 6%
YSD-1-06	1588	0.15	0.25531	0.01719	0.04015	0.00094	0.01024	0.00057	230.9	13.9	253.8	5.8	205.9	11.4	%06
YSD-1-07	650	0.52	0.24826	0.02022	0.03473	0.00061	0.01127	0.00081	225.2	16.4	220.1	3.8	226.6	16.2	9/2/06
YSD-1-08	370	0.39	0.52015	0.04127	0.07242	0.00260	0.02932	0.00149	425.3	27.6	450.7	15.6	584.0	29.2	94%
YSD-1-09	677	0.38	0.22311	0.01434	0.03379	0.00051	0.01019	0.00053	204.5	11.9	214.2	3.2	205.0	10.7	95%
YSD-1-10	240	1.05	0.23520	0.02254	0.03332	0.00088	0.01000	0.00052	214.5	18.5	211.3	5.5	201.2	10.4	98%
YSD-1-11	191	1.58	0.25521	0.03755	0.03579	0.00118	0.01226	0.00065	230.8	30.4	226.7	7.3	246.3	13.0	98%
YSD-1-12	854	0.23	0.24926	0.01621	0.03757	0.00065	0.01150	0.00068	226.0	13.2	237.7	4.1	231.1	13.5	94%
YSD-1-13	571	1.27	0.22740	0.01615	0.03575	0.00078	0.01127	0.00042	208.0	13.4	226.5	4.8	226.5	8.4	91%
YSD-1-14	163	1.03	0.26838	0.03292	0.03872	0.00111	0.01167	0.00067	241.4	26.4	244.9	6.9	234.5	13.4	98%
YSD-1-15	2072	0.24	0.39085	0.02511	0.03980	0.00065	0.02275	0.00160	335.0	18.3	251.6	4.0	454.8	31.7	71%(排除)
YSD-1-16	641	1.52	0.26652	0.01763	0.03542	0.00072	0.01273	0.00059	239.9	14.1	224.4	4.5	255.6	11.8	93%
YSD-1-17	406	0.58	0.24251	0.02334	0.03683	0.00085	0.01191	0.00072	220.5	19.1	233.2	5.3	239.3	14.4	94%
YSD-1-18	439	0.32	0.24255	0.03130	0.03552	0.00079	0.01910	0.00124	220.5	25.6	225.0	4.9	382.5	24.7	<i>%L6</i>
YSD-1-19	726	0.20	0.25453	0.02166	0.03674	0.00070	0.01165	0.00072	230.3	17.5	232.6	4.3	234.2	14.4	98%
YSD-1-20	416	0.81	3.36003	0.22873	0.23848	0.00667	0.07087	0.00418	1495.1	53.3	1378.8	34.7	1598.2*	129.6	91%
YSD-1-21	780	0.16	0.27694	0.02240	0.03836	0.00078	0.01544	0.00108	248.2	17.8	242.7	4.8	309.6	21.6	<i>%L6</i>
YSD-1-22	644	0.22	0.26152	0.02309	0.03504	0.00069	0.01289	0.00097	235.9	18.6	222.0	4.3	258.9	19.4	93%
YSD-1-23	534	1.05	0.18877	0.01927	0.03391	0.00072	0.00987	0.00047	175.6	16.5	215.0	4.5	198.6	9.4	79% (排除)
YSD-1-24	877	0.23	0.24700	0.01925	0.03397	0.00071	0.01236	0.00069	224.1	15.7	215.3	4.4	248.2	13.8	95%
YSD-1-25	683	0.22	0.23864	0.02230	0.03397	0.00068	0.00952	0.00068	217.3	18.3	215.4	4.2	191.5	13.6	2666
a) U-Pb	年龄超过	1000 Ma 的	采用 ²⁰⁷ Pb/ ²⁰⁶ 1	Pb 年龄. 1 pi	pm=1 µg/g, ≶	余同									

论文

-1S.E. 谐和度	21.8 97%	24.5 96%	13.3 99%	27.1 96%	21.9 94%	41.1 9%(排除)	24.1 96%	13.9 99%	22.9 94%	22.0 90%	26.5 85% (排除)	12.6 99%	12.8 96%	15.3 99%	28.7 98%	34.3 99%	29.0 90%	16.7 96%	14.4 98%	56.7 86% (排除)	18.9 96%	16.0 98%	22.9 99%	13.4 94%	10.7 060
²⁰⁸ Pb/ ²³² Th 年龄(Ma) ±	329.0	245.3	203.2	436.4	255.3	867.5 1.	352.2	228.1	310.3	407.2	548.9 1:	220.5	231.2	207.7	442.7	388.9	346.0	224.9	200.2	495.3	234.4	233.3	325.4	208.4	202.1
± 1S.E.	5.1	4.6	7.0	9.1	5.4	6.5	13.7	4.8	4.4	9.7	9.3	5.1	4.4	5.6	13.6	4.2	5.2	5.9	4.4	7.8	4.6	6.2	4.7	6.8	4.7
²⁰⁶ Pb/ ²³⁸ U 年龄(Ma)	238.5	214.9	202.4	396.8	218.8	232.1	377.6	217.9	240.7	394.9	318.5	257.3	246.7	212.8	429.2	238.4	243.9	271.8	213.3	250.6	225.8	257.0	220.6	235.4	233.8
± 1S.E.	21.0	19.1	37.6	31.8	21.0	43.5	28.0	17.9	16.0	31.6	24.7	14.7	12.3	18.9	43.0	13.8	15.1	18.8	15.9	46.3	17.6	25.9	18.1	17.4	17.3
²⁰⁷ Pb/ ²³⁵ U 年龄(Ma)	245.5	207.1	202.2	381.5	208.0	612.3	390.4	219.9	254.9	358.1	367.7	254.9	239.1	214.2	437.4	237.3	268.7	261.3	217.3	287.3	219.0	252.2	221.0	223.1	226.2
± 1S.E.	0.00110	0.00123	0.00066	0.00137	0.00110	0.00729	0.00122	0.00070	0.00115	0.00111	0.00643	0.00063	0.00064	0.00077	0.00145	0.00173	0.00146	0.00083	0.00072	0.00288	0.00094	0.00080	0.00115	0.00067	0.00054
²⁰⁸ Pb/ ²³² Th	0.01641	0.01221	0.01010	0.02182	0.01271	0.04386	0.01758	0.01135	0.01547	0.02035	0.02753	0.01097	0.01150	0.01033	0.02214	0.01943	0.01727	0.01119	0.00996	0.02481	0.01167	0.01161	0.01623	0.01036	0.01005
± 1S.E.	0.00081	0.00074	0.00112	0.00150	0.00086	0.00104	0.00225	0.00077	0.00071	0.00161	0.00152	0.00082	0.00071	0.00090	0.00225	0.00068	0.00084	0.00095	0.00070	0.00126	0.00074	0.00101	0.00076	0.00110	0.00076
²⁰⁶ Pb/ ²³⁸ U	0.03770	0.03390	0.03190	0.06349	0.03453	0.03666	0.06033	0.03437	0.03804	0.06318	0.05065	0.04073	0.03902	0.03356	0.06885	0.03767	0.03857	0.04307	0.03364	0.03964	0.03564	0.04068	0.03481	0.03719	0.03694
± 1S.E.	0.02639	0.02308	0.04512	0.04558	0.02533	0.07824	0.04056	0.02186	0.02024	0.04432	0.03490	0.01865	0.01536	0.02295	0.06507	0.01720	0.01931	0.02392	0.01942	0.06050	0.02148	0.03275	0.02213	0.02133	0.02129
²⁰⁷ Pb/ ²³⁵ U	0.27357	0.22622	0.22037	0.45598	0.22732	0.82755	0.46887	0.24178	0.28532	0.42283	0.43644	0.28537	0.26550	0.23488	0.53848	0.26333	0.30297	0.29349	0.23862	0.32703	0.24072	0.28196	0.24312	0.24576	0.24956
Th/U	0.25	0.28	1.46	1.07	0.40	0.65	1.12	0.34	2.24	1.51	0.46	0.18	0.10	0.42	1.11	0.09	0.09	0.24	0.70	0.74	0.43	0.83	0.28	0.37	0.21
U (bpm)	707	517	128	269	699	464	516	694	1995	339	1173	1388	3513	317	160	2370	3120	744	1178	191	851	276	621	914	3535
序号	Y-21-01	Y-21-02	Y-21-03	Y-21-04	Y-21-05	Y-21-06	Y-21-07	Y-21-08	Y-21-09	Y-21-10	Y-21-11	Y-21-12	Y-21-13	Y-21-14	Y-21-15	Y-21-16	Y-21-17	Y-21-18	Y-21-19	Y-21-20	Y-21-21	Y-21-22	Y-21-23	Y-21-24	Y-21-25

图 3 苗儿山岩基(a)及云头界赋矿岩体(b)锆石 LA-ICP-MS U-Pb 年龄谐和图 内插为累积概率统计图

城岭南西部早期岩基及晚期赋矿岩体锆石韵律环带 发育(图4),显示岩浆锆石特征,加上测定锆石 Th/U 比值较大,在 0.10~2.24 之间,也显示岩浆锆石特征, 因此,分析锆石为岩浆结晶作用过程中形成的锆石, 主群锆石 U-Pb 年龄代表岩浆侵位年龄.

苗儿山岩基样品(YSD-1)共做 25 颗锆石 U-Pb 同 位素组成分析,其中3个分析点谐和度<90%,在计算 年龄时被排除,另2个分析点的 U-Pb 年龄较大,一 个点的年龄为 450.7±15.6 Ma, 另一个点的年龄为 1378.8±34.7 Ma. 其余 20 个点的年龄在 211~245 Ma 之间. 年龄较大的 2 个分析点锆石为继承锆石, 不代 表岩浆岩结晶年龄,在统计岩体年龄时不予考虑.用 ISOPLOT处理 20个分析点获得年龄为 225.0±4.8 Ma, MSWD=5.5. 其 MSWD 值较大, 表明其中含有不易 分别的继承锆石或铅丢失锆石^[33],为了获得更加精 确的锆石 U-Pb 年龄, 我们用累积概率统计图处理锆 石年龄. 如前所述, 在累积概率图上, 主群组年龄多 沿直线分布,其年龄代表岩体锆石年龄,位于直线上 方的被认为继承铅, 位于直线下方的多被认为是铅 丢失. 在累积概率统计图上(图3(a)内插图), 苗儿山-越城岭岩基锆石年龄较小的5个点及年龄最大的1个 点和其他点不在一条直线上分布,把年龄最大1个点 视作继承铅, 年龄较小的 5 个点视作铅丢失, 则其余 14个点代表的主群锆石年龄 U-Pb 年龄为 228.7±4.1 Ma, MSWD=2.49. 岩浆岩主群锆石 U-Pb 代表岩浆结 晶年龄^[32,33],因此,苗儿山-越城岭岩基南西部似斑 状二云母花岗岩的侵位时代为 228.7±4.1 Ma, 是印支 期形成的, 而不是过去认为的加里东期形成的. 该认 识对今后分析南岭西段成岩成矿演化有着非常重要 的意义.

(ii) 云头界赋矿岩体锆石 U-Pb 年龄特征. 云 头界赋矿白云母花岗岩样品(Y-21)共做 25 颗锆石 U-Pb 同位素组成分析,其中 3 个点的谐和度低于 90%,在计算年龄时被排除.4个分析点锆石 LA-ICP-MS U-Pb 年龄在 318~430 Ma之间,其余 18 个分析点 锆石年龄在 202~251 Ma之间(表 2). 锆石 U-Pb 年龄 大于 318 Ma锆石(图 4 中 4, 7, 10 和 15)视为继承锆石,

表 3 云头界 W-Mo 矿床辉钼矿 Re-Os 同位素组成

样号	样重(g)	Re(µg/g)	$\pm \sigma$	187 Re(µg/g)	$\pm \sigma$	¹⁸⁷ Os(ng/g)	$\pm \sigma$	t(Ma)	$\Delta t(Ma)$
Y-09	0.4000	0.76564	0.00252	0.48123	0.00159	1.71451	0.00959	213.5	1.4
Y-16	0.3382	1.57602	0.00338	0.99059	0.00213	3.61228	0.0025	218.5	0.5
Y-16-1	0.4576	1.18588	0.00443	0.74537	0.00279	2.66141	0.00494	213.9	0.9
Y-16-1R	0.4568	0.81967	0.00207	0.5152	0.0013	1.88217	0.00273	218.9	0.6
Y-16-2	0.3012	1.89849	0.00517	1.19328	0.00325	4.37612	0.00707	219.7	0.7
Y-22	0.1813	2.96345	0.00925	1.86265	0.00582	6.61547	0.00925	212.8	0.7

图 4 苗儿山-越城岭复式岩体锆石 CL 图 Y21 锆石号码对应表 2 分析号

不代表主要岩浆期形成时代.用 ISOPLOT 处理该 19 个分析点锆石 U-Pb 同位素组成,获得锆石 U-Pb 年龄 为 232.5±8.7 Ma, MSWD=11.5 (图 3(b)).其 MSWD 值 很大,误差也较大,显示年龄精度较差.为了获取主 群锆石年龄,我们用累积概率统计图分析其年龄分 布特征,在累积概率统计图上(图 3(b)内插图),18 个 分析点中可分为斜率明显不同的两组,第一组 8 个点, 第二组 9 个点.用 ISOPLOT 分别计算两组年龄,第 一组锆石 U-Pb 年龄为 216.8±4.9 Ma, MSWD=1.44, 第二组锆石 U-Pb 年龄为 243.0±5.8 Ma, MSWD=2.62 (图 3(b)).

云头界赋矿岩体和苗儿山-越城岭岩基具有侵入 接触关系且接触处发育冷凝边(图2),其侵位时代应 晚于岩基,锆石 U-Pb 年龄应小于岩基锆石 U-Pb 年龄. 第一组 8 颗锆石(图 4 中 2, 3, 5, 8, 14, 19, 21 和 23)具 有韵律环带结构,为岩浆结晶作用形成的锆石.因此, 我们认为第一组锆石年龄(216.8±4.9 Ma, MSWD= 1.44)代表云头界赋矿岩体岩浆侵位年龄,云头界 W-Mo 矿化岩体是印支期形成的,而不是过去认为的 燕山期形成的^[34].

云头界赋矿岩体第二组锆石 U-Pb 年龄 243.0±5.8 Ma, MSWD=2.62, 年龄值比较集中, 锆石晶形较好,

具韵律环带结构(图 4 中的 1, 9, 13, 16, 17, 20, 22, 24 和 25)及较大的 Th/U 比值,在 0.1~1.5 之间,与变质 成因锆石明显不同^[35~37],而具岩浆锆石的特征.因 而认为第二组锆石主要是岩浆作用形成的. 锆石晶 形较好,未见残留锆石所常见的增生边,因此,推断 其可能是成矿岩浆在上升过程中捕获的早期岩体的 锆石. 该锆石 U-Pb 年龄可能代表苗儿山-越城岭岩基 早期岩浆岩侵位年龄,但由于目前在地表还未发现 该锆石 U-Pb 年龄的岩浆石,该期岩浆活动有待进一 步证实. 结合我们在苗儿山-越城岭岩基地表处样品 锆石 U-Pb 年龄(228.7±4.1 Ma, MSWD=2.49),我们认 为苗儿山-越城岭岩基南西部在印支期可能发生了两 期岩浆事件,除了定位时代约为 228 Ma 的侵入岩浆 活动外,还可能发育 243 Ma 左右的侵入岩浆活动.

(iii) 云头界 W-Mo 矿床形成时代. 云头界 W-Mo 矿床辉钼矿 Re-Os 同位素组成见表 3, 辉钼矿 Re 含 量在 0.76~2.96 µg/g 之间, 远低于斑岩型铜钼矿床辉 钼矿 Re 含量, 具壳源特征. 6 个辉钼矿样品模式年龄在 218~220 Ma 之间. 6 个辉钼矿样品同位素组成具很好 的线性关系, 采用 ISOPLOT 软件对所获得的数据进 行等时线年龄计算, 取¹⁸⁷Re 衰变常数 1.666×10⁻¹¹ a⁻¹, 获得 Re-Os 等时线年龄为 216.8±7.5 Ma, MSWD= 11.3(图 5). 云头界 W-Mo 矿床辉钼矿等时线年龄和 样品的模式年龄基本一致. 云头界钨钼矿床辉钼矿 Re-Os 等时线年龄表明矿床是印支期形成的.

云头界 W-Mo 矿床辉钼矿等时线年龄和赋矿岩体第一组主群锆石 U-Pb 年龄(216.8±4.9 Ma, MSWD= 1.44)一致.这一方面说明我们获得的年龄的可靠性, 另一方面也表明成矿作用主要和云头界赋矿岩体有

图 5 广西云头界 W-Mo 矿床辉钼矿 Re-Os 等时线年龄图

关,赋矿岩体和矿床都是印支期形成的.

(iv) 苗儿山-越城岭岩基内外接触带矿床形成与 找矿方向. 苗儿山-越城岭岩体内外接触带发育一 系列热液矿床,围晓岩体形成矿集区(图1). 矿集区 矿床分布具有一定的分带性,岩体及其内接触带中 W-Mo-Sn 矿床相对发育,岩体外接触带及附近围岩 中Pb-Zn矿床相对发育.分析矿床与不同期次岩浆活 动的关系对了解该区岩浆形成演化与矿床形成的关 系及指导找矿都有着重要的意义.

目前对岩基内外接触带中的矿床与岩体的成因 关系工作不多, 生产部门多认为矿床和岩基有成因 联系. 苗儿山-越城岭岩基内外接触带矿床以 W-Sn 矿床为主,多为高温岩浆热液矿床.岩浆热液矿床主 要是由岩浆形成演化过程中出溶挥发相[32,38~46]或与 岩浆体系有物质和能量交换形成高温流体溶解的成 矿元素在岩体周围沉淀析出形成的矿床.如果岩浆 岩在形成演化过程中发生过成矿作用,在岩体周围 会发生蚀变及成矿元素异常. 苗儿山-越城岭岩基南 西部资源县一带与围岩接触界线清楚,未见蚀变,而 穿过岩基内外接触带3条化探剖面也未见成矿元素 异常(另文发表). 这表明苗儿山-越城岭岩基岩浆活 动时未发生成矿元素富集作用. 苗儿山-越城岭岩基 围岩接触带矿床多和岩基中的晚期岩体有紧密的空 间关系, 而岩基南西部云头界 W-Mo 矿床同位素年 龄分析表明, 云头界 W-Mo 矿床和晚期岩体有关而 和早期岩基没有成因关系.综上所述,我们认为,苗 儿山-越城岭岩基内外接触带中的矿床和早期岩基没 有内在成因联系, 而主要与晚期的岩浆活动有关. 既 然早期岩基内外接触带中的矿床和岩基没有内在成 因联系,为什么岩基内外接触带矿床特别发育?我 们认为矿床之所以沿着岩基内外接触带分布,主要 是由下列因素造成的: ① 早期岩基与围岩接触带是 构造脆弱部位,为后期成矿岩浆的侵位提供了良好 的通道; ② 早期岩基与围岩接触带是岩性突变部位, 有利于与后期岩浆有关的成矿流体与围岩发生交换 反应,因而有利于成矿元素沉淀析出形成矿床.

目前在岩体内外接触带及附近围岩地层中发育 铅锌矿床(点),铅锌矿床形成温度多低于岩体及其接 触带内和后期成矿岩体紧密共生的 W-Sn 矿床.如果 这些铅锌矿床(点)和 W-Sn 等高温热液矿床空间距离 不大,则两者可能属于同一成岩成矿系统的产物,是 成矿热液迁至外围温度较低时发生成矿元素沉淀析 出形成的.如果铅锌矿床(点)单独出现,其可能是岩浆热液成矿系统的顶端,则应注意寻找其深部与高温岩浆热液有关的 W-Mo-Sn(Cu)矿床.

(V) 华南印支期成矿讨论及找矿探讨. 南岭成 矿带是与中酸性岩浆有关矿床的重要产地, 过去工 作多集中在燕山期矿床上^[3,7,12-15],而对华南印支期 成矿则相对工作不多. 华南在中生代经历了印支运 动及燕山运动,东特提斯洋在 245 Ma 左右关闭, Sibumasu 地块与印支板块-华南板块在 258±6 Ma~ 243±5 Ma 发生了以碰撞增生为代表的印支构造运 动^[47,48]. 华南和华北地块在印支运动时发生碰 撞^[49,50],印支运动把印支、华南和华北地块连成一体, 形成了统一的东亚大陆^[47,51~54],是中国东部地壳构 造发展史上一个重大的转折点[53].印支运动在华南 分布广泛(表 4), 华南二叠-三叠纪沉积环境的突然变 化[54],我国福建、湖南、江西、广东、广西及海南等 地发育印支期花岗岩,浙江及台湾则有印支期变质 事件记录(表4),而本文的工作表明,苗儿山-越城岭 岩基南西部主要是印支期形成的. 我国华南多个地 区印支期花岗岩的发现及印支期变质事件记录,表 明我国华南地区在印支期经历了广泛而强烈的构造 岩浆事件.

华南燕山期花岗岩浆有关的 W-Sn-Nb-Ta-REE 矿床发育,形成世界重要稀有稀土金属成矿带,表明 华南基底富集有关成矿元素. 在理论上, 富稀有稀土 元素的华南基底在印支期发生熔融形成的花岗岩浆 在侵位及结晶分异过程中也可出溶挥发相,发生稀 有稀土元素富集形成矿床.我们的工作及前人的赣 南鹅仙塘锡矿床^[56]、湘南荷花坪锡矿床^[61]及桂东栗 木锡铌矿床^[60]同位素年龄证实华南印支期发生成矿 作用.因此,可以认为华南具有在印支期形成大规模 矿床的动力学条件. 综上所述, 我们认为华南不但经 历了人们所熟悉的燕山期成矿作用, 也经历了印支 期的成矿作用,有更好的找矿前景,今后应注意华南 印支期矿床的找矿工作. 中酸性岩浆热液矿床多发 育于岩浆房的上部及其边缘,由于印支期发生 Sibumasu 地块与印支板块-华南板块碰撞, 华南地区 在印支期发生了大规模抬升而被大量剥蚀,如苗儿 山-越城岭大规模出露岩基表明其上部已发生了大规 模剥蚀. 由于岩浆热液矿床多位于岩体或其内外接 触带上部,印支期岩基即使发生矿化,也会首当其冲 被剥蚀殆尽.因此,印支期与中酸性岩浆有关矿床的

斜ぐ 通 ね 2012 年 5 月 第 57 卷 第 13 期

岩体或矿床	同位素年龄	参考文献
赣南-粤北贵东杂岩体鲁溪岩体	239±5 Ma (锆石 LA-ICP-MS)	[55]
赣南-粤北贵东杂岩体下庄岩体	236±8 Ma (锆石 LA-ICP-MS)	[55]
赣南鹅仙塘锡矿床	231.4±2.4 Ma (白云母 ⁴⁰ Ar/ ³⁹ Ar 坪年龄)	[56]
赣南大吉山五里亭岩体	238.9±1.5 Ma (锆石 SHRIMP)	[57]
赣南白面石花岗岩体	249.9±1.3 Ma (Rb-Sr 等时线)	[58]
桂东南大容山岩体	233±5 Ma (锆石 SHRIMP)	[59]
桂东南旧州岩体	230±4 Ma (锆石 SHRIMP)	[59]
桂东南台马岩体	236±4 Ma (锆石 SHRIMP)	[59]
桂东北栗木矿床	214.1±1.9 Ma(白云母 ⁴⁰ Ar/ ³⁹ Ar)	[60]
桂东苗儿山-越城岭岩基	243.0±5.8 Ma; 228.7±4.1 Ma (锆石 LA-ICP-MS)	本文
桂东苗儿山-越城岭岩基内云头界赋矿岩体	216.8±4.9 Ma (锆石 LA-ICP-MS)	本文
桂东云头界 W-Mo矿床	213.3±0.8 Ma (辉钼矿 Re-Os)	本文
湘南荷花坪锡矿床	224±1.9 Ma (辉钼矿 Re-Os 等时线)	[61]
湖南沩山二长花岗岩	244±4 Ma (锆石 SHRIMP)	[62]
湖南关帝庙岩体	239±3 Ma (锆石 SHRIMP)	[62]
湖南白马山	243±3 Ma (锆石 SHRIMP)	[62]
赣南-粤北龙源坝岩体	241.0±5.9 Ma, 241.0±1.3 Ma, 210.9±3.8 Ma(锆石 LA-ICP-MS)	[63]
诸广山岩体东部花岗岩	204~235 Ma (锆石 SHRIMP)	[58]
粤北下庄岩体	228.0±0.5 Ma (锆石 SHRIMP)	[58]
闽西南正长岩	252~242 Ma (锆石 SHRIMP)	[64]
闽西含黄玉花岗岩	226 Ma (锆石 SHRIMP)	[65]
浙江景宁鹤溪群斜长角闪岩	252±5 Ma (变质锆石 SHRIMP)	[66]
浙西南地区	基性岩-超基性岩在 251~233 Ma 左右经历过一次变质事件	[67]
浙江	推覆构造 (P ₃ -T ₁)	[68]
台湾	260~240 Ma (变质作用)	[69]
海南正长岩	244±7 Ma (锆石 SHRIMP)	[70]

表4 华南印支期成岩成矿年龄表

找矿靶区应是岩基中出露面积不大的印支晚期岩体 如云头界岩体,或凹陷带地层中出露面积不大的印 支期岩体如栗木岩体等.

4 主要结论

通过上述分析,我们得出下列主要结论:

(1) 苗儿山-越城岭岩基南西部主要为中粒斑状 黑云母花岗岩及中粒斑状黑云母二长花岗岩, 苗儿 山-越城岭南西部岩基主要是印支期形成的, 锆石 LA-ICPMS U-Pb为228.7±4.1 Ma, MSWD=2.49, 可能 还发育一期锆石 LA-ICP-MS U-Pb 年龄为 243.0±5.8 Ma, MSWD=2.62 的侵入岩浆活动.

(2) 苗儿山-越城岭岩基内云头界赋矿岩体主要 为脉状产于岩基内及岩基与围岩接触带,岩性主要为 细粒白云母二长花岗斑岩、细粒电气石白云母花岗斑 岩及中粒含黑云母白云母二长花岗岩.云头界赋矿岩 体锆石 LA-ICP-MS U-Pb 年龄: 216.8±4.9 Ma, MSWD= 1.44,是印支期形成的;云头界 W-Mo 矿床辉钼矿 Re-Os 等时线年龄为 216.8±7.5 Ma, MSWD= 11.3,辉 钼矿 Re-Os 等时线年龄和赋矿岩体锆石 LA-ICP-MS 年龄基本一致,云头界 W-Mo 矿床是印支期形成的.

(3) 苗儿山-越城岭岩基内外接触带矿床可能主 要和岩基内的晚期岩体有关,而和岩基没有内在成 因联系,找矿应注意岩基内外接触带及其中的晚期 岩体.

(4) 华南地区不但经历了燕山期成矿作用,也经 历了印支期成矿作用,有更好的找矿前景,今后应注 意印支期找矿工作.

致谢 广西盛源矿业公司在野外工作中给予大力协助,在同位素定年中得到张红博士大量帮助,特此致谢.

参考文献

- 1 中国科学院地球化学研究所. 华南花岗岩类地球化学. 北京: 科学出版社, 1979. 1-285
- 2 莫柱荪,叶伯丹,潘维祖. 南岭花岗岩地质学. 北京: 地质出版社, 1980. 1-363
- 3 南京大学地质系. 华南不同时代花岗岩类及其与成矿关系. 北京: 科学出版社, 1981. 1-395
- 4 地矿部南岭项目花岗岩专题组. 南岭花岗岩地质及其成因和成矿作用. 北京: 地质出版社, 1989. 1-259
- 5 陈毓川, 裴荣富, 张宏良, 等. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 1989. 1-506
- 6 华仁民,陈培荣,张文兰.华南中新生代与花岗岩类有关的成矿系统.中国科学 D 辑:地球科学,2003,33:335-343
- 7 华仁民,陈培荣,张文兰,等. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报,2005,11:291-304
- 8 王登红, 陈毓川, 李华芹. 湖南芙蓉锡矿的地质地球化学特征及找矿意义. 地质通报, 2003, 22: 50-56
- 9 朱金初, 张佩华, 谢才富, 等. 姑婆山 A 型花岗质杂岩带: 岩石学、地球化学和岩石成因. 地质学报, 2006, 80: 529-542
- 10 周新民. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社, 2007. 1-386
- 11 Gilder S A, Gill J, Coe R S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China. J Geophys Res, 1996, 101: 16137–16154
- 12 毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘,2004,11:45-55
- 13 毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境.高校地质学报,2008,14:510-526
- 14 刘云华,付建明,龙宝林,等. 南岭中段主要锡矿床 He、Ar 同位素组成及其意义. 吉林大学学报, 2006, 36: 774-781
- 15 李华芹,路远发,王登红,等.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评,2006,52:113-121
- 16 蒋少涌,赵葵东,姜耀辉,等.一种新类型的锡成矿作用:矿物化学、元素和同位素地球化学证据. 岩石学报, 2006, 22: 2509-2524
- 17 彭建堂, 胡瑞忠, 毕献武. 湖南芙蓉锡矿床 40 Ar/ 39 Ar 同位素年龄及地质意义. 矿床地质, 2007, 26: 237-248
- 18 Liang H Y, Xia P, Wang X Z, et al. Geology and geochemistry of the adjacent Changkeng gold and Fuwang silver deposits, Guangdong Province, South China. Ore Geol Rev, 2007, 31: 304–318
- 19 Sun W D, Ling M X, Ding X, et al. The genetic association of adakites and Cu-Au ore deposits. Int Geol Rev, 2011, 53: 691-703
- 20 Hu R Z, Bi X W, Zhou M F, et al. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Econ Geol, 2008,103: 583–598
- 21 李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义.科学通报,2007,52:981-992
- 22 王天刚, 倪培, 孙卫东, 等. 西秦岭勉略带北部黄渚关和厂坝花岗岩锆石 U-Pb 年龄及源区性质. 科学通报, 2010, 55: 3493-3505
- 23 郭素淑,李曙光. 淡色花岗岩岩石化学特征及蚌埠淡色花岗岩. 科学通报, 2009, 54: 1111-1116
- 24 谢磊,王汝成,陈骏,等.湖南骑田岭花岗岩中的原生含锡榍石:一个重要的含锡矿物及其找矿指示意义.科学通报,2008,52:3112-3119
- 25 张文兰,王汝成,雷泽恒,等.湘南彭公庙加里东期含白钨矿细晶岩脉的发现.科学通报,2011,56:1448-1454
- 26 Wang F Y, Ling M X, Ding X, et al. Mesozoic large magmatic events and mineralization in SE China: Oblique subduction of the Pacific Plate. Int Geol Rev, 2011, 53: 704–726
- 27 徐伟昌,张运洪,刘跃宝. 苗儿山花岗岩复式岩基年代学研究的进展及时代划分方案. 岩石学报, 1994, 15: 332-337
- 28 孙涛. 新编华南花岗岩分布图及其说明. 地质通报, 2006, 25: 332-337
- 29 伍静,梁华英,娄峰,等.常规次生晕法在广西资源县云头界钨钼矿找矿成果及意义.矿床地质,2010,29:301-307
- 30 Sun Y L, Li J, He K, et al. A practical method for determination of molybdenite Re-Os age by inductively coupled plasma-mass spectrometry combined with Carius tube-HNO₃ digestion. Anal Methods, 2010, 2: 575–581
- 31 涂湘林,张红,邓文峰,等. RESOlution 激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 2011, 40: 83-98
- 32 Liang H Y, Campbell I H, Allen C M, et al. Zircon Ce⁴⁺/Ce³⁺ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Miner Deposit, 2006, 41: 152–159
- 33 Harris C A, Allen C M, Bryan S E, et al. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: Implications for porphyry-related mineralization. Miner Deposit, 2004, 39: 46–67
- 34 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志. 北京: 地质出版社, 1985. 1-325
- 35 Rubatto D, Gebauer D, Compagnoni R. Dating of eclogite-facies zircons: The age of Alpine metamorphism in the Sosia-Lanzo Zone (Western Alps). Earth Planet Sci Lett, 1999, 167: 141–158
- 36 Hoskin P W O, Black L P. Metamorphic zircon formation by solid state recrystallization of protolith igneous zircon. J Metamorph Geol, 2000, 18: 423–439

- 37 Sun W D, Williams I S, Li S G. Carboniferous and Triassic eclogites in the western Dabie Mountains, East-central China: Evidence for protracted convergence of the North and South China Blocks. J Metamorph Geol, 2002, 20: 873–886
- 38 Liang H Y, Sun W D, Su W C, et al. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol, 2009, 104: 587–596
- 39 Baker T, Achterberg E V, Ryan C G. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 2004, 32: 117–120
- 40 Heinrich C A, Günther D, Audétat A, et al. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 1999, 27: 755–758
- 41 Heinrich C A, Driesner T, Stefánsson A, et al. Magmatic vapor contraction and the transport of gold from porphyry environment to epithermal ore deposits. Geology, 2004, 32: 761–764
- 42 Ulrich T, Günther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 1999, 399: 676–679
- 43 Lowenstern J B, Mahood G A, Rivers M L, et al. Evidence for extreme partitioning of copper into a magmatic vapor phase. Nature, 1991, 252: 1405–1409
- 44 Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore deposits. Nature, 1994, 370: 519–527
- 45 Shinohara H, Hedenquist J W. Constraints on magma degassing beneath the Far Southwest porphyry Cu-Au deposit, Philippines. J Petrol, 1997, 38: 1741–1752
- 46 Candela P A, Piccoli P M. Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. In: Thompson J F H, ed. Magmas, Fluids and Ore Deposits. Mineral Assoc Canada, 1995, 23: 101–127
- 47 Carter A, Roques D, Bristow C. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 2001, 29: 211–214
- 48 Chung S L, Lo C H, Lan C Y. Collision between the Indochina and South China blocks in the Early Triassic; Implications for the Indosinian Orogeny and closure of eastern Paleotethys. In: AGU 1999 fall meeting. Washington DC: Eos T Am Geophys Un, 1999, 80: 1043
- 49 张国伟,程顺有,郭安林,等.秦岭-大别中央造山系南缘勉略古缝合带的再认识—兼论中国大陆主体的拼合.地质通报,2004,23:846-853
- 50 李曙光, 刘德良, 陈移之. 中国中部蓝片岩的形成时代. 地质科学, 1993, 28: 21-27
- 51 Sun W D, Li S G, Chen Y D. Timing of synorogenic granitoids in the South Qinling, central China: Constraints on the evolution of the Qinling-Dabie orogenic belt. J Geol, 2002, 110: 457–468
- 52 Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites. Geology, 1993, 21: 339–342
- 53 任纪舜, 牛宝贵, 刘志刚. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 1999, 6: 85-93
- 54 刘宝珺,许效松.中国南方岩相古地理图集:震旦纪-三叠纪.北京:科学出版社,1994.1-188
- 55 徐夕生, 邓平, O'Reilly SY. 华南贵东杂岩体单颗粒锆石激光探针 ICP-MS U-Pb 定年及其成岩意义. 科学通报, 2003, 48: 1328-1334
- 56 刘善宝,王登红,陈毓川. 赣南崇义-大余-上犹矿集区不同类型含矿石英中白云母 "⁴⁰Arl³⁹Ar 年龄及其地质意义. 地质学报, 2008, 82: 932-939
- 57 张文兰,华仁民,王汝成,等. 江西大吉山五里亭花岗岩单颗粒锆石 U-Pb 同位素年龄及其地质意义探讨. 地质学报, 2004, 78: 352-358
- 58 陈培荣,周新民,张文兰,等. 南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义. 中国科学 D 辑: 地球科学, 2004, 34: 493-503
- 59 邓希光,陈志刚,李献华. 桂东南地区大容山-十万大山花岗岩带 SHRIMP 锆石 U-Pb 定年. 地质论评, 2004, 50: 462-432
- 60 杨锋,李晓峰,冯佐海,等.栗木锡矿云英岩化花岗岩白云母⁴⁰Ari³⁹Ar年龄及其地质意义.桂林工学院学报,2009,29:20-24
- 61 蔡明海,陈开旭,屈文俊. 湘南荷花坪锡多金属矿床地质特征及辉钼矿 Re-Os 测年. 矿床地质, 2006, 25: 263-268
- 62 王岳军, 范蔚茗, 梁新权, 等. 湖南印支期花岗岩 SHRIMP 锆石 U-Pb 年龄及其成因启示. 科学通报, 2005, 50: 1259–1265
- 63 张敏,陈培荣,黄国龙,等. 南岭东段龙源坝复式岩体 LA-ICP-MS 锆石 U-Pb 年龄及其地质意义. 地质学报, 2006, 80: 984-994
- 64 Wang Q, Li J W, Jian P. Alkaline syenites in eastern Cathaysia (South China): Link to Permian-Triassic transtension. Earth Planet Sci Lett, 2005, 230: 339–354
- 65 赵蕾,于津海,王丽娟,等.红山含黄玉花岗岩的形成时代及其成矿能力分析.矿床地质,2006,25:672-682
- 66 陈多福,李献华,潘晶铭,等.浙江景宁鹤溪群斜长角闪岩变质新生锆石特征、离子探针(SHRIMP)U-Pb 年龄及地质意义.矿物学报,1998,18:396-400
- 67 向华,张利,周汉文,等. 浙西南变质基底基性-超基性变质岩锆石 U-Pb 年龄、Hf 同位素研究:华夏地块变质基底对华南印支期造山的响应.中国科学 D 辑:地球科学,2008.38:401-413
- 68 Xiao W J, He H Q. Early Mesozoic thrust tectonics of the northwest Zhejiang region (Southeast China). GSA Bull, 2005, 117: 945–961
- 69 Jahn B M, Chi W R, Yui T F. A Late Permian formation of Taiwan (Marbles from Chia-Li well No. 1): Pb-Pb Isochron and Sr Isotopic Evidence and Its Regional Geological Significance. Taipei: Geol Soc China, 1992. 193–218
- 70 谢才富,朱金初,赵子杰,等. 三亚石榴霓辉石正长岩的锆石 SHRIMP U-Pb 年龄: 对海南岛海西-印支期构造演化的制约. 高校地 质学报, 2005, 11: 47-57