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Study on Application of Data Fusion to Road Extraction

70U Lili CUI Haishan*
Department of Geography Guangzhou University ~Guangzhou 510006  China

Abstract With the two different remote sensing data sources SAR and SPOT multi-active spectrum  and
through data preprocessing such as geometry correction radiation correction and noise reduction, the paper
makes a comparative analysis of the data fusion technology based on PCA Principal Component Analysis
BT Brovey Transform , WT Wavelet Transform and HPF High-Pass Filtering , then extracts road from
fused image and SPOT multi-active spectrum. The result shows that PCA and HPF have the best effect,
where the vein is clear the rate of wrong classification and miss classification are lower, WT comes the
second, and BT has poor effect relatively. The original SPOT image does not extract road effectively its
wrong classification is 29.4% higher than that of PCA  and 18% higher than that of BT.

Key words data fusion road extraction SAR SPOT multi-active spectrum
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Study of Near Infrared Spectroscopy Assessment for Soil Exchangeable K Ca Mg and
CEC in Lychee Orchard

LI Dan '*? CHEN Shuisen’ CHEN Xiuzhi'*® PENG Zhiping *

1 Guangzhou institute of Geochemistry ~Guangzhou 510640 China 2 Guangzhou institute of Geography —Guangzhou 510070 China
3 Graduate university of Chinese Academy of Sciences Beijing 100049  China 4 Soil & Fertilizer Institute
Guangdong Academy of Agricultural Sciences ~Guangzhou 510640  China

Abstract A fast and convenient soil analytical technique is the basis of precision soil fertilization in lychee
orchard. The main objective of this study was to evaluate the ability of near infrared spectroscopic NIR
technique to predict soil Cation Exchange Capacity CEC exchangeable K EK exchangeable Ca ECa
and exchangeable Mg EMg contents of lychee orchard. 15 soil samples were collected within the dropline
of lychee canopy of different lychee orchards in Northern Guangzhou during the period of the flower bud
differentiation. Near-infrared spectra and the concentrations of soil properties were analyzed respectively.
Calibrations models of the above-mentioned properties were developed based on stepwise multiple linear
regression SMLR and partial least squares regression PLSR methods using the first derivatives of optical
density [log 1/R ] for the spectral range from 1000 to 2500 nm. The cross-validation was used to validate the
prediction accuracy of the estimation models. The results showed that the first difference of spectra could
bring about better calibration than original spectra. CEC content was successfully predicted by NIR
spectroscopy R2=0.96 R2,=0.92 RMSECV=0.50 the ratio of prediction to deviation RPD=3.69 .And
the most sensitive wavebands were located at 1897 2168 and 2410 nm. The prediction for ECa came second
R?2=0.86 R2,=0.77 RMSECV=1.32 RPD=2.13 with three wavebands at 2390 1931 and 1408 nm. The
prediction model for K R%c=0.80 R2,=0.62 RMSECV=0.13 RPD=1.63 and Mg R2=0.77 R2=0.69
RMSECV=0.58 RPD=1.81 were less accurate than the other two parameters with the wavebands at 1347
1272 1931 nm and 1638 1555 nm respectively. Generally speaking after wavelength selection by the
optimum correlation the prediction models obtained by the NIR spectroscopic data at 2-3 wavelengths could
predict the CEC and Ca contents of soil samples collected within the dropline of lychee canopy. The
prediction models of K and Mg were considered possible to make quantitative prediction. The above results
would make sense to the detection of soil nutrients fast and conveniently and the practice of precision
fertilization of lychee orchard.
Key words: Near Infrared Spectroscopy (NIRS); soil properties; exchangeable K; exchangeable Ca;
exchangeable Mg; cation exchange capacity; lychee orchard



