华北克拉通北缘元古宙大庙 Fe-Ti-P矿床的挥发份 组成和 C-H-O同位素研究

邢长明^{1,2} 陈伟³ 王焰^{**} 赵太平¹

X ING ChangM ing $\frac{1}{2}$, CHEN W e³, WANG Christina Y an ^{***} and ZHAO T a Ping ¹

1. 中国科学院广州地球化学研究所,中国科学院矿物学与成矿学重点实验室,广州 510640

2. 中国科学院研究生院,北京 100049

3. 香港大学地球科学系, 香港

1. Key Laboratory of M in oralogy and M etallog ony, Guangzhou Institute of Geoch on istry, Chinese A cadomy of Sciences, Guangzhou 510640, China

2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

3. Department of Earth Sciences, the University of Hong Kong, Hong Kong, China

2010-12-12收稿, 2011-03-18改回.

Xing CM, Chen W, Wang CY and Zhao TP. 2011. Volatile components and C-H-O isotopic compositions of Proterozoic Damiao Fe-T+P oxide deposit in the northern margin of the North China Craton *A cta P etrologica Sinica*, 27(5): 1500–1510

Abstract The ~ 1.74G a D an isom assift ype anorthosite complex in the northem margin of the North China Craton hosts a large Fe-T iP oxile deposit Volatiles that were trapped in magnetite, apatite and plagic lase of massive Fe-T i ore, massive Fe-T iP ore and dissen inated ore were measured by step heating mass spectrom eter at three releasing temperature intervals 200~ 400°C, 400~ 800°C and 800~ 1200°C to obtain major components and CH-O isotopic composition. Four types of fluid were identified from the volatiles (1) metamorphic fluid released from plagic lase at 800~ 1200°C temperature interval, mainly composed of H₂O, N₂ + CO and CO₂; (2) mantle-derived fluid released from plagic lase at 400~ 800°C temperature interval, mainly composed of H₂O, CO₂, SO₂ and H₂S; and (4) secondary fluid released from magnetite at 400~ 800°C temperature interval mainly composed of H₂O, and CO₂. Magnetite in both massive Fe-T i ore and massive Fe-T i-P ore contains high contents of H₂O and CO₂, indicating a relatively oxidized condition due to concentration of early-formed fluids and surface water at late stage of magna fractionation sequence, whereas plagic lase in dissem inated ore contains abundant H₂ and CH₄, indicating a relative reduced. It is proposed that the parental magna from which the D amiao anorthosite complex formed may have fractionated under a relatively reduced condition at the beginning. The mantle fluids and surface water may have been involved in the later stage of the magna fractionation and fractioned to increase the oxygen flugacity of the magnas which in turn, triggered the accumulation of magnetite and apatite to form the Damiao Fe-T i-P oxide deposit

Keywords Volatile, C-H-O stable isotope, Massif-type anorthosite, Fe-T∔P oxide deposit, Damiaq, Proterozoic, North China Craton

摘 要 华北克拉通北缘~1.74Ga大庙斜长岩杂岩体赋含有大型 FeTiP矿床。采用分步加热质谱法分别测定了块状 FeTi矿石、块状 FeTiP矿石和浸染状矿石中磁铁矿、磷灰石和斜长石释出的挥发份组成、含量以及 CH-O 同位素组成。依据矿物的释气总量变化特征将释气过程分为三个阶段:200~400C、400~800C和 800~1200C。根据不同类型矿石中矿物在不同释气阶段的挥发份组成、含量以及 CH-O 同位素组成,可将含矿岩体中的流体类型分成四种:(1)斜长石 800~1200C 阶段释出的变质流体,主要以 H₂Q, N₂ + CO和 CO₂为主;(2)斜长石 400~ 800C 阶段释出的幔源流体组分,主要以 H₂Q, H₂, CH₄和 CO₂为主;(3)磁铁矿 400~ 800C 阶段释出的地表流体,主要以 H₂Q, CO₂, SO₂和H₂S为主;(4)所有矿物 200~400C 阶段释出

第一作者简介: 邢长明, 男, 1987年生, 硕士研究生, 矿物、岩石、矿床学专业, E-m ail xingchangn ing 32 163. com

^{*} 本文受国家自然科学基金项目 (41072063, 41073030)和中国科学院 "百人计划"择优支持项目联合资助.

^{**} 通讯作者: 王焰, 女, 1968年生, 研究员, 矿物, 岩石、矿床学专业, E-m ail wang yan@ gig ac en © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

关键词 挥发份; C-H-O 同位素; 岩体型斜长岩; Fe-T i-P 矿床; 大庙; 元古宙; 华北克拉通 中图法分类号 P618_31

1 引言

元古宙岩体型斜长岩常赋存有大型 Fe-T i氧化物矿床, 并伴生大量磷灰石 (Ashwal 1993)。这类 Fe-T iP 矿床的形 成机制一直存在争议,部分学者认为不混熔作用对于矿石的 富集 尤其 是铁 钛磷 灰岩 (nelson ite)的 形成 有 重要 作用 (Philpotts 1967, Darling and Florence, 1995),而其他学者认 为这些矿床形成于结晶分异过程,并伴随堆晶作用(Em slie, 1975, Dymek and Owens, 2001)。

河北承德大庙钒钛磁铁矿床是中国唯一与岩体型斜长 岩伴生的铁矿床 (Ye et al, 1996), 矿石由磁铁矿和磷灰石 组成。前人开展了不少有关磁铁矿富集机制的工作。王关 玉(1979)和曹亚文(1988)认为是岩浆晚期的不混熔矿浆贯 入成矿; Ye et al (1996)认为存在岩浆的早期分凝和晚期的 不混熔成矿; 陈伟等(2008)则认为磁铁矿和磷灰石的大量富 集主要与堆晶作用有关。然而,何种因素(如挥发份、氧逸度 等)控制了磁铁矿的结晶和富集,则较少涉及。例如,磷灰石 是一个能很好反映岩浆挥发份成分的矿物,它与磁铁矿的紧 密共生是否指示了挥发份或流体参与了磁铁矿的大量富集 成矿目前还不清楚。

实验研究认为,当岩浆中富集大量 H₂O和 CO₂流体时, 岩浆的氧逸度增加会导致磁铁矿大量结晶 (Osbom 1959, Hill and Roeder, 1974), 而氧逸度又受岩浆中 CO₂、CO₂H₂O和 H₂ 等挥发组份影响 (Osbom, 1959, Huebner, 1975)。基于广泛 存在的热液蚀变, 卢冰 (1995)认为大庙矿石的富集 可能与岩 浆晚期的超临界流体有关。新近,李立兴等(2010)通过大庙 磷灰石和石英的流体包裹体研究,认为高温高盐度富挥发份 的岩浆期后热液携带了大量的成矿物质,上升后与浅部低盐 度的大气降水汇合,由于温度和盐度降低导致金属络合物不 稳定而析出沉淀。然而, 流体是否参与大庙磁铁矿的形成还 不清楚。这首先需要了解以下问题:不同类型的矿石中磁铁 矿中是否存在挥发份?如果有挥发份,同种矿石中磁铁矿与 磷灰石的挥发份组成是否相同?挥发份的来源如何?针对 这些问题,本次研究采用分步加热质谱法分别对块状 Fe-Ti 矿石、块状 Fe-T+P矿石和浸染状矿石中的磁铁矿、磷灰石和 斜长石中的挥发份组成、含量及其 C-H-O 同位素组成进行测 定,以探讨不同类型矿石中磁铁矿和磷灰石中的挥发份的可 能来源及其对矿石富集是否存在控制作用。 Lournal Electronic Publis

2 岩体及矿床地质特征

大庙 Fe-T+P矿床赋存于华北克拉通北缘大庙斜长岩杂 岩体中。该杂岩体位于华北陆块北缘中-新元古代燕辽-太行 拗拉谷的北侧,沿河北省承德市以北的大庙、马营至上苍一 带分布,东西长约 40km,南北宽约 2~9km,出露面积为 $120km^2$ (图 1)。杂岩体侵入至太古宙红旗营子群变质岩系 中,杂岩体西北部可见有围岩片麻岩的捕掳体 (谢广轰, 2005)。岩体由 85% 斜长岩、10% 苏长岩和 4% 纹长二长岩 类 (包括石英纹长二长岩、正长岩、花岗岩)以及少量橄长岩 (王关玉, 1979, Ye et al, 1996)组成,形成时代为 1739 ± 14M a(SHR MP锆石年龄, Zhao et al., 2009)。杂岩体中还 分布有苏长质、辉长质和铁闪长质等成分的脉体。

大量 Fe-T+P小矿体以不规则状、透镜状、席状等不连续 地分布于杂岩体中(图 2a c),分布总体受 NE 和 NW 向两条 主要的破碎带控制(王关玉, 1979, 卢冰, 1995)。矿体的直接 围岩包括斜长岩和苏长岩,接触边界常有破碎及明显的绿泥 石化、帘石化等蚀变(图 2b)。依据矿体分布区域,划分成大 庙、马营、黑山、罗锅子和乌龙素沟等 5个矿区 (图 1)。不同 矿区的矿体在矿石组成上变化很大,例如在大庙、马营和黑 山矿区,主要为块状矿体,矿石品位高,而罗锅子和乌龙素沟 两个矿区矿石相对品位较低,大多以浸染状矿体为主(曹亚 文, 1988);不同矿区甚至同一矿区中各个矿体的矿石组成差 异也很大,有些矿体磁铁矿和磷灰石含量低,另一些磁铁矿 和磷灰石含量高达 30%,且矿石矿物含量在单个矿体中分布 也不均匀 (如图 2d)。依据脉石矿物与矿石矿物 (Fe-Ti氧化 物和磷灰石)之间的含量比例,可划分成块状 Fe-T i矿石(不 含或含少量磷灰石)、块状 Fe-Ti-P 矿石 (含大量磷灰石)和 浸染状矿石三类矿石。三者如共存于同一矿体中时,相互呈 过渡接触关系,且在空间上块状矿石通常位于矿体的下部且 与围岩斜长岩接触,浸染状矿石则一般位于矿体上部,表现 为硅酸盐矿物 (辉石、斜长石等)的增加。在磷灰石含量高的 矿体中, 磷灰石趋向于上部富集。

岩相学上, 块状 Fe-T i矿石主要由磁铁矿 (> 70%)、钛 铁矿以及少量斜长石、橄榄石组成。磁铁矿呈他形粒状, 内 部包含有大量钛铁矿以及少量镁铝尖晶石出溶片晶; 粒状钛 铁矿呈他形, 与磁铁矿共生, 无明显出溶结构。块状 Fe-T+P 矿石含 5% ~ 50% 磷灰石, 磷灰石呈半自形-自形粒状杂乱分

图 1 河北大庙斜长岩杂岩体及其 Fe-T+P矿床的地质略图 (据 Ye *et al.*, 1996修改) A-大庙矿区; B-黑山矿区; C-马营矿区; D-罗锅子沟矿区; E-乌龙素沟矿区

Fig 1 Geologicalmap of the Damiao anorthosite complex and hosted Fe-Ti-Poxide deposit Chende, Hebei Province (modified after Ye *et a l*, 1996)

A-Damiaomine area, B-Heishanmine area, G-Maying mine area, D-Luoguozigoumine area, E-Wubngsugoumine area

布于磁铁矿和钛铁矿中。浸染状矿石由斜长石+橄榄石+ 单斜辉石 土斜方辉石+磁铁矿+钛铁矿+磷灰石组成, Fe-Ti 氧化物呈他形分布于硅酸盐矿物的晶隙中,也见自形的磁铁 矿、钛铁矿或磷灰石晶体包裹于辉石中。

3 样品与分析方法

本次工作分别从块状 FeT 矿石、块状 FeT iP矿石和浸 染状矿石中挑选出磁铁矿、磷灰石和斜长石单矿物。块状 FeT i矿石采自黑山矿区,块状 FeT iP矿石采自马营矿区, 浸染状矿石采自乌龙素沟矿区。

首先将新鲜的样品压碎至 20~80 目。磁铁矿、磷灰石 和斜长石分别在双目镜下挑选至纯度 > 98%。将分选出来 的单矿物颗粒样品分别用 0.3m ol·L⁻¹HCl浸泡以去除碳酸 盐污染物,然后用去离子水反复清洗至 pH≈ 7,再用丙酮超 声波反复清洗以去除有机污染物。最后用去离子水清洗,并 在 110℃烘干保存备用。

采用改进的分步加热质谱法提取矿物颗粒中的挥发份, 并进行化学组成、含量和 C-H-O 同位素测定。所有分析在中 国科学院地质与地球物理研究所兰州油气资源研究中心完 成。详细的实验流程参考 Zhang et al. (2007), 基本过程如下 所述:

对于挥发份组成和含量测定,首先将单矿物颗粒样品在 100C真空去气一小时以去除矿物表面吸附气体,然后以 100C温度间隔从 200°C加热到 1200°C,各温度点恒温 1h以 充分释放该阶段气体。同时在加热过程中使用一个液氮冷 阱装置冷冻释出的挥发份,以防止其相互反应;使用 1个酒 精-液氮冷阱装置使 H₂O 和其它挥发份分离。最后将 H₂O 和其它挥发份分别导入 MAT-271 质谱进行组成和含量测 定。分析误差: CO₂, N₂, SO₂, CH₄, H₂S, H₂ < Imo%, H₂O < 5mo%。

用于 C-H-O 同位素分析的挥发份提取过程与上述类似。 根据以上挥发份组成和含量分析结果,我们分别加热提取了 200~400C、400~800C和800~1200C三个阶段的CO₂。 另外又加热提取了400~800C阶段的H₂O,并通过与金属 Zn粒加热反应转化为H₂。最后将CO₂和H₂分别导入一个 气相色谱-质谱 (Deltphs XP质谱)体系,用于CO₂的C-O 同 位素和H₂O的H同位素分析。分析误差: δ^{13} C(VPDB)和

国科学院地质与地球物理研究所兰州油气资源研究中心完 δ¹⁸Ο (VSMOW)为±0,5%,δD(VSMOW)为±5%。 ◎ 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 2 大庙 FeTiP矿床的野外照片及钻孔剖面图(钻孔图据曹亚文,1988修改)

(a)-黑山矿区露天采坑:黑色为矿体,白色为斜长岩;(b)-脉状块状矿石与围岩为截然接触关系,接触边界有明显的绿泥石化;(c)-黑山矿 区东缘钻孔剖面图:矿体呈透镜状和席状等串珠状分布于围岩斜长岩中;(d)-在单个矿体中,矿石矿物呈相带分布特点,表现为矿石矿物 (磁铁矿和钛铁矿)的含量在矿体不同部位的差别

Fig 2 Field relationship of the Damiao Fe Ti-P oxide deposit and cross section of drilling holes (modified after Cao, 1988)

(a)-Heishan mine open pit ore bodies (in black) are hosted by anorthosite body (in white); (b)-a sharp contact between ore body and anorthosite body, ch britization is observed at the contact boundary; (c)-a section of drilling holes for the east Heishan mine ore bodies are distributed as lens-like bodies and sills with in the anorthosite body, (d)-different grades of ore bodies with in one ore body

4 分析结果

4.1 挥发份的组成和含量

磁铁矿、磷灰石和斜长石在不同温度下释出的挥发份组 成和含量见表 1。根据不同温度下各矿物释气总量的变化以 及单个组分含量变化,可将释气过程分为 200~400C、400~ 800C和 800~1200C 三个阶段 (图 3)。不同矿物各阶段释 气特征如下:

块状 Fe-T 矿石中的磁铁矿的释气总量最高,为 2136mm³• g⁻¹。800~1200°C阶段挥发份主要以 H₂O(445 mm³• g⁻¹)、 CO₂(136mm³• g⁻¹)和 SO₂(50 5mm³• g⁻¹)为主,此外还有 少量 N₂+ CO(11.5mm³• g⁻¹)。400~800°C阶段主要挥发 份仍以 H₂O, CO₂和 SO₂为主,但 H₂O 的含量明显增加 (1218mm³• g⁻¹)而 CO₂和 SO₂的含量有所降低(分别为 © 1994-2012 China Academic Journal Electrone P 80. 7mm³• g⁻¹和 35. 1mm³• g⁻¹)。此外,还有少量的 N₂ + CO(10. 5mm³• g⁻¹)和 H₂S(11. 0mm³• g⁻¹)。200~400C阶段挥发份主要以 H₂O(118mm³• g⁻¹)为主,其次为少量 CO₂(11. 8mm³• g⁻¹)和 N₂ + CO(5. 70mm³• g⁻¹)。其中 400~800C释气阶段的释气量(1357mm³• g⁻¹)明显高于 800~1200℃阶段(643mm³• g⁻¹)和 200~400℃阶段(136mm³• g⁻¹),可视为主释气峰。

块状 Fe-T+P矿石中的磁铁矿释气总量平均为 1409nm³• g⁻¹, 较块状 Fe-T i矿石中的磁铁矿低。主要释气峰仍为 400 ~ 800C 阶段, 平均释气量为 772nm³• g⁻¹, 比 800~ 1200C 阶段 (511nm³• g⁻¹)和 200~ 400°C阶段 (127nm³• g⁻¹)高。 800~ 1200°C 阶段主要挥发份以 H₂O (368nm³• g⁻¹)高。 (85. 2nm³• g⁻¹)和 SO₂ (46 6nm³• g⁻¹)为主, 此外还有少 量 N₂ + CO (10 5nm³• g⁻¹), 这与块状 Fe-T i矿石中的磁 铁矿释出的挥发份组成一致 envoid

表 1 大庙 FeTiP矿床中不同类型矿石中磁铁矿、磷灰石和斜长石的挥发份组成

Table 1 Compositions of volatiles released from magnetite, apatite and plagic lase of the Damiao Fe-Ti-P oxide deposit

+*	LL 14L	고 순 분/교	油 由 ///2 、	H_2	CH_4	$\rm H_{2}S$	$N_2 + CO$	CO_2	SO_2	H_2O	总量
件品亏	石注	10 书列	温度(C)	含量 (mm ³ • STP/g)							
М Ү-13	块状 Fe-Ti-P 矿石	磁铁矿	200	0, 00	0.00	0, 00	0. 7	0.38	0. 13	29.46	30.23
			300	0. 04	0.00	0.00	1. 74	2.33	0. 12	37.71	41.93
			400	0.08	0.03	0.00	2.72	5.36	0.50	48.70	57.38
			500	0.24	0.04	0.02	2.59	9.96	2.81	63.26	78.92
			600	7.86	0.09	1. 79	3. 79	9.85	5.89	662 00	691.28
			700	0.49	0.05	0.28	4.65	13. 28	1. 01	186 46	206.22
			800	0. 02	0.02	0.10	2.98	17.50	0. 77	99.08	120.47
			900	0.00	0.00	0.01	2.20	8.52	3. 44	58.14	72.31
			1000	0. 02	0.00	0.02	2.07	4. 25	5. 02	56.58	67.95
			1100	0. 02	0.00	0.00	2.37	3. 38	2.54	52.63	60.94
			1200	0. 03	0.00	0. 02	2. 28	2.71	6. 67	58.15	69.85
				8. 79	0.22	2. 24	27.65	77. 52	28. 93	1352. 2	1497. 5
		磁铁矿	200	0. 02	0.00	0.00	0.55	0. 53	0.0/	27.40	28.57
			300	0.11	0.02	000	1. //	2. 66	0.05	36.05	40.66
			400	0. 38	0.07	0.00	2.01	0. 31	0.10	40.14	55.01 82.20
			500	0.40	0.20	2. 19 6. 44	3. 70	10. 56	2.20	135 54	02-20 160-16
	块状 Fe-T∔P		700	0.39	0.03	1 10	2 93	14 61	0.64	91 93	111 52
MY-21	矿石		800	0.03	0.00	0.27	2. 52	13.55	3.40	63.45	83.22
			900	0.04	0.00	0.17	3. 14	19.44	46.06	143 11	211.97
			1000	0. 02	0.00	0. 08	2, 90	23. 76	22, 93	116 44	166.12
			1100	0. 01	0.00	0.02	2.80	1.88	4. 53	73.90	100.13
			1200	0.04	0.00	0.01	3. 30	89.49	1. 95	177.36	272.16
			总量	2.30	0.50	10.28	28.99	218.71	85.88	974 04	1320 7
	块状 Fe-T+P	磷灰石	200	0. 10	0.02	0.01	1.86	0.85	0. 04	33.11	35.99
			300	0. 11	0.05	0.00	3.19	4.65	0.06	4.57	52.64
M Y-21			400	0.16	0.07	0.01	2.75	5.74	0. 09	47.96	56.79
			500	0. 27	0.10	0.00	3. 19	6.48	0. 13	49.66	59.82
			600	0. 57	0.07	0.00	5. 02	7.90	0. 20	54.33	68.10
			700	0. 71	0.06	0.00	7.69	4.46	0. 18	53.06	6. 17
	矿石		800	0. 11	0.05	0. 01	6. 33	4. 09	0.44	53.06	64.08
			900	0. 10	0.03	0. 02	5.45	3. 67	0. 62	52.63	62.50
			1000	0. 09	0.00	0. 02	4.58	3. 51	0.84	50.93	59.98
			1100	0. 12	0.02	0. 03	4.82	3. 95	0. 93	52.21	62.07
			1200 폭르	0. 32	0.04	0.12	5. 14	8. 79	0.94	60. /0	/6.04
			200	2.00	0.52	0. 23	0.41	0.80	4. 4/	28 84	20.20
	块状 FeTi 矿石	磁铁矿	200	0.02	0.01	0.00	1 07	0. 89	0. 12	20.04	50. 50 45. 44
HS-32			400	0. 18	0.04	0.00	3 31	5. 85 703	0. 11	10 30	60 50
			500	0.53	0.22	1 04	$\frac{5.51}{2.70}$	11 74	7 13	95.17	118 53
			600	0.44	0.33	9.45	2.46	18.47	9.57	773 61	814.34
			700	0. 08	0.04	0.36	2. 52	24. 61	7.97	257.39	292.99
			800	0. 03	0.00	0.14	2.84	5.84	10. 38	91.56	130.80
			900	0. 02	0.00	0.09	2.27	17.60	25.81	106 34	152.14
			1000	0.00	0.00	0.06	3.75	23.19	16.39	113 55	156.94
			1100	0. 02	0.00	0.02	2.61	39. 93	5.90	101.30	149.78
			1200	0. 02	0.00	0.01	2.85	54.83	2.42	123 65	183.79
			总量	1. 82	0.73	11.17	27.71	227.99	86.10	1780.1	2135 6
13-6	浸染状矿石	斜长石	200	0. 01	0.51	0.00	1.08	0.24	0. 02	29.37	31.22
			300	0. 14	2.35	0.00	2.04	1. 55	0. 02	39.28	45.39
			400	0.44	3.67	0.00	2. 20	2. 31	0. 04	47.67	56.32
			500	1. 38	3.73	0.00	2.53	2.16	0. 02	49.20	59.02
			600	3.86	4.08	0.00	2. 92	2. 53	0. 03	53.39	66.80
			700	29. 14	3.71	0.04	3. 89	3. 50	0. 03	93.44	133.74
			800	41. 62	1.00	0.06	5. 21	3. 56	0.07	110 98	162.51
			900	11. 13	0.22	0.08	8. 11	2.33	0.03	67.51	89.41
			1000	0. 41	0.05	0.10	27.06	3. 60	0.06	83.91	115.19
			1100	0. 13	0.00	0.02	12.20	7.49	0.03	65.60	85.47
			1200	0.08	0.00	0.05	1. 42	12.80	0. 15	69.79	84.30
			い しん	88.34	19.32	0.35	68.65	42.07	0.49	710 14	929.36

注: STP表示 standard ten perature and pressure 即标准状态下的温度和压力 © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 不同温度阶段 CO₂的 C-O 同位素和 H₂O的 H 同位素组成 (δ^{13} C标准: PDB, δ^{18} O和 δ D标准: SM OW)

Table 2 C-O-H isotopic compositions of CO_2 and H_2O released from minerals at different temperature intervals ($\delta^{13}C$ standard PDB; $\delta^{18}O$ and δD standard SMOW)

样品号	岩性	矿物	温度(℃)	$^{13}C_{CO_{2}}(\%)$	$^{18}\mathrm{O_{CO}}_{2}(\%)$	${\rm D_{H}}_{2^{\rm O}}$ (‰)
			200~ 400	- 16. 0	12. 8	
M Y-13	块状 Fe-T∔P矿石	磁铁矿	400~ 800			- 61. 5
			800~ 1200	- 15. 4	15. 5	
			200~ 400	- 14. 9	11. 5	
MY - 21	块状 Fe-T∔P矿石	磁铁矿	400~ 800	- 14. 0	15. 0	- 114.2
			800~ 1200	- 9. 9	13. 0	
			200~ 400	- 4. 1	21. 7	
MY-21	块状 Fe-T∔P矿石	磷灰石	400~ 800	- 5. 7	21. 7	- 121.9
			800~ 1200	- 14. 8	13. 3	
			200~ 400	- 16. 3	19. 3	
HS-32	块状 FeT矿石	磁铁矿	400~ 800	- 12. 2	27. 2	- 203.4
			800~ 1200	- 17. 8	23. 5	
HS-53	浸染状矿石	磁铁矿	400~ 800			- 45. 4
			200~ 400	- 8.8	22. 6	
13-6	浸染状矿石	斜长石	400~ 800	- 8. 3	17. 7	- 45. 3
			800~ 1200	- 10. 8	14. 3	
HS-6	浸染状矿石	磷灰石	400~ 800			- 114.3

注: PDB: Pee Dee Belmnie, 即美国南卡罗来纳州白垩纪皮狄组拟箭石化石; SMOW: Standard Mean Ocean Water, 即标准平均大洋水

 $H_2O(682mm^{3} \cdot g^{-1})和 CO_2(54 lmm^{3} \cdot g^{-1})为主,此外还有$ $少量 N_2 + CO(13.3mm^{3} \cdot g^{-1})、SO_2(10.3mm^{3} \cdot g^{-1})、H_2S$ (6.10mm³ · g^{-1})和 H_2(5.15mm^{3} \cdot g^{-1})。 200~ 400°C 阶段 挥发份主要以 H_2O(113mm^{3} \cdot g^{-1})为主,以及少量 CO_2 (8.78mm^{3} \cdot g^{-1})和 N_2 + CO(4.52mm^{3} \cdot g^{-1})。

块状 Fe-T+P矿石中的磷灰石释气总量为 664mm³• g⁻¹,比同一样品中的磁铁矿以及块状 Fe-T i矿石中的磁铁矿 的释气总量都低。虽然其在 400~ 800℃与 800~ 1200℃阶段 也表现出释气峰,但释气量分别为 258 mm³• g⁻¹和 261mm³ • g⁻¹; 200~ 400℃阶段释气量更低,为 145mm³• g⁻¹和 261mm³ · g⁻¹; 200~ 400℃阶段释气量更低,为 145mm³• g⁻¹, 800~ 1200℃阶段主要挥发份以 H₂O(217 mm³• g⁻¹)为主,其次为 少量 N₂+ CO(20 0mm³• g⁻¹)和 CO₂(19.9mm³• g⁻¹),与同 一样品中的磁铁矿相比 SO₂含量(3.32 mm³• g⁻¹)明显较 低。 400~ 800℃阶段主要挥发份仍以 H₂O(210mm³• g⁻¹)为 主,其次为少量 OO₂(22 9mm³• g⁻¹)和 N₂+ CO(22 2mm³• g⁻¹)以及微量的 H₂(1.65mm³• g⁻¹)。 200~ 400℃阶段挥发 份主 要以 H₂O(126mm³• g⁻¹)为主,此外 还有少量 CO₂ (11.3mm³• g⁻¹)和 N₂+ CO(7.80mm³• g⁻¹)。

浸染状矿石中斜长石的释气总量为 929mm³• g⁻¹,比块状 FeT i矿石和块状 FeT i矿石中磁铁矿的释气量都低,但比块状 FeT iP 矿石中磷灰石的释气量要。主要释气峰为

400~800°C阶段,释气量为422mm³•g⁻¹,该阶段挥发份组 成主要以H₂O(307mm³•g⁻¹)为主,与其它矿物不同的是该 阶段释出大量H₂(76.0mm³•g⁻¹),此外还有少量N₂+CO (14.6mm³•g⁻¹)、CH₄(12.5mm³•g⁻¹)和 CO₂(11.8mm³• g⁻¹)。800~1200°C阶段释气量为374mm³•g⁻¹,挥发份主 要以H₂O(287mm³•g⁻¹)为主,其次为N₂+CO(48.8mm³• g⁻¹)、CO₂(26.2mm³•g⁻¹)和H₂(11.8mm³•g⁻¹)。200~ 400°C阶段释气量为133mm³•g⁻¹,挥发份主要以H₂O (116mm³•g⁻¹)为主,其次为少量的CH₄(6.53mm³•g⁻¹)、N₂+CO(5.31mm³•g⁻¹)和CO₂(4.10mm³•g⁻¹)。

4.2 C-H-O同位素组成

为了探讨主要挥发份 H₂O和 CO₂ 的来源,分别对 200~400°C、400~800°C和 800~1200°C 三个温度阶段中释放的 CO₂ 的 C-O 同位素以及 400~800°C 阶段中释放的 H₂O的 H 同位素进行了测定,分析结果见表 2。

4.2.1 CO2的 C-O同位素组成

800~1200°C阶段,磁铁矿、磷灰石和斜长石释出的 CO_2 均显示较轻的 δ^{13} C值和较重的 δ^{18} O值。块状 Fe-T i 矿石中 磁铁矿的 $\delta^{13}C_{CO_2}$ 为 – 17.8‰, $\delta^{18}O_{CO_2}$ 为 23.5‰。块状 Fe-T i P矿石中磁铁矿的 $\delta^{13}C_{CO_2}$ 为 – 12.7‰, $\delta^{18}O_{CO_2}$ 为 14.2‰; 磷 ishing House. All rights reserved. http://www.cnki.net

Fig 3 Volatile compositions of magnetite, apatite and plagioclase released at different temperature intervals

灰石的 $\delta^{13}C_{CO_2}$ 为 – 14.8‰, $\delta^{18}O_{CO_2}$ 为 13.3‰。 浸染状矿石中 斜长石的 $\delta^{13}C_{CO_2}$ 为 – 10.8‰, $\delta^{18}O_{CO_2}$ 为 14.3‰。

400~800℃阶段, 块状 FeT i矿石中磁铁矿释出的 CO₂ 的 δ^{13} C 值和 δ^{18} O 值较 800~ 1200℃有所增加, 分别为 – 12. 2‰和 27. 2‰。块状 FeT iP矿石中磁铁矿的 δ^{13} C_{cO2}为 – 14. 0‰, δ^{18} O_{cO2}为 15. 0‰; 而磷灰石中 CO₂ 的 δ^{13} C 值和 δ^{18} O 值较 800~ 1200℃均有明显增加, 分别为 – 5. 7‰和 21. 7‰。浸染状矿石中斜长石的 CO₂的 δ^{13} C 值和 δ^{18} O 值较 200~400°C阶段, 块状 Fe-T i矿石中磁铁矿释出的 CO₂ 的 δ^{13} C值和 δ^{18} O值较 400~800°C有所降低, 但仍显示较轻 的 δ^{13} C值和较重的 δ^{18} O值, 分别为 – 16.3‰和 19.3‰。块 状 Fe-T+P矿石中磁铁矿释出的 CO₂的 δ^{13} C值和 δ^{18} O 值较 400~800°C 也有所降低, 分别为 – 15.4‰和 12.2‰; 磷灰石 中 CO₂的 δ^{13} C值和 δ^{18} O 值较 400~800°C 变化不大, 分别为 – 4.1‰和 21.7‰。浸染状矿石中斜长石释出的 CO₂的 δ^{13} C 值较 400~800°C 变化不大, 为 – 8.8‰, 而 δ^{18} O 值有所增加,

800~1200C也有所增加, 分别为 – 8.3‰和 17.7‰ 为.22.6‰ © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 4 400~ 800C 阶段矿物中释出的 H_2O 和 CO_2 的 $\delta D_{H_2O} - \delta^{18} O_{CO_2}$ 图解

Fig 4 P bt of δD_{H_20} vs $\delta^{18}O_{CO_2}$ for released H_2O and CO_2 at 400~ 800°C temperature interval

4.2.2 400~ 800°C 阶段 H2O的 H同位素组成

该阶段块状 Fe-T i矿石中磁铁矿释出的 H₂O 显示较轻的 $\delta D \hat{\mathbf{d}} (-203.4\%)$ 。块状 Fe-T iP 矿石中磁铁矿释出的 H₂O 的 $\delta D \hat{\mathbf{d}} = 203.4\%$)。块状 Fe-T iP 矿石中磁铁矿释出的 H₂O 的 $\delta D \hat{\mathbf{d}} = 203.4\%$)。块状 Fe-T iP 矿石中磁铁矿释出的 H₂O 的 $\delta D \hat{\mathbf{d}} = 203.4\%$),而另一个较岩浆水范围要轻(-114.2‰);在同 一个块状 Fe-T iP 矿石中,磁铁矿和磷灰石释出的 H₂O 均显示较轻的 $\delta D \hat{\mathbf{d}} = (\frac{114.2\%}{3})$;在同 (磁铁矿为-114.2‰;磷灰石为-121.9‰)。浸染状矿石中磁铁矿和斜长石释出的 H₂O均显示正常的岩浆水特征,分别为-45.3‰和-45.4‰,但磷灰石的 $\delta D \hat{\mathbf{d}} = 200.26$ 轻(-114.3‰)。在 $\delta^{18} O_{CO_2} - \delta D_{H_2O}$ 图解中(图 4),同一样品中较重的 $\delta^{18} O_{CO_2} \hat{\mathbf{d}} = 0$

5 讨论

5.1 不同温度阶段释出的挥发份成因类型

分步加热过程中,不同矿物颗粒释出的挥发份来源可能 包括有吸附在矿物表面和裂隙中的挥发份、流体包裹体、矿 物结构、晶格缺陷和空隙中的流体组分、以及样品释出的挥 发份之间相互反应形成的新挥发份(张铭杰等,2009)。有效 的样品前处理可以去除吸附在矿物表面和裂隙中的挥发份; 加热过程中使用液氮冷阱能有效阻止释出的挥发份相互反 应而形成其它组分(Zhang et al, 2007)。对地幔岩流体包 裹体的研究表明,高温区(800~1200°)释出的挥发份和捕获到矿 物晶体内部的流体包裹体挥发份组成,而中温区(400~ 800°)释出的挥发份主要是捕获到矿物晶体边缘或由于矿 物重结晶而愈合的裂隙中的挥发份。低温区(200~400°) 释出的挥发份主要是岩浆作用晚期沿矿物边缘或解理充填 的流体包裹体(张铭杰等,2002,2008, Zhang et al., 2007)。 对玄武岩的分步加热实验表明次生包裹体的爆裂温度一般

图 5 不同温度下矿物释出的 CO_2 的 $\delta^{13}C - \delta^{18}O$ 图解

正常地幔 δ¹³C= - 3‰ ~ - 7‰, δ¹⁸O = 5.4‰ ~ 6.0‰, 据 Eiler et al. (1997), 郑永飞和陈江峰(2000)

Fig 5 Plot of $\delta^{13} C_{CO_2}$ vs $\delta^{18} O_{CO_2}$ for released CO₂ at different temperature intervals

M ant le $\delta^{13}C = -3\% \sim -7\%$, $\delta^{18}O = 5$. $4\% \sim 6$. 0%; after E i ler *et al.* (1997), Zheng and Chen (2000)

低于 600°C,而原生包裹体的爆裂温度较高,一般为 800°C (Mattey et al., 1984)。因此,分步加热过程中不同温度阶段 释出的气体代表了晶体中不同赋存形式的挥发份组成,在一 定程度上可以反映矿物结晶时的流体环境。

5.2 不同挥发份的来源

800~1200°C 阶段, 块状 FeT 矿石、块状 FeT \div P 矿石和 浸染状矿石中的磁铁矿、磷灰石和斜长石释出的 CO₂ 的 δ^{13} C 值介于 – 9.9‰~ – 17.8‰之间, 低于正常地幔来源 CO₂ 组 分的 C同位素组成; 而 δ^{18} O 值均高于幔源 CO₂ 的 O 同位素组 成, 其中块状 FeT 矿石中 δ^{18} O_{co2}值最重 (23.5‰), 而其它矿 物的 δ^{18} O_{co2}值变化范围较小 (13.0‰~ 15.5‰) (图 5a)。考 Shing House. All rights reserved. http://www.cnki.net

图 6 400~800C阶段 $\delta D_{H_{20}}$ -H₂O的含量图解 Fig 6 P bt of $\delta D_{H_{20}}$ vs H₂O contents for H₂O released at 400~800°C temperature interval

虑到大庙杂岩体是下地壳变质基底岩石插入上地幔中发生 高程度部分熔融、随后沿深断裂侵入浅部地壳形成的(Zhao etal, 2009 陈伟, 2009),这一阶段的 C-O同位素特征可能 反映了下地壳片麻岩或麻粒岩的特征。但是该阶段 CO₂的 $\delta^{18}O$ 值比一般片麻岩或麻粒岩的 $\delta^{18}O$ 值(6‰~ 12‰;郑永 飞和陈江峰, 2000)还要高 2‰,这可能是基底变质岩在变质 过程中发生了脱水作用或流体的迁移,从而提高了流体的 $\delta^{18}O$ 值(郑永飞和陈江峰, 2000)。因此该阶段挥发份可能代 表了来自源区或围岩的变质流体,而该阶段普遍较轻的 $\delta^{13}C$ 值可能是由部分熔融过程中 CO₂ 的去气作用造成(郑永飞和 陈江峰, 2000)。

400~800℃阶段, 浸染状矿石中的斜长石和块状 Fe-T +P 矿石中的磷灰石释出的 CO₂的 δ^{13} C_{cO2}值分别为 – 8.3‰和 – 5.7‰, 明显高于 800~1200℃ 阶段的相应值, 具有幔源 CO₂的 C同位素特征 (图 5b), 表明该阶段有幔源流体的加 入。块状 Fe-Ti矿石和块状 Fe-Ti-P 矿石中的磁铁矿在这一 温度段释出的 CO₂显示较低的 δ^{13} C_{cO2}值 (分别为 – 12.2‰和 – 14.0‰)。所有矿物在该阶段释出的 CO₂ 的 δ^{18} O_{cO2}值均 高于 800~1200℃阶段的相应值 (图 5b)。

400~ 800C 阶段各矿物释出的 H₂O的 H 同位素显示较 大的变化范围 (-45.3‰~-203.4‰)。一般来说, 岩浆水 的 δ D 变化于 - 40‰~-80‰之间 (Sheppard, 1986, Kyser 1986)。Kyser and O' Neil(1984)认为过高或过低的 δ D 值变 化可能是岩浆去气作用、海水加入或低温水化作用引起的。 在 H₂O含量- δ D_{H20}图解中 (图 6), 从 H₂O含量最高的磁铁矿 中释出的 H₂O具最低的 δ D_{H20}值。一般来说, 岩浆在脱水作 用的早期往往导致大量 H₂O 出溶, 并伴有较高的 δ D_{H20}值, 随着去气作用的进行, H₂O含量和 δ D_{H20}值都会降低 (郑永飞 和陈江峰, 2000)。因此磁铁矿中高 H₂O 含量和以及较低的 δ D_{H20}值不可能是由岩浆去气作用造成的。在 δ ¹⁸O_{CO2}- δ D_{H20} 图解中 (图 4), 400~ 800°C阶段同一样品不同矿物中释出的 挥发份, 表现出 CO₂的 δ ¹⁸O_{CO2}- δ D_{H20}值越至, H₂O 的 δ D_{H20}值 的特征, 这可能是 CO_2 与大气降水发生氧同位素交换造成的 (Zhang *et al.*, 2007)。因此,磁铁矿中 $\delta D_{H_{2}0}$ 值的变化表明该 阶段 H_2O 的来源为幔源流体和大气降水的混合。大气降水 可能与共存的 CO_2 发生了 O 同位素交换, 导致了 CO_2 普遍 具有较重的 $\delta^{18}O$ 值。

200~400℃阶段,磁铁矿与磷灰石和斜长石之间挥发份 的同位素组成仍存在较大差异,但磁铁矿、磷灰石和斜长石 分别继承了400~800℃阶段释出的CO₂的C-O同位素组成 特点(图5c),表明该阶段挥发份与400~800℃阶段具有相 同的来源。该阶段较低的释气温度和较低的释气量,可能代 表了挥发份主要是沿矿物裂隙或解理缝充填的次生包裹体 (Huet al., 2007)。

5.3 不同矿石和矿物中挥发份组成的差异及意义

5.3.1 块状 FeTi矿石与块状 FeTiP矿石中的磁铁矿

在整个加热过程中,块状 FeT i矿石与块状 FeT iP矿石 中磁铁矿的主要挥发份的释气趋势基本一致(图 3h, c, e g):即 800~1200℃阶段只存在 CO₂和 SO₂的释气峰(图 3e g), CO₂释气量随温度降低而降低,大量 SO₂的释出可能是 由于磁铁矿表面粘附或内部包裹的硫化物分解造成的;400 ~800℃阶段出现 H₂O和 H₂S的最大释气峰(图 3c),并伴随 CO₂和 SO₂的小释气峰,该阶段突然增加的释气量可能与新 的外来流体组分加入岩浆有关;200~400℃阶段无明显释气 峰,释气量较低,以 H₂O和 CO₂为主。

在 400~ 800°C 阶段, 块状 Fe-T i矿石中的磁铁矿 释气量 (1357mm³• g⁻¹)远远高于 Fe-T i-P 矿石中的磁铁矿, 主要表 现在 H₂O和 CO₂组分上, 其同位素特征表明该阶段有大气 降水的加入 (图 4), 因此, 该阶段流体组分可能是多种来源 组分的混合和富集的结果。大量 H₂O 和 CO₂ 的存在可能会 提高岩浆的氧逸度 (Osbom, 1959), 从而有利于磁铁矿的结 晶。而块状 Fe-T 矿石中的磁铁矿较高的 H,O和 OO,释气 量可能说明块状 Fe-Ti矿石比块状 Fe-TiP矿石在更氧化的 环境中结晶。这一推论与孙静等(2009)计算出的大庙矿床 不同类型矿石结晶时的氧逸度结果一致,他们的计算结果表 明, 块状 Fe-T i矿石形成时 ㎏D, 最高, 为 - 16.7am; 块状 Fe-T + P 矿石形成时 lg O2 较低,为 - 20.1 atm;浸染状矿石形成 时 kO2最低, 为 - 21.1am。因此, 我们认为, 岩浆的氧逸度 升高可能是影响磁铁矿结晶的重要因素之一,而岩浆氧逸度 的升高可能与岩浆中 H,O 和 CO, 等挥发份的含量增加 有关。

5.3.2 块状 FeTiP矿石中的磁铁矿与磷灰石

比较同一 Fe-T+P矿石样品中的磁铁矿和磷灰石,除了 磁铁矿在 800~1200°C和 400~800°C阶段有一定量的 SO_2 释 出外,二者挥发份的主要组分类似,主要包括 $H_2O_2CO_2$ 和 N_2 + CO。磷灰石除了 CO_2 和 N_2 + CO 分别在 1000~1200°C和 400~800°C之间有一小释气峰外 (图 3e, b),其它组分在整 表现为无明显释气峰,且释气量较低,以H,O和 CO,为主。

前人研究认为.在 Fe-T+P矿床中 P本身作为一种挥发 份能够降低 FeTi氧化物的熔点, 增加其在岩浆中的溶解度, 从而抑制 Fe-Ti氧化物的过早结晶,形成不混熔的矿浆 (Philpottts, 1967; Kolker, 1982; Duchesne, 1999)。而当磁铁矿 或磷灰石之一开始沿液相线结晶,另一矿物相就会同时大量 结晶 (Tollari et al., 2006)。我们的研究结果表明, 磁铁矿的 释气总量平均是磷灰石的 2倍,800~1200℃阶段磁铁矿释 出的 H₂O和 OO₂组分的含量远高于磷灰石, 这说明块状 Fe-TiP矿石中的磁铁矿和磷灰石不太可能是同时结晶的,而可 能是从富 Fe, P的熔体中先后结晶出来的。另外, 400~ 800°C和 200~400°C阶段磷灰石的 δ¹³ C_{co},值 (平均为 – 4.9 ‰)显示更多的幔源组分特征,这有可能支持磷灰石结晶的 较早,从而更多的捕获了岩浆早期演化阶段来自地幔的流体 组分,而磁铁矿的结晶可能晚于磷灰石,因此捕获了大量作 为不相容组分富集在演化的岩浆中的挥发份(Zhang et al., 2009)。另外,李立兴等(2010)对大庙 Fe-T+P矿石中磷灰石 单个流体包裹体进行了激光拉曼探针分析,结果表明气相组 分主要以 CO₂、N₂和 CH₄为主,液相组分主要以 H₂O为主。 这与我们此次分析结果基本一致。

5.3.3 浸染状矿石中的斜长石与块状矿石中的磁铁矿

斜长石在 800~ 1200C 阶段除了 N_2 + CO 和 CO₂ 外 (图 3b), 无明显释气峰出现; 400~ 800C 阶段出现 H₂ 和 CH₄ 的 最大释气峰 (图 3d, f), 以及 H₂O 的小释气峰 (图 3c); 200~ 400C 阶段与磁铁矿类似, 无明显释气峰出现。对于 400~ 800C 阶段 H₂ 和 CH₄ 的释气特征, 马锦龙等 (2004)认为 H₂ 可能是通过 CH₄ + H₂O⁻ CO₂ + 4H₂ 反应产生。但观察该阶 段 CO₂ 释气趋势, 并没有显著释气峰出现, 表明斜长石中 H₂ 不可能是由这一反应形成的。因此, 400~ 800C 阶段 H₂ 的 释出表明有富 H₂ 流体的加入, 大量 H₂ 和 CH₄ 的存在表明 斜长石是在岩浆相对还原的条件下结晶的。斜长石作为大 庙斜长岩体的主要堆晶相, 应该是岩浆中最早分离结晶作用 的矿物相 (Zhao et al., 2009)。这与本次工作发现的其具有 还原性的挥发份组成是一致的。

综上所述, 根据矿物在不同温度下的释气特征以及 CH-O 同位素组成, 可将大庙含矿岩体的流体组成分成 4种: 第 一种是斜长石在 800~1200℃阶段释出的变质流体, 主要以 H₂O, N₂ + CO和 CO₂为主; 第二种是斜长石在 400~ 800℃阶 段释出的幔源流体, 主要以 H₂O, CH₄和 CO₂为主; 第三 种是磁铁矿在 400~ 800℃阶段释出的地表流体, 主要以 H₂O, CO₂, SO₂和 H₂S为主; 第四种是 200~ 400℃从矿物中 释出的次生包裹体组分, 主要以 H₂O和 CO₂ 为主。不同类 型矿石中的磁铁矿都捕获了大量的 H₂O和 CO₂。这有可能 是随着岩浆分离结晶作用的进行, 挥发份作为不相容组分, 趋向于进入熔体相而不易进入结晶相, 同时又存在地表流体 的不断加入, 因此随着岩浆演化的进行, 岩浆中 H₂O和 CO₂ 利于磁铁矿在一定阶段大量富集形成矿石。同时,挥发份的存在能够降低熔体的粘度和密度,增大熔体的内部压力,有利于富 Fe-T 的熔体沿裂隙侵入或挤入不同类型岩石的围岩中,因此,矿体的形态是不固定的。这一解释可以很好的解释斜长岩体和围岩中发育各种不同规则形状矿体的野外产状 (如图 2b)。

6 结论

根据矿物中挥发份的释 气特征和 CH-O 同位素组成区 分出大庙含矿岩体中存在 4种流体组分: (1)变质流体,主要 以 H_2 O, N_2 + O 和 CO_2 为主; (2)幔源流体,主要以 H_2 O, H_2 CH_4 和 CO_2 为主; (3)地表流体,主要以 H_2 O, CO_2 SO_2 和 H_3 S 为主; (4)次生包裹体组分,主要以 H_3 O和 CO_3 为主。

磁铁矿中富含大量 H₂O 和 CO₂ 组分, 是在岩浆演化过 程中相对氧化的阶段结晶的,这可能与岩浆演化过程中幔源 岩浆流体和地表流体大量富集在熔体中、导致岩浆的氧逸度 升高有关。

致谢 野外工作得到武汉地质矿产研究所胡俊良工程师 的帮助,分析测试工作得到兰州大学张铭杰教授和中国科学 院兰州地质研究所李立武研究员的帮助。匿名审稿人和范 宏瑞研究员对本文提出了宝贵的建议。在此表示感谢。

References

- A shwal LD. 1993. Anorthosite. M inerals and Rocks 21. Berlin Heidelberg SpringerVerlag 83-128
- Cao YW. 1988. Origin of the Damiao anorthosite and associated Fe-P deposit in Chende, Hebei Province, China. Master Degree Thesis Beijing, Chinese A cademy of Geological Sciences (in Chinese with English summary)
- Chen W, Zhao TP, Wei GQ and Xu YH. 2008. Genesis of nelson ite from the Damiao Fe-Ti-P deposit Heibei Province, China Evidence from apatite A cta Petrologica Sinica, 24(10): 2301-2312 (in Chinese with English abstract)
- Chen W. 2009. Orig in of the Dam iao anorthosite complex and hosted Fe-Ti-P deposit in Hebei Province North China Master Degree Thesis Guangzhou Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
- Darling RS and Florence FP. 1995. A patite light rare earth element chemistry of the Port Leyden nelsonite. A dirondack High kands. New York Implication for the origin of nelsonite in anorthosite suite rock's E conomic Geology, 90: 964 – 968
- Duchesne JC. 1999. Fe-Ti deposit in Rogaland anorthosites (South Norway): Geochemical characteristic and problems of interpretation. Mineralium Deposita, 34 182–198
- Dymek RF and Owens BE. 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorite) associated with massif anorthosite Economic Geology, 96: 797-815
- Eiler M, Farley KA, Valley JW, Hauri E, Craig H, Hart SR and Stolper EM. 1997. Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica et Cosmochimica A eta, 61: 2281–2293
- Em slie R.F. 1975. M ajor rock units of the Morin Complex, southwestem Quebec Geological Survey of Canada Paper, 74-37–48

等挥发组分不断富集,造成岩浆的氧逸度不断提高,从而有 Hill R and Roeder PL 1974. The crystallization of spinel from basaltic ①1994-2012 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.net liquid as a function of oxygen fugacity. Journal of Geology, 82 709 - 729

- Hu PQ, Zhang M J Tang ZL, LiCS and Wang JZ. 2007. Chemical and stable isotopic compositions of volatiles in mantle peridotites in the Yushigou ophiolite in Qilian orogenic belt western China. Acta Petrologica Sinica, 23(1): 169-176
- Huebner JS. 1975. Oxygen fugacity values of fumace gas mixtures. American Mineralogist 60 815 - 823
- Kolker A. 1982 M in enalogy and geochem istry of Fe-Tioxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. E conom ic G eology, 77: 1146–1158
- Kyser TK. 1986. Stable isotope variation in the mantle. In Valley JW, Taybr Jr HP and O'Neil JR (eds). Stable Isotopes in High Temperature Geological Processes Mineralogical Society of America 16 141–164
- Kyser TK and O' Neil TK. 1984. Hydrogen isotope systematics of submarine basalt Geochimica et Cosmochimica Acta, 48 2123 – 2133
- Li LX, LiHM, Chen ZL, W ang DH and Chen WS. 2010. Hydrotherm al mineralization and fluid inclusion study on the Heishan iron deposit Chende County, Heibei Province, China Acta Petrologica Sinica 26(3): 858–870 (in Chinese with English abstract)
- Lu B. 1995. Geochemistry of the Damiao anorthosite and associated Heishan Fe-P deposit PostDoctor Research Report. Guangzhou Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English summary)
- Ma JL, TaoMX, YeXR and ZhangXJ. 2004. Degassing characters and its origin of mantle aenoliths of Yishu Fracture Zone Acta Sedimentologica Sinica 22(1): 176–181 (in Chinese with English ab stract)
- Mattey DP, Carr RH, Wright IP and Pillinger CT. 1984. Carbon isotopes in submarine basalts. Earth and Planetary Science Letters, 70: 196 – 206
- O shom EF. 1959. The role of oxygen pressure in the crystallization and differentiation of basaltic magna. American Journal of Science, 257 609 - 647
- Philpotts A.R. 1967. Origin of certain iron-titanium oxide and apatite rock's Economic Geology, 62: 303-315
- Sheppard SMF. 1986. Characterization and isotopic variations in natural waters In Valley JW, Tay br JrHP and O' Neil JR (eds). Stable Isotopes in High Temperature Geological Processes M inerabgical Society of America, 16 165-183
- Sun J. Du WH, Wang DZ, Li J. Xu GX and Han YC. 2009. Geobg cal characteristics and genesis of the Heishan V-Tim agnetite deposit in Damiao. Chende: Hebei Province: A cta Geobgica Sinica, 83: 1344
 1364 (in Chinese with English abstract)
- Tollari N, Toplis MJ and Bannes SJ 2006. Predicting phosphate saturation in silicatem agn as An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta 70: 1518-1536
- W ang GY. 1979. The features of rocks and ore deposit in Chendem assifanorthosite in Hebei Province. Hebei Geological Information, 4 1– 28 (in Chinese with English abstract)
- Xie GH. 2005. The Petrobgy and Geochemistry of Damiao Massif Anorthosite and Miyun Rapakivi-Granite Involving Discussion on Distribution and Significance of Global Massif-Anorthosite and Rapakivi-Granit Beijing Science Press (in Chinese)
- Ye DH, Yang QW and Xing JR. 1996. The Damiao anorthosite and vanadic-titanom agnetite and apatite deposits associated with the anorthosite in Chendie Hebei Field Trip Guide T216, The 30th International Geological Congress, Beijing China
- Zhang M J Wang X B, LiLW and Wang Y L. 2002. Mode of occerence of H₂ in mantle-derived minerals A cta Geologica Sinica 76(1): 39– 44 (in Chinese with English abstract)
- Zhang M J H u PQ, N iu Y L and Su SG. 2007. Chemical and stable

isotopic constraints on the nature and origin of volatiles in the subcontinentallihospheric mantle beneath eastern China. Lithos, 96 55-66

- Zhang M J Meng G L, Hu PQ, Li LW and Li GZ 2008. Chemical compositions of mantle volatiles in ancient Q ilian ocean. Journal of Lanzhou University (Natural Sciences Edition), 44(4): 1-8 (in Chinese with English abstract)
- Zhang M J Niu YL and Hu PQ. 2009. Volatiles in the mantle lithosphere Modes of occurrence and chemical compositions. The Lithosphere Geochemistry, Geology and Geophysics, 171-272.
- Zhang M J. Li YX, Hu PQ, W ang XB, Niu YL and Fu PE. 2009. Recycled crustal volatiles in the subcontinental lithospheric mantle beneath eastern China. A cta Geologica Sinica, 83(3): 311-323 (in Chinese with English abstract)
- Zhao TP, Chen W and Zhou M.F. 2009. Geochemical and Nd-H f isotopic constraints on the origin of the ~ 17.4 Ga Damiao anorthosite complex, North China Craton. Lihos, 113: 673-690
- Zheng YF and Chen JF. 2000. Stable Isotope Geochemistry. Beijing Science Press 1–316 (in Chinese)

附中文参考文献

- 曹亚文 1988. 河北承德大庙斜长岩体及铁磷矿床成因研究 . 硕士 学位论文 . 北京: 中国地质科学院
- 陈伟,赵太平,魏庆国,徐勇航. 2008 河北大庙 FeT+P矿床中铁 钛磷灰石的成因:来自磷灰石的证据.岩石学报,24(10):2301 - 2312
- 陈伟 2009. 河北大庙斜长岩杂岩体及其 Fe-T+P矿床的成因研究 . 硕士学位论文 . 广州: 中国科学院广州地球化学研究所
- 李立兴,李厚民,陈正乐,王登红,陈伟十.2010 河北承德黑山铁
 矿床热液成矿特征及流体包裹体研究.岩石学报,26(3):858
 870
- 卢冰 1995. 大庙斜长岩及其中赋存的黑山铁磷矿床的地球化学 . 博士后出站报告 . 广州: 中国科学院广州地球化学研究所
- 马锦龙,陶明信,叶先仁,张小军.2004. 郯庐断裂带中段幔源包体 单矿物中的气体释放特征和成因.沉积学报,22(1):176-181
- 孙静,杜维河,王德忠,李健,徐国新,韩玉丑.2009.河北承德大 庙黑山钒钛磁铁矿床地质特征与成因探讨.地质学报,83 1344-1364
- 王关玉 . 1979. 河北承德地区斜长岩体的岩石及矿床成矿特征 . 河 北地质情报, 4: 1-28
- 谢广轰 . 2005. 大庙斜长岩和密云环斑花岗岩的岩石学和地球化学-兼论全球岩体型斜长岩和环斑花岗岩类的时空分布及其意义 . 北京:科学出版社
- 张铭杰,王先彬,李立武,王永莉.2002. 幔源矿物中 H₂ 赋存状态 的初步研究.地质学报,76(1):39-44
- 张铭杰, 孟广路, 胡沛青, 李立武, 李钢柱. 2008 祁连古大洋地幔 流体组成. 兰州大学学报(自然科学版), 44(4): 1-8
- 张铭杰,李延鑫,胡沛青,王先彬,Niu YI,傅飘儿.2009.中国东 部陆下岩石圈地幔中的再循环地壳流体组分.地质学报,83 (3):311-323
- 郑永飞,陈江峰. 2000.稳定同位素地球化学.北京:科学出版社, 1-316