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Adakites may form by partial melting of either the subducting oceanic lithosphere or
the lower part of the continental crust. These two magma types can be discriminated
geochemically using a combination of La/Yb, Sr/Y ratios, MgO and Na2O contents,
and Sr–Nd isotopes. Given that the basaltic crust has Cu concentrations more than two
times higher than the lower continental crust and the mantle wedge, ‘primitive’ adakites
produced by oceanic slab melting should contain significantly higher Cu contents than
adakites derived from the continental crust, as well as normal arc andesites. A globally
compiled dataset shows that Cu concentrations in adakites are generally lower than that
in normal arc rocks. We attribute this low copper content to loss of magmatic fluids
as a result of sulphate reduction during adakitic magma differentiation, in turn induced
by the crystallization of Fe–Ti oxides, essential to mineralization. Therefore, the under-
flow of oceanic-slab-derived adakites that can release larger amounts of Cu (presumably
Au as well) by crystal fractionation leads to higher potential for Cu–Au mineralization
along convergent margins, usually associated with ridge subduction. Such basaltic slab
melts initially have considerably higher Cu contents and thus play a crucial role partic-
ularly in the relatively closed magma system responsible for generating porphyry Cu
deposits.

Keywords: adakite; Cu–Au ore deposit; slab melting; subduction

Introduction

Adakite is a rare rock type in the modern arc system. It was originally named to represent
magmas with components derived from partial melting of subducted oceanic slab (Defant
and Drummond 1990). Later on, it was believed that adakite could also be formed by partial
melting of thickened lower crust or fractional crystallization (Defant et al. 2002; Kay and
Kay 2002; Chung et al. 2003; Castillo 2006; Wen et al. 2008; Goss and Kay 2009). A
close relationship between adakites and epithermal/porphyry ore deposits (Au, Ag, Cu,
Mo) was proposed by previous authors (e.g. Thieblemont et al. 1997; Zhang et al. 2001a),
who argued that most of the deposits they studied worldwide were closely associated with,
and often hosted by, adakites. This notion has been supported by numerous later studies,
such as those on porphyry Cu and epithermal Au deposits in the Philippines (Sajona and
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692 W. Sun et al.

Maury 1998), epithermal Au deposits in Ecuador (Beate et al. 2001), porphyry Cu deposit
in Mongolia (Morozumi 2003) and Chile (Kay et al. 1999; Oyarzun et al. 2001, 2002; Kay
and Mpodozis 2002; Reich et al. 2003), porphyry Cu–Au deposits in China (Hou et al.
2004, 2007b; Wang et al. 2004, 2006a, 2006b, 2007b; Xie et al. 2008, 2009), and Au
deposits in Mexico (Gonzalez-Partida et al. 2003; Levresse and Gonzalez-Partida 2003;
Levresse et al. 2004). The close association between adakites and porphyry deposits was
attributed to high oxygen fugacity induced by adakitic magmas (Mungall 2002). Some
researchers even proposed that the occurrence of adakites may be a useful indicator for Cu
deposits (Zhang et al. 2004). The proposed connection between adakite and Cu deposits has
also been seriously criticized by Rabbia et al. (2002), Richards (2002), and Richards and
Kerrich (2007), who argued that the geochemical signatures of adakites can be generated
in normal asthenosphere-derived tholeiitic to calc-alkaline arc magmas by common crustal
interaction and fractionation processes (Richards 2002; Richards and Kerrich 2007) or by
melting of thickened crust (Rabbia et al. 2002), and do not require slab melting. These
arguments, however, do not have any constraints on the relationship between adakite and
mineralization.

In fact, adakites and Cu (Au) ore deposits are not always bounded together. For exam-
ple, some adakitic rocks do not have any deposits (Chiaradia et al. 2004; Huang et al.
2008), whereas some rocks without clear adakitic geochemical features are ore-bearing,
for example some porphyry Cu and epithermal Au deposits in Ecuador (Chiaradia et al.
2004) and small porphyry Cu deposits in the western Luzon (Imai 2002); in both cases
calc-alkaline andesites are the host rocks. Therefore, it has been argued that high oxygen
fugacity, rather than adakitic magma composition, is essential to the formation of porphyry
Cu deposits (Imai 2002; Bissig et al. 2003).

Adakite is defined by geochemical characteristics (e.g. SiO2 ≥ 56 wt.%, Al2O3 ≥
15 wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm and Sr ≥ 400 ppm; Defant and Drummond 1990).
Given that the geochemical characteristics of adakite can seemingly be produced by many
geological processes with the presence of garnet (low Y) and absence of plagioclase (high
Sr and Sr/Y), several other mechanisms have been proposed in addition to the original slab
melting model, for example partial melting of either thickened crust (Petford and Atherton
1996; Zhang et al. 2001b), forearc crust carried down by subduction–erosion (Kay and
Kay 2002), delaminated lower continental crust (e.g. Xu et al. 2002; Gao et al. 2004),
high-pressure fractional crystallization of mineral assemblages with garnet (Castillo 2006;
Macpherson et al. 2006), or even pure amphibole of normal arc magmas (Richards and
Kerrich 2007); and polybaric fractional crystallization from exceptionally water-rich par-
ent magmas (Rodriguez et al. 2007). Consequently, crustal processes have been proposed
to play a key role in the metal enrichments of some porphyry Cu deposits (Richards and
Kerrich 2007).

In this article, we used compiled data from the GEOROC dataset to conduct geo-
chemical modelling that enables us to evaluate the above debates with emphasis on the
relationship between adakites and Cu (Au) ore deposits.

Copper in adakites

Compiled GEOROC dataset

The compiled GEOROC dataset for Cu and SiO2 contents of arc volcanic rocks are plot-
ted in Figure 1. Given the fact that high-quality Au data are rare and that Au and Cu
behave similarly during magma differentiation for arc volcanic rocks (Sun et al. 2004),
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International Geology Review 693

SiO2(wt.%)

Figure 1. Diagram of Cu versus SiO2 for adakites and normal arc rocks indicating Cu loss in
evolved magmas. Data source: GEOROC. The two zones confined by dashed lines are modified
after Sun et al. (2004), representing values of eastern Manus basin volcanic glasses for comparison.
Cu concentration increases at the early stage of magma fractionation and then drops suddenly as a
result of magnetite crystallization, which reduces sulphate, scavenging Cu, Au out of the magmas in
the form of hydrosulphide complexes (Sun et al. 2004).

we will focus on Cu in the following discussion. We did not change the classification of
the GEOROC dataset, except to exclude data published before 1991, as the term ‘adakite’
was first proposed in 1990 (Defant and Drummond 1990). Some rocks that were classified
as adakites by the original authors were excluded from the compiled normal arc andesite
dataset.

Compared to normal arc volcanic rocks, adakites have systematically lower Cu concen-
tration (Figure 1). To most people, this phenomenon does not lend any support to a genetic
link of Cu (Au) deposits with adakites. It is probably one of the main reasons many geol-
ogists do not believe the association between Cu deposits and adakites. Figure 1, however,
cannot be used to rule out a possible association. This is because Cu and Au concentrations
may drop quickly when magmas evolve to higher SiO2 contents (∼58 wt.%) because of the
oxygen fugacity fluctuation induced by crystallization of Fe–Ti oxides and subsequent sul-
phate reduction that scavenges Cu, Au into magmatic fluids (Sun et al. 2003a, 2004; Liang
et al. 2006, 2009). These Cu-rich fluids/gases released during magma evolution are impor-
tant for the transportation and mineralization of Cu (Heinrich et al. 1999, 2004; Seedorff
et al. 2005).

Although the compiled Cu data for normal arc rocks do not drop abruptly as SiO2

increases, they show a Cu peak at SiO2 of ∼55–60 wt.%. This is likely because the dataset
is not representative of samples from a single magma chamber, but a large collection
from the convergent margins worldwide. Nevertheless, the Cu peak is consistent with the
notion that there is a major change in Cu behaviour during magma differentiation (Sun
et al. 2004). For adakites, in contrast, Cu concentrations drop continuously with increasing
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694 W. Sun et al.

SiO2 contents without any changes in Cu behaviour (Figure 1). This is probably because
Fe–Ti oxides may start crystallizing at the very beginning stage of the magma evolution
of adakites that have relatively higher SiO2 (Defant and Drummond 1990) and arguably
higher oxygen fugacity (Mungall 2002) than normal arc lavas, and thus may have released
more Cu for mineralization.

The speculation is supported by plots of FeO and TiO2 versus SiO2 (Figure 2), in which
FeO and TiO2 of normal arc rocks are both peaked at SiO2 of ∼55–60 wt.%, whereas those
of adakites decrease continuously. The message of these diagrams (Figures 1 and 2) is
that crystallization of Fe–Ti oxides indeed removes Cu dramatically from adakites and also
some evolved normal arc rocks, most likely by sulphate reduction as previously proposed
(Sun et al. 2004). Therefore, Cu concentrations cannot be used directly as a geochemical
parameter to prove or disapprove the link between adakites and Cu (Au) deposits. Also,
these diagrams tell us that adakites have given away Cu during magmatic processes, most
likely to fluids (Sun et al. 2004). Therefore, in the case that adakites originally contain
higher Cu concentrations than normal arc rocks, they have a higher potential of causing Cu
mineralization. An immediate question, then, is whether ‘primitive’ adakitic magmas have
high Cu contents.

Modelling results

Copper concentration in ‘primitive’ adakites depends heavily on the source composition
and oxygen fugacity. As stated above, there are three types of petrogenetic models proposed
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Figure 2. Diagrams of FeO and TiO2 versus SiO2 for adakites and normal arc rocks. Symbols are
the same as Figure 1. FeO, TiO2 losses are in phase with Cu loss in Figure 1. Data source: GEOROC.
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International Geology Review 695

for adakite formation: slab melting, thickened lower continental crust melting, and frac-
tional crystallization. The continental crust and lower continental crust have Cu abundance
estimated as low as 26–27 ppm (Rudnick and Gao 2003), much lower than the oceanic
crust represented by MORB that contains 60–120 ppm (e.g. 74.4 ppm in average) of Cu
(Hofmann 1988; Sun et al. 2003b).

The partition coefficients for Cu vary dramatically as shown by experimental data
and natural samples (GERM 2009), possibly because of its chalcophile characteristics.
Nevertheless, it is moderately incompatible in natural samples ranging from MORB to arc
volcanic rocks, similar to Re (Sun et al. 2003a, 2003b, . 2004). Therefore, partial melt-
ing of either the lower continental crust or subducted slab would produce magmas with
Cu considerably higher than the corresponding sources. The partition coefficients chosen
in our modelling are 0.05 for amphibole, 0.5 for plagioclase (Dostal et al. 1983), 0.5 for
garnet, 0.2 for plagioclase and 1 for rutile. The partition coefficients for Sr, Y are from
Rollinson (1993) for plagioclase and Xiong et al. (2006) for other minerals (Table 1).

In a Sr/Y versus Cu diagram (Figure 3), melts modelled for partial melting of MORB
have Cu (114–245 ppm, using an average Cu of 74 ppm) levels much higher than that
of the lower crust (40–85 ppm, using an abundance of 27 ppm). The modelling results
indicate that, while the Cu-enriched slab melts are likely to be closely associated with
Cu ore formation, melts of the lower continental crust that show significantly lower Cu
contents may have no connection to Cu mineralization at all. This explains the positive
correlation between tonnages of Cu ores and the mantle components identified in large
Chinese porphyry deposits (Hou et al. 2007a), because mantle components identified by

Table 1. Modelling results of slab melts and melts derived from the lower continental crust.

A B C D

Bulk Sr 0.335 0.210 0.051 0.030
Partition Y 1.57 3.77 6.70 6.69
Coefficients Cu 0.226 0.309 0.459 0.503

Sr 866 1205 2387 2733
10% Y 10.6 4.58 2.61 2.61

Cu 85.7 68.8 50.7 47.0
Sr 743 946 1446 1551

Lower continental crust 20% Y 11.0 4.97 2.88 2.88
Cu 68.3 58.2 45.9 43.2
Sr 651 779 1037 1083

30% Y 11.5 5.44 3.21 3.21
Cu 56.7 50.4 41.9 39.9
Sr 444 618 1224 1401

10% Y 20.9 9.02 5.15 5.15
Cu 245 197 145 135
Sr 381 485 741 796

MORB 20% Y 21.7 9.80 5.67 5.68
Cu 195 167 131 124
Sr 334 399 532 556

30% Y 22.6 10.7 6.32 6.33
Cu 162 144 120 114

Note: Mineral compositions are A: amphibole 55%, garnet 4.3%, clinopyroxene 30%, plagioclase 10%, rutile
0.7%; B: amphibole 40%, garnet 19.3%, clinopyroxene 35%, plagioclase 5%, rutile 0.7%; C: amphibole 10%,
garnet 39.3%, clinopyroxene 50%, plagioclase 0%, rutile 0.7%; D: amphibole 0%, garnet 39.3%, clinopyroxene
60%, plagioclase 0%, rutile 0.7%. The compositions of lower crust were from Rudnick and Gao (2003), whereas
those of MORB are from Hofmann (1988) for Cu and the average values of Sun et al. (2008) for other elements.
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Figure 3. Diagram of Cu versus Sr/Y showing calculated partial melts of MORB having system-
atically higher Cu than those of the lower continental crust melts and normal arc rocks (Table 1).
Backgrounds are normal arc (open light grey diamonds) and adakites (open grey squares) from
GEOROC. Continental crust value from Rudnick and Gao (2003). Note: Both Cu and Sr/Y change
dramatically during magma fractionation. Bars A and B represent the maximum amounts of Cu that
can be released for mineralization from slab melts and lower crust melts, respectively.

isotopic composition are likely related to slab melts, which usually have isotopic composi-
tions identical to mantle rocks (e.g. Sun and McDonough 1989; Hacker 1991). From this
point of view, the association of adakitic rocks with Cu ore deposits might be indicative of
a magma origin by slab melting.

Discussion

Slab melting versus lower continental crust melting

Adakite was originally defined as rocks with slab melts (Defant and Drummond 1990). The
geochemical characteristics of adakites, however, can be created through three ways: slab
melting, melting of thickened crust, and fractional crystallization (Defant et al. 2002; Kay
and Kay 2002). Both melting of thickened crust and fractional crystallization have been
proposed as key factors that control Cu mineralization (Bissig et al. 2003; Hollings et al.
2005). Our modelling results, however, show that adakites formed by slab melting tend to
have higher initial Cu concentrations that could facilitate Cu mineralization. On the other
hand, those formed by partial melting of the lower continental crust have considerably lower
Cu, and thus poor opportunities in ore formation because of the lower Cu in the source and
lower oxygen fugacity. Therefore, in terms of Cu deposit exploration, it is important to
distinguish slab melts from lower crust melts using certain petrogenetic indicators.

Isotope is arguably the most powerful discrimination parameter. In general, slab melt-
ing produces magmas with isotope compositions close to MORB values, which are usually
similar to that of the depleted mantle whereas partial melting of the lower continental crust
usually forms magmas with enriched isotope signatures (Wang et al. 2006a, 2007b; Huang
et al. 2008; Wen et al. 2008). Therefore, isotopes are often used to constrain the sources of
adakites (e.g. Dreher et al. 2005; Macpherson et al. 2006; Wang et al. 2007a). However,
the isotope ratios of adakites may be modified by magmatic processes, for example crust
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International Geology Review 697

contamination (Davidson and Desilva 1995; Mori et al. 2007; Ling et al. 2009) and sedi-
ment contributions (Kay et al. 1978; Sajona et al. 2000). Therefore, it could be problematic
to rely solely on isotopic constraints.

La/Y, Sr/Y ratios are another useful parameter. The lower continental crust is more
enriched in La, Sr and depleted in Y, Yb than average MORB (Hofmann 1988; Sun and
McDonough 1989; Rudnick and Gao 2003); thus, lower continental crust melts should
contain higher La/Yb, Sr/Y at given Y, Yb than slab melts. The La/Yb, Sr/Y ratios of
adakites, however, are highly varied (Defant and Drummond 1990), depending heavily on
the partial melting conditions. In the case that the lower continental crust was melted in the
presence of plagioclase and/or absence of garnet, the resultant magmas may have Sr/Y
ratios comparable to slab melts. Therefore, Sr/Y values are not always conclusive, either.
La/Yb is less affected by plagioclase, such that lower continental crust melts may have
distinctively higher La/Yb than slab melts.

MgO and Mg# may also be different in slab and lower continental crust melts. In
general, melts from a subducting slab would interact with the overlying mantle wedge
during magma ascent and thus gain considerable amounts of MgO that raise Mg# num-
bers (Kilian and Stern 2002; Xiong et al. 2006; Gomez-Tuena et al. 2008). In contrast,
lower continental crust melts presumably stay mainly in the crust and have lower MgO.
These scenarios, however, are not always right, either. For example, flat subduction
may squeeze or erase the mantle wedge, forming low-Mg adakites by slab melting. In
addition, when the lower continental crust is melted through the addition of upwelling
mantle materials, for example asthenosphere or mantle plume, the MgO contents can be
elevated.

Na2O of adakites produced by slab melting are systematically lower than that of exper-
imental results, a feature that has also been attributed to mantle interaction of slab melts
(Xiong et al. 2006). In contrast, melts from the lower continental crust have higher Na2O
(Xiong et al. 2001). The systematically lower Na2O contents in slab melts compared to
lower continental crust melts may also be ascribed to the presence of omphacite in the slab
melting residue, as omphacite is a Na-clinopyroxene that could hold back a large portion of
Na. Nevertheless, Na2O contents of adakites may be significantly changed during magma
differentiation, such that using only this constraint would not be conclusive either.

Consequently, there seems to be no easy solution for discriminating oceanic slab
melts from lower continental crust melts. Even so, the more the above criteria match,
the better one may constrain the source and origin of adakites. It is also worth
mentioning that slab melts may well be contaminated by the lower continental crust
through assimilation, especially in places where thick crust exists (Ling et al. 2009).
Moreover, there is nearly no magma that can be well preserved from fractional crys-
tallization and assimilation, both of which can dramatically change the composition
of the magma. Many adakitic magmas can easily change to no-adakitic characteristics
after plagioclase crystallization. In this case, the association of adakites with or with-
out Cu (Au) deposits may provide an additional constraint on the tectonic setting and/

or petrogenesis.
Tectonic settings are probably more important than geochemical characteristics for

identifying slab melts. Ridge subduction and flat subduction are the most favourable tec-
tonic settings for slab melting. In fact, most of the large porphyry Cu deposits in Chile and
Peru are spatially associated with ridge subduction (Cooke et al. 2005; Sun et al. 2010).
This strongly supports our model because ridge subduction is the most favourable process
for the formation of adakite.
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698 W. Sun et al.

Ore formation related to normal arc rocks

To confirm the close association between slab-derived adakites and Cu (Au) ore deposits,
we take a look at normal arc rocks in terms of Cu concentrations. Copper is a moderately
incompatible element in the presence of sulphur (Sun et al. 2003a, 2004). The mantle
wedge is fairly depleted in incompatible elements, so its Cu abundance is mainly controlled
by the addition of Cu from the subducting slab. It has been suggested that aqueous fluids
liberated by the subducting slab at the blueschist to eclogite facies transition are dilute,
containing only moderate amounts of large-ion lithophile elements, Sr, and Pb and do not
transport significant amounts of key elements (Hermann et al. 2006). If this is true for Cu,
the mantle wedge should have Cu lower than the primitive mantle (30 ppm) (McDonough
and Sun 1995), and therefore normal arc magmas should contain Cu much lower than
slab melts.

In Figure 1, normal arc rocks from the compiled data of GEOROC appear to have fairly
high Cu concentration. Many of these arc rocks, however, have high enough Sr/Y ratios
that they can safely be classified as adakitic rocks; in particular, those samples with Cu
>150 ppm are actually adakites as constrained by their very high Sr/Y ratios (Figure 3).
Moreover, nearly all the arc rocks, including those that are actually adakites, experienced
different degrees of plagioclase crystallization; therefore, some of the arc rocks that have
high Cu concentrations (Figures 1 and 3) might be originally of adakitic compositions.
On the other hand, it has been proposed that an adakite-type slab melt component may
be present in the magmatic source throughout the arc system (Yogodzinski and Kelemen
1998). In that case, slab-released fluids cannot transport much Cu, so the proportion of the
slab melt component may determine the Cu concentration in arc magmas.

As shown in Figures 1 and 3, normal arc rocks also lose significant amounts of
Cu during magma differentiation, and thus likely contributed to Cu mineralization at
the convergent margins, in particular for ore formation in epithermal deposit systems.
Precipitation of metals depends on many factors, including temperature, acidity, and iron
and sulphide availability (Seedorff et al. 2005; Liang et al. 2009). For a closed magma sys-
tem (e.g. porphyry), instead specific processes are required to elevate the Cu concentration
from 4000 ppm. It is much easier to accomplish this elevation by slab melts that originally
contain higher Cu. This, if true, provides a plausible explanation for the observed associ-
ation between Cu (Au) deposits and slab-derived adakites (e.g. Thieblemont et al. 1997;
Sajona and Maury 1998; Wang et al. 2006a, 2006b).

Conclusions

Primitive adakites derived by partial melting of oceanic lithosphere should have system-
atically higher Cu contents than those from the lower parts of thickened continental crust
because Cu concentrations in the former are much higher than those in the latter. The
incompatible characteristics of Cu suggests that concentration of this element in the man-
tle wedge is also likely to be lower than that in the oceanic crust, unless subduction-released
fluids have a very high capacity of transporting Cu to the mantle wedge.

Both adakites and normal arc rocks evidently release Cu and presumably also Au dur-
ing magma differentiation, so they both may contribute to ore mineralization, especially
epithermal deposits. The higher Cu abundance in primitive adakites formed by oceanic
slab melting implies that more Cu can be released from such magmas, which are thus
favourable for ore mineralization, supporting the close relationship of slab-derived adakites
with Cu ± Au ore deposits. For a closed magma system, adakites generated from melting
of the oceanic lithosphere have a better chance at mineralization because of their higher
Cu concentrations.
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Adakites from the lower continental crust apparently possess lower initial Cu contents,
thus offering fewer prospects for extensive mineralization. This type of adakite may be
discriminated from basaltic slab melts using a combination of Sr/Y and La/Yb ratios, MgO
and Na2O contents, and Sr–Nd isotopes. For magmas consisting of both slab and lower
continental crust components, the level of Cu mineralization may provide an additional
constraint on their origin. These are supported by the close association of ridge subduction
with large Cu deposits, reflecting the most favourable tectonic setting for slab melting.
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