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Cretaceous adakites are widely distributed in the Lower Yangtze River Belt (LYRB)
and the Dabie Mountains, east-central China. Adakites from the LYRB in general are
closely associated with Cu–Au deposits, whereas Dabie adakites lack any mineralization.
Based on geochemical characteristics, we show that these adakites have different
origins; for example, adakites from the Dabie Mountains have more variable Sr/Y
(6.47–1303) and systematically higher La/Yb (20.8–402), Th/U (2.28–50.6), and Nb/
Ta (5.07–65.2) compared to adakites from the LYRB, Sr/Y (28.8–185), La/Yb (14.1–49),
Th/U (0.33–8), and Nb/Ta (7.5–23). The systematically higher La/Yb of Dabie
adakites supports their continental origin, because the La/Yb of the lower continental
crust is more than 10 times higher than that of mid-ocean ridge basalt (MORB). More-
over, the lower continental crust is also highly enriched in Sr, with Sr/Y > 10 times that
of MORB. Interestingly, with the exception of those from Fuziling, most Dabie adak-
ites have Sr/Y comparable to normal adakites, suggesting the presence of residual
plagioclase. Because Th and U do not fractionate significantly from each other during
magmatism, the high but variable Th/U suggests that the protolith of Dabie adakites
underwent subduction. The LYRB adakites can be plausibly interpreted as being a
result of Early Cretaceous partial melting of a young, hot, descending oceanic slab during
ridge subduction. By contrast, Dabie adakites were likely formed by partial melting of
the lower continental crust attending ridge subduction.

Keywords: adakites; Dabie; ridge subduction; Cu deposits; slab melting

1. Introduction
Adakite, defined by its unique geochemical features such as SiO2 ≥ 56 wt.%, Al2O3 ≥
15 wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm, and Sr ≥ 400 ppm, was initially named for rocks
with clear contributions from partial melting of subducted young oceanic crust (Defant
and Drummond 1990) and has gained wide interest in recent years. The formation of some
adakites, however, is still controversial. In addition to slab melting, adakite was also pro-
posed to be formed by partial melting of the lower continental crust (Chung et al. 2003;
Gao et al. 2004), underplated new crust (Petford et al. 1996), or fractional crystallization
of normal arc magmas (Castillo 2006; Macpherson et al. 2006; Richards and Kerrich
2007; Rodriguez et al. 2007).

*Corresponding author. Email: weidongsun@gig.ac.cn
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Adakite has been reported to be closely associated with many ore deposits in the
Lower Yangtze River Belt (LYRB), central eastern China (Wang et al. 2004a, 2004b,
2006, 2007b; Yang et al. 2007; Xie et al. 2008, 2009; Zhou et al. 2008), which is one of
the most important metallogenic belts in China, containing more than 200 polymetallic
(Cu–Fe–Au, Mo, Zn, Pb, Ag) deposits (Chang et al. 1991; Pan and Dong 1999; Mao et al.
2006), formed mainly at a very narrow period of time, that is, 138 ± 3 Ma (Sun et al.
2003b). Adakite from the LYRB was originally attributed to partial melting of thickened
or delaminated lower continental crust, based mainly on isotopic characteristics and an
assumption that there was no plate subduction in the Early Cretaceous (Zhang et al. 2001;
Xu et al. 2002; Wang et al. 2004a, 2004b, 2006, 2007b).

Plate reconstruction and other observations, however, suggest that there was plate
subduction in the Early Cretaceous (Zhou and Li 2000; Zhou et al. 2006; Li and Li 2007;
Sun et al. 2007a; Wang et al. 2011). Based on the distribution of adakite and rock assem-
blages, Ling et al. (2011) proposed a ridge subduction model. According to that model,
LYRB adakite was formed by partial melting of subducting young, hot oceanic slabs close
to the subducting ridge between the Pacific and Izanagi plates. The enriched isotope
characteristics can be explained by the assimilation of enriched mantle materials and the
continental crust (Ling et al. 2009).

In recent years, adakite has also been reported in the Dabie Mountains (Wang et al.
2007a; Xu et al. 2007; Huang et al. 2008), which was considered to be formed by partial
melting of the basement of an overthickened crustal root during the early stage of exten-
sional collapse of the Dabie Mountains (Xu et al. 2007), partial melting of thickened
amphibole or rutile-bearing eclogitic lower continental crust (Wang et al. 2007a), or
partial melting of the thickened lower continental crust (Huang et al. 2008).

Considering the dramatic difference between the Dabie Mountains and the LYRB in
terms of tectonic settings, we compared geochemical characteristics of adakite from these
places (Huang et al. 2008; Ling et al. 2009 and references therein; Wang et al. 2007a; Xu
et al. 2007). Our results show significant differences in geochemical characteristics
between these two suites of adakites.

2. Geological background
2.1. The Dabie Mountains
The Dabie ultra-high-pressure metamorphic (UHPM) belt is the middle part of the
Qinling-Dabie-Sulu Mountains in China (Mattauer et al. 1985; Meng and Zhang 1999,
2000; Sun et al. 2002a; Li and Yang 2003; Zhang et al. 2004), which is the largest
UHPM belt in the world and resulted from the Triassic collision between the North and
South China blocks (Figure 1a and b) (Li et al. 1993; Hacker et al. 1998; Liou et al.
2000; Ye et al. 2000; Sun et al. 2002b; Zhang et al. 2003, 2008; Liu et al. 2006; Yang et al.
2008).

The Dabie Mountains were divided into two terranes, the northern Dabie terrane and
the southern Dabie terrane. The southern Dabie terrane is famous for coesite-bearing
(Okay et al. 1989; Wang et al. 1989) and diamond-bearing eclogite (Xu et al. 1992), as
well as other ultra-high-pressure mineral assemblages indicating that the continental crust
has been subducted down to depths of more than 100 km (Ernst and Liou 1999; Ye et al.
2000; Zhang et al. 2007). Generally, the Dabie Mountains can be subdivided into five
metamorphic zones from north to south: (1) Beihuaiyang greenschist-amphibolite facies
zone; (2) Huwan cold eclogite melange zone; (3) northern Dabie complex zone; (4) southern
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Dabie UHPM zone; and (5) Hong’an-Susong high-pressure metamorphic zone (Li et al.
1993, 2001 and references therein; Zhang et al. 2007; Wang et al. 2008).

Adakite in the Dabie Mountains is distributed in Yunfengding, Egongbao, Fuzil-
ing (Wang et al. 2007a), Tiantangzhai (Wang et al. 2007a; Xu et al. 2007), Chituling
(Huang et al. 2008), Shigujian, Duzunshan, Guanyinci, Daoshichong, etc. (Xu et al. 2007).
Those adakitic rocks are all attributed to partial melting of the lower continental crust
(Huang et al. 2008).

2.2. The Lower Yangtze River Belt
The LYRB is located in the east part of the Yangtze block in central eastern China (Chang
et al. 1991; Chen et al. 1991; Xing and Xu 1995; Pan and Dong 1999; Zhou and Yue
2000; Chen et al. 2001; Zhou et al. 2008; Xie et al. 2009) (Figure 1a), which is separated
from the Cathaysia block to the south by the Jiangshan-Shaoxing fault, the Proterozoic
suture between the Cathaysia and Yangtze blocks (Li 1992; Li et al. 2005). The Xiangfan-
Guangji and Tan-Lu faults are the northern and western margins of the LYRB, respec-
tively (Chen et al. 2001), separating it from the Dabie Mountains.

The magmatic rocks have been classified into three belts: the inner, south, and north
belts (Chang et al. 1991; Xing 1999; Xing and Xu 1995) (Figure 1c). The inner belt con-
tains high-K calc-alkaline intermediate-acidic intrusive rocks, high-sodium calc-alkaline
intermediate-basic intrusive rocks, shoshonite, and A-type granite (Xing 1999). The south
belt consists of calc-alkaline rocks, generally large plutons with some small bodies of
granodiorite porphyry. Some A-type granites with younger ages have also been reported
in the south belt (Wong et al. 2009). The north belt is also composed of calc-alkaline
rocks, but it is poorly developed and seemingly more complicated than the other two belts,
with fewer intrusive bodies (Xing 1999). Adakitic rocks from the LYRB are all distributed
in the inner belt. A-type granites are systematically younger than adakite, which is prob-
ably related to a slab window (Ling et al. 2009). LYRB adakite was attributed either to
partial melting of the lower continental crust (Zhang et al. 2001; Xu et al. 2002; Wang et
al. 2006, 2007b) or to slab melting induced by ridge subduction (Ling et al. 2009).

3. Comparison of adakites from the Dabie Mountains and the LYRB
Given that the major elements (e.g. K2O, Na2O, and MgO) and isotopes (e.g. Sr, Nd) have
been intensively investigated by previous authors, this article mainly focuses on the trace
element characteristic of the adakites. A comparison of geochemical characteristics of
adakites from the Dabie Mountains and the LYRB is made in this study, using data from
the literature (Huang et al. 2008; Ling et al. 2009 and references therein; Wang et al.
2007a; Xu et al. 2007). Referring to Sr/Y–Y and La/Yb–Yb diagrams (Figures 2 and 3),
most of the data collected from published literature fall in the adakite area confined by the
global database GEOROC (GEOROC 2009).

Figure 1. Distribution map of adakite from the Dabie Mountains and the Lower Yangtze River
Belt in China. (a) Sketch map of eastern China with the locations of the Dabie Mountains and the
Lower Yangtze River Belt (modified from Wang et al. 2007a). (b) Distribution map of adakite from
the Dabie Mountains (modified from Wang et al. 2007a). (c) Distribution of magmatic rocks in the
Lower Yangtze River Belt (modified from Ling et al. 2009). Granodiorite, quartz diorite, granite,
syenite, etc. distributed in the inner belt are adakites.
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Figure 2. Diagram of Sr/Y versus Y. The adakite and andesite areas are defined using data from
the GEOROC database (GEOROC 2009). Nearly all of the data are distributed in the adakite area, in
which adakite from the Dabie Mountains has a relatively larger range than that from the Lower Yangtze
River Belt and also slightly lower Sr/Y ratios, except adakite from Fuziling, which has extremely
high Sr/Y up to 1303.
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Figure 3. Diagram of La/Yb versus Yb. Symbols are the same as in Figure 2. The adakite and
andesite areas are defined using data from the GEOROC database (GEOROC 2009). As in Figure 2,
data of adakite from the Dabie Mountains are in a wide range, in which adakite from Fuziling has
the highest La/Yb ratios. Adakite from the Lower Yangtze River Belt has much lower La/Yb than
that from the Dabie Mountains.

0 1 2 3 4 5

20

40

60

80

100

120

140

160

180

200

0 1 2 3
0

50

100

150

200

250

300

350

400

450

La
/Y

b

Yb (ppm)

Adakite

Andesite

D
ow

nl
oa

de
d 

by
 [

G
ua

ng
zh

ou
 I

ns
tit

ut
e 

of
 G

eo
ch

em
is

tr
y]

 a
t 2

3:
59

 0
8 

Fe
br

ua
ry

 2
01

2 



732 M.-X. Ling et al.

Adakites from the Dabie Mountains and the LYRB have obviously different geochemical
characteristics, for example, adakite from the Dabie Mountains has Sr concentration rang-
ing from 142 to 1300 ppm, Y concentration from 0.452 to 28.9 ppm, and highly varied
Sr/Y (6.47–1300), whereas adakite from the LYRB has much higher Sr concentration
(369–2300 ppm), nearly the same range of Y concentration (5.51–24 ppm), and less varia-
ble Sr/Y (28.8–185) (Figure 2). Also, adakite from the Dabie Mountains has a wide range
of La/Yb, varying from 20.8 to 402, whereas that of LYRB adakite ranges from 14.1 to 49
(Figure 3). It is worth mentioning that adakite from Fuziling in the Dabie Mountains has
the highest Sr/Y and La/Yb among all samples studied (Figures 2 and 3), probably
because of the combination of their lower continental origin and large amount of residual
garnet in the source (see detailed discussion below). Furthermore, Dabie adakite has
highly variable Th/U, ranging from 2.28 to 50.6 (Figure 4), with Nb/Ta ranging from 5.07
to 65.2 (Figure 5) and Zr/Hf from 25.4 to 47.4 (Figure 6). In contrast, LYRB adakite has
much lower Th/U (0.33–8) (Figure 4), relatively lower Nb/Ta (7.5–23) (Figure 5), and
almost the same range of Zr/Hf (23.3–40.2) (Figure 6).

Aforementioned evidence clearly shows that adakites from the Dabie Mountains were
very likely formed by partial melting of the lower continental crust, whereas those from
the LYRB were formed by partial melting of subducting oceanic slab.

4. Discussion
4.1. Sr/Y
Adakite from the Dabie Mountains is generally attributed to partial melting of the lower
continental crust (Wang et al. 2007a; Huang et al. 2008). The lower continental crust has
Sr/Y of more than 30, which is about 10 times higher than that of mid-ocean ridge basalt
(MORB) (Sun and McDonough 1989; Rudnick and Gao 2003; Sun et al. 2008). Most
adakite so far published has Sr/Y ranging from 20 to 200. Adakite from the LYRB has rel-
atively concentrated Sr/Y (28.8–185) (Figure 2), well within the range of global adakite.
In contrast, adakite from the Dabie Mountains has highly varied Sr/Y (6.47–1300) (Figure 2).
All the samples with high Sr/Y were from Fuziling. Strontium is generally taken as a mod-
erately incompatible element during mantle magmatism (Sun and McDonough 1989). It

Figure 4. (a) Th/U versus U diagram. (b) Th/U versus Th diagram. Symbols are the same as in Figure 2.
LCC, lower continental crust; MCC, middle continental crust. The compositions of lower and
middle continental crusts were from Rudnick and Gao (2003), whereas those of MORB are the aver-
age values of Sun et al. (2008). Adakite from the Dabie Mountains has highly varied Th/U ratios, the
same as U and Th concentrations, and shows a clear negative linear trend in the Th/U versus U diagram.
Adakite from the Lower Yangtze River Belt has many focused Th/U ratios and U and Th concentrations.
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is, however, highly compatible in plagioclase (GERM 2009), with a partition coefficient
of ∼3.7 for plagioclase in basaltic rocks (GERM 2009). Yttrium is also a moderately incompat-
ible element during mantle magmatism (Sun and McDonough 1989), with geochemical behav-
iour similar to that of heavy rare earth elements. It is highly compatible in garnet. Therefore,
plagioclase and garnet are the two most important minerals that control Sr/Y ratios.

LYRB adakite has Sr/Y comparable to global adakites. Considering that the lower
continental crust has Sr/Y about 10 times higher than that of MORB, a large amount of

Figure 5. Sr/Nd versus Nb/Ta diagram. Symbols are the same as in Figure 2. Except data points of
adakite from Fuziling, adakites from both the Dabie Mountains and the Lower Yangtze River Belt
have restrictedly the same range of Nb/Ta ratios. Lower Sr/Nd ratios from the Dabie Mountains are
likely because of more residual plagioclase in the source.

180

160

140

120

100

80

60

40

20

0
0 10 20 30 40 50 60 70

S
r/

N
d

Nb/Ta

Figure 6. Diagram of Zr/Hf versus Th/U. The compositions of lower continental crust were from
Rudnick and Gao (2003), whereas those of MORB are the average values of Sun et al. (2008). Melts
of lower continental crust and subducted slab partial melting are both plotted for comparison. Th/U
ratios of adakite from the Dabie Mountains vary widely from 2.28 to 50.6, whereas those from the
Lower Yangtze River Belt are between 0.33 and 8. Apparently, adakite from the Lower Yangtze
River Belt is related to partial melting of subducted oceanic slab represented by N-MORB, whereas
that from the Dabie Mountains is associated with partial melting of lower continental crust.
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residual plagioclase is required to form these adakites from partial melting of the lower con-
tinental crust. In this case, the partial melting occurred at fairly shallow depths. Alternatively,
adakite formed by slab melting at eclogitic facies generally has no plagioclase in the source
(Rapp and Watson 1995; Rapp et al. 2003; Xiao et al. 2006; Xiong 2006), such that the Sr/Y
ratios can be dramatically elevated during slab melting. Therefore, LYRB adakite can be
plausibly interpreted as being a result of ridge subduction induced partial melting, with lim-
ited contamination from enriched mantle sources and the continental crust (Ling et al. 2009).

The large variation of Sr/Y for the Dabie samples can be plausibly interpreted as being a
result of partial melting of the lower continental crust with different proportions of garnet
and plagioclase in the source. The high Sr/Y of Fuziling adakite indicates more residual
garnet, with or without minor plagioclase. Other Dabie samples have Sr/Y comparable to
those of the LYRB samples and adakites worldwide, indicating residual plagioclase. It is
true that Sr/Y of Dabie samples can also be interpreted as being a result of slab melting. In
other words, with the exception of very high Sr/Y, e.g. Fuziling samples, Sr/Y itself cannot
discriminate slab melting from partial melting of the lower continental crust.

4.2. La/Yb
The lower continental crust has La/Yb ratio of ∼10, which is ∼15 times higher than that of
MORB (Sun and McDonough 1989; Rudnick and Gao 2003; Sun et al. 2008). Lanthanum is
an incompatible element, whereas Yb is moderately incompatible during mantle magmatism
(Sun and McDonough 1989). Ytterbium, however, is highly compatible in garnet, whereas
La is not. Therefore, La/Yb ratios of adakites are very sensitive to garnet. In contrast to Sr/Y
ratios, La/Yb is not obviously affected by plagioclase. Moreover, garnet is a major mineral
in both eclogite and granulite (for the lower continental crust). For these reasons, adakites
formed by partial melting of the lower continental crust in the presence of garnet should
have systematically higher La/Yb, which is much more sensitive than Sr/Y in discriminating
slab melting from lower continental crust melts. This is exactly the case for Dabie adakite.

As shown in Figure 3, adakite from the Dabie Mountains has wide-ranging La/Yb
ratios, ranging from 20.8 to 402, which is systematically higher than normal adakites. The
high La/Yb ratios support models of the lower continental crust partial melting (Wang
et al. 2007a, Huang et al. 2008), whereas the large range of La/Yb ratios is consistent with
the large variation of Sr/Y, which indicates variable amount of residual garnet in the
source. It is worth mentioning that adakite from Fuziling in the Dabie Mountains has the
highest Sr/Y and La/Yb ratios (Figures 2 and 3), likely because of more residual garnet,
less residual plagioclase in the source.

LYRB adakite has La/Yb ranging from 14.1 to 49 (Figure 3), comparable to normal adak-
ites (Figure 3). A garnet-free source is required to form this kind of adakites by partial melting
of the lower continental crust (with La/Yb of ∼10). Given that garnet is a major mineral in
both eclogitic and granulitic rocks, this assumption is unfavourable. Therefore, we propose
that La/Yb of the LYRB adakite can be plausibly interpreted as being a result of slab melting.

4.3. Th/U
Adakite from the Dabie Mountains has highly varied Th/U, as well as U and Th concentrations
(Figure 4). Large variations of U concentration and Th/U of adakite from the Dabie Mountains
can be explained by U loss during subduction and collision in the Triassic, because U is
more mobile than Th (Hawkesworth et al. 1997), especially at temperatures lower than
600°C. This is supported by the negative linear trend in a Th/U versus U diagram (Figure 4a).
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The Th/U values of LYRB adakite is systematically lower and much less variable, falling
around the field of slab melts (Figure 4). Considering the similarity between U and Th, the
variable Th/U of LYRB adakite is still significant. It is likely because of Th/U fractionation
during subduction. Nevertheless, the Th/U characteristics strongly support the slab melting
model (Ling et al. 2009).

4.4. Nb/Ta
Adakite from the Dabie Mountains has Nb/Ta = 5.1–65.2, Nb = 1.01–27.3 ppm, Ta =
0.023–2.28 ppm, whereas that from the LYRB has relatively lower Nb/Ta (7.5–23, with
an average of 15.1), Nb = 0.3–22.4 ppm with an average of 10.0 ppm, and Ta = 0.04–1.4 ppm
with an average of 0.7 ppm (Figure 5). Adakite from Fuziling has much higher and more
fractionated Nb/Ta than others. With the exception of Fuziling samples, adakites from the
Dabie Mountains and the LYRB have nearly the same range of Nb/Ta, which are from 5.1
to 27.6 with an average of 14.1 and from 7.5 to 23 with an average of 15.1, respectively
(Figure 5).

Niobium and Ta are usually not fractionated from each other. Highly fractionated Nb/
Ta ratios have been reported in subduction zones, which are attributed to dehydration dur-
ing the prograde blueschist to amphibole–eclogite transformation before rutile appeared
(Xiao et al. 2006; Ding et al. 2009; Liang et al. 2009). The highly variable Nb/Ta suggests
that both Dabie and LYRB adakites are related to plate subduction. Given that the LYRB
is dramatically different from the Dabie Mountains in tectonic settings, that is, it has not
been subducted during the Triassic collision, the fractionated Nb/Ta in LYRB adakites, in
fact, also supports the ridge subduction induced slab melting model.

4.5. Ridge subduction
All the facts discussed above support the ridge subduction model for LYRB adakite.
According to that model, there was a ridge subduction affecting the LYRB in the Cretaceous,
and adakite from the LYRB was formed by partial melting of subducting young, hot oceanic
slabs close to the subducting ridge between the Pacific and Izanagi plates (Ling et al.
2009). Subduction resulted in higher oxygen fugacity (Brandon and Draper 1996; Sun et al.
2007b), which is favourable for Cu–Au mineralization (Mungall 2002; Sun et al. 2004;
Liang et al. 2006).

In contrast to the LYRB adakite, the geochemical features of Dabie adakite indicate
obvious lower continental crust origin (Figures 5 and 6). It is well known that the Dabie
Mountains was formed during the Triassic collision between the North and South China
blocks (Li et al. 1993; Hacker et al. 1998; Ye et al. 2000; Sun et al. 2002b; Zheng et al.
2003; Liu et al. 2006), with dehydration and retrograde metamorphism during continental
subduction. The Triassic collision and subduction had thickened the lower continental
crust, resulting in a high-pressure metamorphic belt. Dabie adakite was most likely
formed during the destruction of the thickened mountain belt. Nevertheless, most Dabie
adakites were formed at shallow depths in the presence of plagioclase, therefore, they
were not likely related to delamination. Remarkably, Dabie adakite formed at nearly the
same period of time. In case LYRB adakite was formed during ridge subduction, Dabie
adakite may also be genetically related to ridge subduction in the Early Cretaceous. In
other words, Dabie adakite was triggered by ridge subduction: the flat subduction of the
ridge may have physically destroyed the root of the Dabie Mountains, whereas the following
slab window provided additional heat, which promoted the partial melting (Figure 7).
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The different origin of Dabie and LYRB adakites is also consistent with the fact that
LYRB adakite is closely associated with Cu–Au deposits, whereas Dabie adakite is not.
MORB has Cu (and Au) several times higher than that of the lower continental crust (Sun
and McDonough 1989; Rudnick and Gao 2003; Sun et al. 2003a; Sun et al. 2004), there-
fore slab melting is much more favourable for Cu (Au) mineralization (Sun et al. 2011).

5. Conclusions
Geochemical features indicate different sources for adakites from the Dabie Mountains
and the LYRB. The source of the Dabie adakite magma was subduction-modified lower
continental crust, characterized by the presence of residual plagioclase. We propose that
the Dabie adakites formed by partial melting of the lower continental crust, initiated by
Cretaceous ridge subduction. In contrast, the LYRB adakites were formed by partial melt-
ing of a subducting young, hot oceanic slab close to the spreading ridge, contaminated by
enriched components or the continental crust.
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