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The Early Cretaceous Huangmeijian Pluton is an A-type granite located on the northern
bank of the Lower Yangtze River in Anhui Province, east-central China. It intruded the
SE edge of the Early Cretaceous Luzong volcanic basin. The moderate- to coarse-
grained granite is mainly composed of alkali feldspar, plagioclase, and quartz and has a
typical A-type geochemical signature. LA-ICP-MS zircon dating yielded a weighted
mean 206Pb/238U age of 127.1 ± 1.4 Ma, similar to other A-type granites in the Lower
Yangtze River belt, indicating an Early Cretaceous extensional environment. Temperatures
calculated using the Ti-in-zircon thermometer suggest that the magma formed under
high-temperature conditions (720–880°C). The low calculated Ce(IV)/Ce(III) ratio
based on zircon rare earth element patterns indicates low oxygen fugacity for this A-type
magma. Previous studies suggested that eastern China was an active plate margin
related to the Early Cretaceous subduction of the Pacific and Izanagi plates. The
ridge between these two plates probably passed under the Lower Yangtze River belt,
forming A-type granites and adakites. The Huangmeijian Pluton is roughly the same
age within error but is marginally older than the Baijuhuajian A-type granite in the
eastern part of the Lower Yangtze River belt. A-type granite genesis in the Lower
Yangtze River belt only lasted for 2–3 million years and slightly predates the transi-
tion from regional extension to compression. All these can be plausibly interpreted
by the ridge subduction model, that is, A-type granites formed because of mantle
upwelling through the slab window during subduction of the ridge separating the
Pacific and Izanagi plates.

Keywords: A-type granitic intrusion; geochemistry; LA-ICP-MS zircon dating;
Huangmeijian Pluton; Luzong volcanic basin; east-central China

Introduction
The Lower Yangtze River belt (LYRB), which ranges from Wuhan in Hubei province in
the west to Zhenjiang in Jiangsu province in the east, is an important metallogenic belt in
eastern China (Chang et al. 1991; Zhai et al. 1992, 1996; Pan and Dong 1999; Xing 1999;
Deng et al. 2002). Most of the deposits in the LYRB formed during the Early Cretaceous
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period (140 ± 5 Ma) (Sun et al. 2003; Mao et al. 2006; Yang et al. 2007), and they are
closely associated with adakites of the same age (Zhang et al. 2001a, b; Wang et al.
2004a, b, 2006, 2007). Much attention has been focused on the geological evolution of
this region (e.g. Xing and Xu 1994, 1995; Chen and Jahn 1998; Zhou and Li 2000; Chen
et al. 2001; Sun et al. 2007; Fan et al. 2008; Yuan et al. 2008; Xie et al. 2008; Zhou
et al. 2008a, b; Ling et al. 2009; Xie et al. 2009; Yang et al. 2011). In addition to adak-
ite, there are a large number of Cretaceous A-type granites along both banks of the
LYRB (Zhang et al. 1988; Xing and Xu 1994; Fan et al. 2008; Wong et al. 2009). The
age and formation of A-type granite is important for understanding the geological evo-
lution of the LYRB.

The genesis of A-type granites in the LYRB remains controversial. A-type granite is
anhydrous, alkaline, and anorogenic, which generally indicates formation in an exten-
sional environment (Loiselle and Wones 1979; Eby 1990, 1992; Bonin 2007). The exten-
sional environment in the LYRB was proposed to be either back-arc and post-collision
extension settings (Du et al. 2007; Cao et al. 2008) or intracontinental shearing effect
associated with mantle upwelling (Fan et al. 2008). Alternatively, it has been attributed to
slab rollback of subducting Pacific plate (e.g. Wong et al. 2009) or a ridge subduction
(Ling et al. 2009) based on the drifting history of the Pacific plate (Sun et al. 2007). The
ridge subduction model implies that A-type granites in the LYRB would be progressively
younger from west to east. Previously published dating results have not observed this
(e.g. Zheng et al 1995; Fan et al. 2008; Wong et al. 2009).

In this contribution, we analysed the geochemistry and zircon ages of the Huangmeijian
A-type granite on the northern bank of the LYRB to gain a better understanding of the
genesis of A-type granite in the LYRB and firmer constraints on the geological evolution
of the LYRB.

Geological background
The LYRB is situated in the northern margin of the Yangtze block in central eastern China
(Figure 1A). The northern and northwestern boundaries of the region are the Xiangfan-
Guangji and the Tancheng-Lujiang faults, which separate the Dabie orogenic belt in the
north and the Yangtze block in the south, respectively. The southern boundary is the
Jiangshan-Shaoxing fault that separates the Yangtze block from the Cathaysia block
(Figure 1A). Late Mesozoic igneous rocks are widely outcropped in the LYRB. These
igneous rocks intrude into Neoproterozoic low-grade metamorphic rocks and Palaeozoic
to Triassic sedimentary strata, and are classified into three associations: Na-rich alkaline
mafic, K-enriched, and high potassium calc-alkaline associations (Chang et al. 1991).
According to tectonic, magmatic, and metallogenic characteristics, the LYRB can
be divided into three associated belts: inner belt, north outer belt, and south outer belt
(Xing and Xu 1995; Xing 1999). The inner belt, distributed along both banks of the Lower
Yangtze River, has intense mineralization of Cu, Fe, S, and Au (Pan and Dong 1999; Xie
et al. 2009; Huang et al. 2011; Yang and Lee 2011; Yuan et al. 2011; Sun et al. 2010,
2011), which are closely associated with adakites (Wang et al. 2004a, b, 2006, 2007; Ling
et al. 2009). The north outer belt has Cu deposits, such as the Shaxi Cu deposit (Yang et
al. 2007, 2011; Yu et al. 2008). The south outer belt contains mainly porphyry-type Mo,
Cu, and Pb–Zn deposits (Xing 1999; Mao et al. 2006). Two A-type granite belts are distributed
parallely on both banks of the Lower Yangtze River (Xing and Xu 1994) (Figure 1B). The
Huangmeijian granite, situated at the southeast edge of Luzong Basin in Anhui province, is
one of the largest A-type granite plutons on the northern bank of the Lower Yangtze

D
ow

nl
oa

de
d 

by
 [

G
ua

ng
zh

ou
 I

ns
tit

ut
e 

of
 G

eo
ch

em
is

tr
y]

 a
t 0

0:
14

 1
0 

A
pr

il 
20

12
 



International Geology Review 501

River. It intruded in the Middle and Lower Jurassic sediment rocks in the east and in the
Upper Cretaceous volcanic rocks in the west. No Jurassic volcanic rock in the Luzong
Basin has been confirmed so far (Zhou et al. 2008b). Huangmeijian granites are faint red
with moderate- to coarse-grained texture and are mainly composed of potassium feldspar
(80–85%), quartz (10–15%), and plagioclase (5–10%) (Figure 2).

Figure 1. (A) Regional geological map of Lower Yangtze River. (B) Geological map of the
Huangmeijian granite. Modified after Chen (2001).
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Analytical methods
Whole-rock major and trace element analyses
The major and trace elements of the bulk rock samples were analysed at the Key Labora-
tory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences. Whole-rock samples were first powdered in an agate mill
to less than 200 mesh, and then fluxed with Li2B4O7 to make homogeneous glass disks at
1150–1200°C using a V8C automatic fusion machine produced by the Analymate Company
in China. The bulk rock major elements were analysed by X-ray fluorescence spectrometry
(Rigaku 100e), with a sample/flux ratio of 1 : 8. Analytical precision for major elements
was better than 1% (Ma et al. 2007).

For trace element analyses, samples were first digested with a mixture of HF and
HNO3 in screw top PTFE-lined stainless steel bombs at 185°C for 2 days, and insoluble
residues were dissolved in HNO3 after being heated to 145°C for 3 h using closed high-
pressure bombs to ensure complete digestion. Pure RH standard solutions were used for
internal calibration and GSR-1, BHVO-1, and OU-6 were used as reference materials to
monitor data quality. Bulk rock trace elements were analysed using ICP-MS, with accuracies
of better than 5% for most elements (Liu et al. 1996).

Zircon U–Pb dating and zircon trace element analyses
Zircons were separated using a conventional method, which involved powdering samples to
80 mesh, desliming in water, density separation, magnetic separation, and finally handpicking.

Figure 2. Photomicrographs of Huangmeijian A-type granites. The images were taken with a
Nikon microscope under polarized light conditions. The scale bar for each image is 0.50 mm.
Samples are mainly composed of alkali-feldspar, quartz, and plagioclase. Kfs, potassium feldspar;
Pl, plagioclase; and Qtz, quartz.
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Zircon grains were then mounted in epoxy and polished down to nearly a half section to
expose internal structures. Cathodoluminescent and optical microscopy images were taken
to ensure that the least fractured, inclusion-free zones in zircon were analysed. Zircon
U–Pb dating and trace elements were analysed at the Key Laboratory of Isotope Geo-
chronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Acad-
emy of Sciences. The LA-ICPMS system is composed of an Agilent 7500a ICP-MS
coupled with a Resonetic RESOLution 50-M ArF-Excimer laser source (λ = 193 nm).
Laser energy was 80 mJ and frequency was 10 Hz with ablation spot of 31 μm in diam-
eter and 40 s ablation time. Both a double-volume sampling cell and a Squid pulse-
smoothing device were used to improve data quality (Tu et al. 2009). Helium gas was
used as the carrier gas to the ICP source. NIST610 and TEM were used as external cali-
bration standards and 95Zr as the internal standard. The calculation of isotope ratios,
trace elements, and Ce anomalies were performed using software from the Research
School of Earth Sciences, Australian National University; the age was calculated by
Isoplot (Version 3.23).

Results
Whole-rock major and trace elements
Ten samples were analysed for major and trace element compositions. The Huangmeijian
granite is characterized by high SiO2 (64.3–74.1 wt.%), Al2O3 (13.4–17.4 wt.%), Fe2O3

T

(2.12–3.62 wt.%), Na2O (4.30–5.56 wt.%), K2O (4.85–6.99 wt.%) contents, and lower
TiO2 (0.15–0.53 wt.%), MgO (0.02–1.13 wt.%), CaO (0.12–0.53 wt.%), and P2O5
(0.01–0.10 wt.%) contents in comparison to other rocks of similar age in the LYRB
(Table 1). According to the Q’-ANOR diagram of Streckeisen and Le Maitre (Streckeisen
and Le Maitre 1979) (Figure 3A), the samples are classified as alkali-feldspar quartz-
syenite. They are metaluminous or metaluminous-peraluminous rocks with A/CNK
[molar Al2O3/(CaO + Na2O + K2O)] values of 0.96–1.12 (Figure 3B). In Hacker
diagrams, TiO2 and Fe2O3

T decrease with increasing SiO2, indicating fractional crystalli-
zation of Ti–Fe oxide (Figure 4).

Most of the samples have low Sr (7.20–27.4 ppm) and high Nb (71.8–118 ppm) and
Rb (322–572 ppm) concentrations; they also have high rare earth elements (REEs), with
total REE concentrations of 210–667 ppm. A chondrite-normalized REE diagram shows
that the Huangmeijian samples are LREE enriched (LaN/YbN = 7.19–15.7) with flat heave
REE and negative Eu anomalies (Eu/Eu* = 0.09–0.87), which indicates the removal of
plagioclase by fractional crystallization (Figure 5). The decrease in Sr and Ba and slight
increase in Rb with increasing SiO2 may also be due to plagioclase fractionation. Negative
anomalies in Ba, Sr, and Eu, as shown in the primitive mantle-normalized trace element
diagram (Figure 6), suggest fractional crystallization of feldspar. In contrast, Nb, Ta, Zr,
and Hf are not depleted, implying little contribution of crustal- or subduction-related
material in the magma source. The depletion of Ti coupled with high Nb and Ta concen-
trations suggests crystallization of ilmenite, with little influence of rutile or titanite. Ilmen-
ite, rutile, and titanite are the three popular Ti minerals (Liou et al. 1998). Rutile and
titanite usually have high concentrations of Nb and Ta (Manning and Bohlen 1991;
McDonough 1991; Green 1995; Rudnick et al. 2000; Foley et al. 2002; Xiong et al. 2005;
Xiao et al. 2006; Ding et al. 2009; Liang et al. 2009). In contrast, ilmenite usually has
much lower Nb and Ta (Ding et al. 2009). Thus, crystallization of ilmenite takes Ti out of
the magma, leading to depletion of Ti in the granite without significant decrease of Nb and Ta.
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504 H. Li et al.

Compared to Baijuhuajian A-type granite in northeastern Quzhou, western Zhejiang
Province, in the northwest region of the NW-trending Jiangshan-Shaoxing fault zone
(Wong et al. 2009), samples from Huangmeijian have lower SiO2 and higher CaO, TiO2,
Fe2O3

T, P2O5, Sr, and Ba. In Hacker diagrams, samples from both rocks have a good
negative linear relationship between SiO2 and CaO, TiO2, Fe2O3

T, P2O5, Sr, and Ba. In a
chondrite-normalized REE diagram, Huangmeijian samples have higher light REE
(LREE) and lower heavy REE (HREE) patterns, with stronger negative Eu anomaly.

Table 1. Major element data for the Huangmeijian granite and the Baijuhuajian granite (wt.%).

Sample SiO2 TiO2 Al2O3 Fe2O3
T MnO MgO CaO Na2O K2O P2O5 LOI Total

08HMJ01 71.9 0.15 13.4 3.43 0.05 0.02 0.25 4.3 5.19 0.02 0.9 99.6
08HMJ02 66.9 0.43 16.3 3.16 0.09 0.04 0.28 5.6 5.98 0.05 0.76 99.6
08HMJ03 68.9 0.3 15.2 2.92 0.04 0.08 0.51 5.23 5.76 0.03 0.71 99.6
08HMJ04 67 0.4 16.3 2.82 0.09 0.11 0.48 5.56 6.1 0.04 0.85 99.7
08HMJ05 69 0.33 15 3.04 0.07 0.03 0.41 4.98 5.85 0.03 0.88 99.6
08HMJ07 69.5 0.29 15.2 2.68 0.04 0.05 0.12 4.69 6.1 0.04 0.81 99.6
08HMJ08 69.7 0.34 15.4 2.98 0.07 0.02 0.15 5.07 5.95 0.03 0.76 100.4
08HMJ09 74.1 0.16 13.5 2.12 0.02 0.03 0.08 4.05 4.85 0.01 0.87 99.7
08HMJ10 65.2 0.48 17.4 2.62 0.08 0.09 0.53 5.12 6.99 0.09 1.02 99.6
08HMJ11 64.3 0.53 17.4 3.62 0.1 0.13 0.5 4.96 6.5 0.1 1.5 99.7
HMJ12 73.1 0.15 13.2 3.25 0.05 0.22 0.65 4.31 4.95 0.04 0.58 100.4
HMJ13 61 0.68 17.9 4.22 0.05 0.83 1.93 5.38 6.96 0.2 99.6
HMJ14 65.5 0.41 18.2 2.89 0.21 0.15 0.36 6.33 5.68 0.03 0.7 100.2
HMJ15 64.3 0.56 17.6 3.24 0.14 0.38 0.58 6.45 6.32 0.08 0.45 100
HMJ16 68.5 0.35 15.6 3.10 0.09 0.23 0.35 4.98 5.99 0.17 0.57 99.8
HMJ17 67.4 0.37 15.8 3.30 0.11 0.36 0.71 5.27 6.18 0.08 0.79 100.2
HMJ18 68.1 0.36 16.2 2.89 0.07 0.29 0.48 4.76 6.4 0.06 0.8 100.4
HMJ19 64 0.4 17.9 3.48 0.08 0.19 0.59 5.72 6.09 0.14 0.84 99.4
HMJ20 60.5 0.74 18.3 5.20 0.03 0.69 2.41 4.97 6.17 0.04 1.84 100.6
HMJ21 64.3 0.55 17.1 3.79 0.08 0.36 1.12 5.3 6.67 0.17 0.54 99.8
HMJ22 64 0.71 17 2.91 0.22 1.03 2.09 5.04 6.18 0.21 99.4
L2801 73.06 0.15 13.19 3.25 0.05 0.22 0.65 4.31 4.95 0.04 0.58 100.38
06ZFR01 76.2 0.06 11.5 2.83 0.12 0.1 0.56 2.36 3.85 0 1.43 99
06ZFR02 75.2 0.13 12.4 1.89 0.03 0.11 1.01 3.04 5.03 0 0.9 99.8
06ZFR08 76.9 0.1 11.6 1.22 0.04 0.06 0.55 3.99 4.07 0 0.8 99.4
07ZFR01 76.2 0.12 11.7 1.44 0.02 0.12 0.65 3.65 4.23 0 0.77 98.9
07ZFR02 76.6 0.11 11.8 1.33 0.02 0.11 0.53 3.89 4.04 0 0.83 99.3
07ZFR03 77.3 0.11 12 1.35 0.02 0.1 0.57 3.87 3.97 0 0.67 99.9
07ZFR04 77.3 0.07 12.4 0.55 0.01 0.07 0.51 3.5 5.02 0 0.55 99.9
07ZFR05 77.1 0.1 12 1.24 0.02 0.11 0.59 3.45 4.58 0 0.72 99.9
07ZFR06 76.9 0.1 12 0.94 0.01 0.07 0.54 3.7 4.61 0 0.7 99.6
07ZFR07 77.1 0.1 11.9 1.36 0.02 0.09 0.55 3.61 4.26 0 0.77 99.7
07ZFR08 77.1 0.1 12.1 1.43 0.02 0.09 0.56 3.5 4.36 0 0.77 100
07ZFR09 76.7 0.12 11.8 1.57 0.02 0.09 0.56 3.5 4.22 0 0.9 99.4
07ZFR10 77.7 0.1 11.5 0.78 0.02 0.05 0.56 3.99 4.24 0 0.73 99.6
07ZFR11 77.3 0.09 11.5 1.14 0.04 0.06 0.56 3.69 4.29 0 0.8 99.5
07ZFR12 76.9 0.1 12 1.08 0.01 0.07 0.53 3.78 4.4 0 0.8 99.7
07ZFR13 76.6 0.1 12.2 1.09 0.01 0.07 0.54 3.64 4.53 0 0.67 99.4

Note: LOI = loss on ignition. n.d. = not detected. Fe2O3
T = Total Fe oxides represented in form of Fe2O3.

08HMJ01 to 08HMJ11 samples are quartz-syenite from this article, HMJ12 and HMJ21 data are from Xing and
Xu (1994), HMJ12 is fine-grained granite, HMJ13 is moderate-grained biotite-monzonite, HMJ14 is coarse-
grained syenite, HMJ15 is amphibole-syenite, HMJ16 is midcourse-grained quartz-syenite, HMJ17 is fine-
grained maculosus quartz-syenite, HMJ18 is fine-grained quartz-syenite, HMJ19 is orthophyre, HMJ20 is
maculosus biotite-syenite, HMJ21 is biotite-quartz-syenite (Xing 1994), HMJ22 is quartz-orthophyre from Cao
(2008), L2801 is quartz-syenite are from Fan (2008), 06ZFR01 to 07ZFR13 data are from Wong (2009).
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Enrichment of the LREE indicates an enriched origin, thus the composition of Huangmeijian
granite is relatively more enriched than that of Baijuhuajian granite (Table 2).

LA-ICPMS U–Pb zircon dating
The results of LA-ICP-MS analysis are listed in Table 3. Zircon CL images of sample
08HMJ02 are shown in Figure 7. Zircons from this sample are euhedral with lengths rang-
ing from 250 to 350 μm and are characterized by a dark brown colour, which is very likely
due to high U and Th concentrations. No inherited cores were observed in these zircons.
U and Th concentrations varied widely (U from 370 to 2470 ppm, Th from 140 to
2170 ppm), with Th/U ratios ranging from 0.15 to 1.63, indicating a magmatic origin
(Hoskin and Black 2000; Belousova et al. 2002; Sun et al. 2002). All results are concord-
ant or nearly concordant. The data can be divided into two groups as shown in the zircon
U–Pb age histogram: one group with a weighted mean 206Pb/238U age of 127.1 ± 1.4 Ma

Figure 3. (A) Rock discrimination diagram for the Huangmeijian granite. Samples are classified as
alkaline feldspar quartz-syenite (Streckeisen and Le Maitre 1979), where ANOR = An/
Or + An)*100; Q’ = Q/(Q + Or + Ab + An). (B) A/NK versus A/CNK diagram. The Baijuhuajian
granite shows a metaluminous nature. A/NK = Al/(Na + K) (molar ratio). A/CNK = Al/
(Ca + Na + K) (molar ratio).
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(MSWD = 0.82, n = 12) and the other group with a weighted mean 206Pb/238U age of
142.3 ± 1.6 Ma (MSWD = 0.39, n = 10) (Figure 8). Given that both groups are magmatic
zircon, the younger ages represent the crystallization age of the magma.

Figure 4. Hacker diagrams for the Huangmeijian granite and the Baijuhuajian granite.
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Zircon trace element patterns
The zircon chondrite-normalized REE diagram shows an Eu negative anomaly and slight
Ce positive anomaly in most zircon analyses. Only a few zircon grains have a slight Ce
negative anomaly (Figure 9, Table 4). The older zircons have consistent chondrite-
normalized REE patterns, whereas the younger zircons have chondrite-normalized REEs

Figure 5. Chondrite-normalized REE diagram for the Huangmeijian granite and the Baijuhuajian
granite.
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with a large range of LREEs, especially La (Figure 9). The ratio of Ce(IV)/Ce(III) ranges
from 2.30 to 42.0 (Table 3). The younger zircon group shows a small range of Ce(IV)/Ce(III)
ratios (Figure 10), whereas the older zircon group shows a relatively larger range of Ce(IV)/
Ce(III) ratios. The low Ce(IV)/Ce(III) ratio indicates that the Huangmeijian granite formed at
low oxygen fugacity (Ballard et al. 2002; Liang et al. 2006). The large range of Ce(IV)/
Ce(III) ratios of the older zircon group is likely due to capturing zircon grains of different
origins, for example high oxygen fugacity adakitic intrusions (Xie et al. 2009) and other rocks
of similar ages. Titanium concentration in the zircons ranges from 2.99 to 831 ppm, with
younger zircons showing relatively low Ti concentrations. According to Ti concentrations
and the formula of Watson et al. (2006), calculated temperatures of zircon formation range
from 720°C to 1140°C. Zircons with younger ages have a smaller temperature range (720–
820°C) as shown in Figure 11. By contrast, the older zircon group has a larger range of
temperature, which again suggests its diverse origins, that is, inherited or captured.

Petrogenesis and tectonic implications
The Huangmeijian Pluton: an A-type affinity
The term ‘A-type granite’ was first proposed by Loiselle and Wones (1979) to distinguish
a special group of granitic rocks that occurs in an extensional tectonic environment like
rift zones or anorogenic settings. This group of granite shares common characteristics of
high FeOT/(FeOT

 + MgO) and K2O/Na2O ratios, high K2O content, and enrichment of
incompatible elements such as REEs (except Eu), Zr, Nb, and Ta. A-type granite also has
high TiO2/MgO ratios (Douce 1997). Concentrations of Ba, Sr, and Eu, as well as water
fugacity, are low for A-type granite (Loiselle and Wones 1979).

The Huangmeijian granite has all the geochemical characteristics of A-type granite. It
contains high total alkalis (K2O + Na2O = 8.90–12.1 wt.%) and plots into the alkaline area
of the SiO2–AR diagram (Figure 12). ACNK ranges from 0.96 to 1.15, showing a metalu-
minous-peraluminous nature. The high Fe* [FeOT/(FeOT + MgO) = 0.93–0.99] of the
Huangmeijian granite is also a typical characteristic of A-type granite.

The trace element composition of the Huangmeijian granite also shows characteristics
of A-type granites. The Huangmeijian granite is enriched in HFSE (Zr, Nb, Y) and REEs,
whereas depleted in Ba, Sr, P, Ti, and Eu. The total concentrations of Nb, Zr, Ce, and Y
(549–1489 ppm) > 350 ppm and the Nb/Ta (10.4–17.6) and Zr/Hf (25.1–71.5) ratios also
show characteristics of A-type granites. The ratio of Y/Nb (0.49–0.81) indicates an intra-
plate formation environment and mainly mantle origin (Eby 1992).

Various discrimination diagrams are used to constrain their genetic environment and
discriminate A-type granite from other kinds of granite. In the Pearce diagram, samples
from the Huangmeijian granite are plotted in the within-plate area (Pearce et al. 1984)
(Figure 13A), and they are mainly formed in the rift valley environment as shown in Figure 13.
In FeOT/MgO, Nb, Zr versus 10,000 Ga/Al diagrams, all Huangmeijian granite samples
are plotted into the A-type granite area except for two samples (Figure 13B–D), and are
characterized by high FeOT/MgO ratio and high 10,000 Ga/Al ratio (2.95–3.91). These are
typical characteristics of A-type granite.

Petrogenesis of the Huangmeijian granite
Although A-type granite is generally attributed to extensional environment, its petrogenesis
is still controversial. One model proposed that A-type granite is the result of fractionation
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512 H. Li et al.

Figure 8. (A) Concordia diagram of the Huangmeijian granite (08HMJ02). The weighted mean
206Pb/238U age is 127.1 ± 1.4 Ma. (B) Concordia diagram of the Huangmeijian granite (08HMJ02).
The weighted mean 206Pb/238U age is 142.3 ± 1.6 Ma. (C) Histograms of weighted mean 206Pb/
238U age for zircons from the Huangmeijian granite. Given that all the zircons have high Th/U, such
that they are magmatic, the younger group represents the crystallization of the Huangmeijian granite.
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of basaltic magmas, with or without crustal contamination (Loiselle and Wones 1979;
Turner et al. 1992; Smith et al. 1999; Anderson et al. 2003). Another model attributed it to
the melting of deep crust materials such as granulitic meta-igneous sources that were pre-
viously depleted by extraction of a hydrous felsic melt (Collins et al. 1982; Clemens et al.
1986; Whalen et al. 1987). The later model conflicts with the fact that A-type granite has
high TiO2/MgO and K2O/Na2O ratios (Creaser et al. 1991; Douce 1997). Experimental
results suggest that the refractory granulitic residues from partial melting of a wide range
of crustal rocks are characteristically depleted in alkalis relative to Al and depleted in TiO2
relative to MgO (Creaser et al. 1991; Douce 1997). Re-melting of these residues cannot
produce granitic liquids with the high (Na2O + K2O)/Al2O3 and TiO2/MgO ratios that are
characteristic of A-type granite. Moreover, to produce granites containing chemical and
isotopic signatures of both mantle and crust, various models have been proposed, for
example, fractionation of variously contaminated, mantle-derived alkali basalt (Bonin

Figure 9. Zircon chondrite-normalized REE diagram for the Huangmeijian granite.
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2007), mixing of crustal melts with OIB magma (Eby 1990, 1992), and evolution of
mantle-derived mafic and intermediate magmas (Turner et al. 1992).

Major and trace element compositions of the Huangmeijian A-type granite give
constraints on its origin. The overall high and large ranges of Nb (71.8–118 ppm), Ta
(4.32–8.05 ppm) concentrations, as well as low Y/Nb (0.49–0.81) ratios and Zr concentra-
tion, indicate an origin of mantle source with a little crustal contamination. Given that the
crust has a higher ratio of Y/Nb (>2), crustal contamination increases the value of Y/Nb
(Eby 1992). The incompatible element ratio diagrams show that the Huangmeijian A-type

Figure 11. SiO2–AR diagram for the Huangmeijian granite.
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Figure 12. Zircon temperature versus 206Pb/238U age diagram for the Huangmeijian granite.

400

500

600

700

800

900

1000

1100

1200

1300

110 120 130 140 150
206Pb/238U Age (Ma)

Younger age zircons

Older age zircons

T
 (

°C
)

D
ow

nl
oa

de
d 

by
 [

G
ua

ng
zh

ou
 I

ns
tit

ut
e 

of
 G

eo
ch

em
is

tr
y]

 a
t 0

0:
14

 1
0 

A
pr

il 
20

12
 



518 H. Li et al.

granite has chemical characteristics similar to OIB (Figure 14). This also indicates magma
origin from the enriched mantle with little crustal contamination during mantle upwelling.
The Nd isotope characteristics of the Huangmeijian A-type granite also support the
enriched mantle source origin, with eNd of −2.50 (Xing and Xu 1994).

Regional extension and tectonic evolution of the LYRB
The geodynamic mechanism for the formation of A-type granite in the LYRB is controver-
sial. One proposed model is that A-type granite in the LYRB formed in back-arc and post-
collision extension settings related to the Triassic collision between the North and South
China blocks (Du et al. 2007; Cao et al. 2008). The Triassic collision, however, occurred in
the Qinling-Dabie orogenic belt (Meng and Zhang 1999; Li et al. 2000; Sun et al. 2002;
Zheng et al. 2003; Zhou et al. 2008c), whereas A-type granites distribute mainly in the
LYRB (Xing and Xu 1994; Fan et al. 2008; Ling et al. 2009; Wong et al. 2009). It is diffi-
cult to form A-type granite up to several hundred kilometres away from the orogenic belt
after about 100 Ma through post-collisional extension. Alternatively, the extension envir-
onment has been attributed to an intracontinental shearing associated with mantle
upwelling (Fan et al. 2008; Zhou et al. 2008a, 2008b). This model, however, does not
explain why mantle upwelling occurred within a short period of time (only 2–3 Ma). Some

Figure 13. (A) Discrimination diagrams for granites (Pearce et al. 1984). The Huangmeijian granites
are plotted in the field of WPG ( = within-plate granite). (B) FeOT/MgO versus 10,000 Ga/Al  dia-
gram (Whalen et al. 1987). The Huangmeijian granitic samples are plotted in the field of A-type
granite. (C and d) Discrimination diagrams for granites (Whalen et al. 1987). Samples of the Huang-
meijian granite are plotted into the area of A-type granites.
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A-type granite rocks in the eastern part of the region were assumed to be the result of slab
rollback (Wong et al. 2009) based on the drifting history of the Pacific plate (Koppers et al.
2001; Sun et al. 2007). The Pacific plate may have started to subduct underneath eastern
China during the Late Jurassic (Zhou and Li 2000; Li and Li 2007; Wang et al. 2011), but a
simple slab rollback model cannot plausibly explain why A-type granites in the LYRB
formed within a short period of time in the Early Cretaceous and distributed linearly from
west to east. Moreover, none of these models paid any detailed attention to adakites and
other rocks of the Early Cretaceous in the region, which are spatially closely associated
with but slightly predate A-type granites. Based on the distribution of adakite, A-type gran-
ite, and Nb-enriched volcanic rocks, a ridge subduction model has also been proposed
(Ling et al. 2009). According to this model, A-type granites formed when a slab window
opened during the late stage of the ridge subduction (Ling et al. 2009).

Figure 14. (A) Yb/Ta versus Y/Nb and (B) Y/Nb versus Ce/Nb diagrams for the Huangmeijian
granite (Eby 1992). OIB = oceanic island basalt; IAB = island arc basalt. Fields with dashed lines
represent A1- and A2-type granites of Eby (1990).
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From the Late Jurassic to the Early Cretaceous, there were two plates subducting
under eastern China. They were the Pacific plate, subducting towards the southwest, and
the Izanagi plate subducting towards the northwest (Maruyama et al. 1997, Sun et al.
2007). Because of the different directions and different velocities between the Pacific and
the Izanagi plates, the ridge between these two plates moved westward during the subduc-
tion and subducted under the Lower Yangtze River region at about 140 Ma. The ridge
gradually opened as the subduction continued, forming a slab window and consequently,
A-type granites (Ling et al. 2009). The asthenospheric mantle is characterized by dry and
high temperatures. Previous studies on ridge subduction have already suggested that
A-type granite associated with ridge subduction probably resulted from asthenospheric
mantle material upwelling through the slab window and evolved at shallow crust in low
pressure condition (Thorkelson and Breitsprecher 2005).

The Huangmeijian A-type granite has the characteristics of high genesis temperature,
with oxygen fugacity lower than that of adakites in the region. We suggest that the
Huangmeijian A-type granite resulted from the ridge subduction. During the ridge
subduction, the ridge between the Pacific and the Izanagi plates opened; consequently,
enriched mantle materials melted due to hot mantle materials upwelling through the slab
window.

Previous dating results showed that Huangmeijian A-type granite (125.4 ± 1.7 Ma;
Fan et al. 2008) formed at exactly the same time as the Baijuhuajian A-type granite
(125.6 ± 3.2 Ma; Wong et al. 2009), several hundred kilometres to the east. Interestingly,
the K–Ar age of the Huangmeijian granite is identical to its zircon U–Th age (Zheng
1995). Considering the high temperature of the Huangmeijian granite, this is unusual. Our
new result (127.1 ± 1.4 Ma) is marginally older than previous results. The age difference
between our result and that of Baijuhuajian A-type granite is 1.5 Ma, which is about the
same as the 2s error of our result and the 1s error of the Baijuhuajian age. This suggests
that the age difference is real at a confidence level of approximately 60%. This is consist-
ent with the ridge subduction model as the slab window opened from the west and
migrated eastward.

As mentioned above, compared to the geochemical characteristics of the Baijuhuajian
A-type granite, the Huangmeijian granite is enriched in LREEs and depleted in HREEs
with lower SiO2, indicating a more enriched mantle source for the Huangmeijian granite.
Enriched mantle source was common in eastern China before 110 Ma (Xu 2001, 2006).
Given that the Baijuhuajian granite is located in the east, closer to the subduction zone, it
is likely that more enriched mantle materials there were removed by early subduction,
such that the granite itself is less enriched compared to Huangmeijian.

Conclusions
Geochemical data indicate that the Huangmeijian granite, exposed along the northern
bank of the LYRB, is a typical A-type granite characterized by high Fe* (FeOT/
(FeOT + MgO)), enrichments of incompatible elements [REEs (except Eu), Zr, Nb, and Ta],
and depletion in Ba, Sr, and Eu. High genesis temperature and low oxygen fugacity are
consistent with its mantle origin. Negative eNd values indicate the evolvement of enriched
mantle ± crustal materials. Zircon U–Pb ages of the Huangmeijian A-type granite range
from 127 to 142 Ma, which can be classified into two groups with the younger represent-
ing its crystallization age (127 Ma). Together with previous studies, we suggest that the
genesis of Huangmeijian A-type granite was due to the slab window related to a Creta-
ceous ridge subduction in the LYRB, which opened at ≥127 Ma.
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