湘江入湖河段沉积物重金属污染及其 Pb 同位素地球化学示踪

彭渤^{1,2)}, 唐晓燕¹⁾, 余昌训¹⁾, 谭长银¹⁾, 涂湘林³⁾, 刘茜¹⁾, 杨克苏¹⁾, 肖敏¹⁾, 徐婧喆¹⁾ 1) 湖南师范大学资源与环境科学学院,长沙,410081;

2) School of Earth and Environment, The University of Western Australia, WA6009, Perth, Australia; 3) 中国科学院广州地球化学研究所,广州,510640

内容提要:湘江是我国重金属污染最严重的河流之一。本次工作利用等离子质谱(ICP-MS)和多接收同位素 质谱(MG-ICP-MS)等技术、对湘江入湖河段沉积物进行了系统的重金属微量元素和 Pb 同位素分析。结果表明、湘 江河床沉积物明显富集 Bi, Sc、V、Mn、Ni, Cu、Zn、Pb、Cd, Sn、Sb 等多种重金属微量元素, 而湖盆沉积物重金属微量 元素的富集程度明显降低。地累积指数(Igeo)评价显示,河床沉积物存在 Cd、Sb、Bi、Sn、Pb、Zn、U、Tl、Th、Mn、Cu 等重金属污染,其中Cd达严重污染程度,Sb、Bi、Sn、Pb等达到中度至重度污染程度,而Zn、U、Tl、Th、Mn、Cu等达 中度或轻度污染程度。湖盆沉积物除存在中度的 Cd, Sb 污染外,其余多数重金属未达到污染水平。铅同位素示踪 分析表明,河床沉积物的铅是来自流域上游花岗岩风化的自然源 Pb. 和流域上游 PbZn 矿床的矿石铅与燃煤烟尘 带入的铅等人为源 Pb 组成的多元混合铅。且河床沉积物中人为源 Pb 占 80% 的比例。湖盆沉积物中的铅则以人 为源 Pb 为主,受上游岩石风化影响较小,为来自流域 Pb-Zn 矿床的矿石铅和燃煤烟尘带入的铅组成的二元混合 铅。河床沉积物存在的 Se、Cd、Bi、Cu、Zn、Sn、Sb 等重金属污染与 Pb 一样, 为自然来源和人为来源重金属组成的多 元混合重金属污染。

关键词:重金属污染:铅同位素:人为源 Pb:自然源 Pb:沉积物:湘江

湘江是我国重金属污染最严重的河流之一(童 霆,2005),对其沉积物重金属污染的研究一直备受 关注(张立成等, 1983; 翟鹏济, 1986; 郭朝辉等, 2008)。自上世纪 60 年代在湘江河水中检测出 Cr、 Pb、Zn、Mn、As等重金属以来,对湘江河流沉积物 重金属污染的研究一直没有间断。已有研究对沉积 物中重金属的分布特征(翟鹏济, 1986; Zhang and Zhao, 1996; Qian et al., 2005)、污染程度(曾北危, 1982; Qian et al., 2005; 姚志刚等, 2006; 郭朝辉 等,2008)、赋存状态(张立成等,1983;毛美洲等, 1983; 陈喜宝和章申, 1986)等进行了深入分析, 探 讨了沉积物中重金属的来源等重要问题(张立成等, 1981, 1983; Zhang and Zhao, 1996)。大多研究认 为, 流域上游有色金属矿床的开采等工业活动是沉 积物重金属的主要来源(曾北危,1982;张立成等, 1983; 翟鹏济, 1985; Zhang and Zhao, 1996; 姚志刚

等, 2006)。另一方面,一些研究基于流域内元素背 景值的分析,认为沉积物重金属污染与这些元素(如 Cd、Pb、Zn、Hg、As等)在流域环境介质(如花岗岩) 中的高背景值有关(刘汉元, 1981; 刘汉元和李远 鄂, 1984; 李健等, 1986; 钱杏珍和李霞, 1988; 童 霆,2005)。究竟沉积物存在哪些元素种类的重金属 污染? 污染程度如何? 重金属污染是人为作用所致 还是流域自然过程的结果? 这些问题至今尚不十分 清楚。沉积物重金属污染源的厘定不但是阐明重金 属污染形成机制的关键,而且是进行重金属污染防 治的基础。本研究在对沉积物进行系统的重金属微 量元素和铅同位素分析的基础上,重新认识沉积物 中微量元素的富集特征,评价重金属污染程度,并示 踪分析重金属的来源。为流域重金属污染防治等提 供科学参考。

2011

注:本文为国家自然科学基金项目(编号 41073095, 40572172)、湖南省教育厅重点项目(编号 07A 039)和环境地球化学国家重点实验室开 放课题(编号 SKLE6031) 资助成果。

收稿日期: 2010-02-08;改回日期: 2010-12-10;责任编辑: 周健。

作者简介:彭渤,男,1965年生。博士、教授,从事矿床地质及环境地球化学教学和科研工作。通讯地址:410081,湖南长沙麓山路36号, 湖南师范大学资源与环境科学学院; Email: pengbo@ hunnu. edu. cn。

1 地质地理概况

湘江在地质构造上,发源于位于华南板块的南岭 构造带,向北汇入属于扬子板块的洞庭湖(彭渤等, 2006)。流域内地层出露齐全,包括前寒武系变质砂 板岩系、古生代碳酸盐岩建造、中新生代红色碎屑岩 系、及第四系沉积物等地层岩石单元(图 1a)。流域上 游印支期一燕山期花岗岩广泛出露,Pb-Zn等有色金 属矿床密布(刘汉元和李远鄂, 1984; 童霆, 2005)。

流域发育丘陵地貌, 地势南东高、北东低, 整体 向北倾注呈 U 形盆地。流域地处亚热带季风气候 区。降水充沛, 年降水量为 1200~1700 mm, 其中 4 ~ 6 月的降水占年降水量的 60~70% (曾北危, 1982)。年均气温 16~25℃, 年均积温为 5000~ 9000℃(Qian et al., 2005)。地表岩石风化作用发 育, 淋溶强烈(张立成等, 1983; 郭朝辉等, 2008)。 流域上游有色金属矿床密集分布(刘汉元和李远鄂, 1984; 童霆, 2005), 采矿等工业活动频繁; 中下游 分布有衡阳、株洲、湘潭、长沙等重要工业城市,是本 省重要的工业经济区(郭朝辉等,2008)。

2 材料与方法

2.1 样品采集

本次工作选择湘江入湖河段湾河、湘阴、屈原农 场,和位于洞庭湖的青山等地进行沉积物采样。湘 江河床沉积水动力条件复杂,株洲至入湖河段的平 均沉积速率为4.2 cm/a(王东坡等,1987)。为取得 不同岩性的沉积物样品,本次工作用内直径为65 mm的有机玻璃管进行沉积柱取样。野外在湾河、 湘阴、屈原农场、青山等地依次采得WH、XY、QN、 QS等沉积柱样品(图1b)。沉积柱样长度依次分别 为84 cm、78 cm、40 cm、45 cm。由于本文不进行随 年代变化的重金属特征分析,取得的不同长度、不同 岩性的沉积柱样品适合用于沉积物重金属微量元素 特征的研究。又由于湘江水质偏碱性(pH介于7.5 ~ 8.9之间)、溶解氧饱和(李健等,1986;张立成等,

1987),浅(表)层沉积物处于偏碱性氧化环境。故按 常规地球化学方法采集沉积物样品(Roussiez et al,2005)。现场对沉积柱进行描述记录后,按2 cm的间距进行分样,得到沉积物样品 87件。样品 直接装入封口塑料袋带回实验室。采样工作于 2007年11~12月(枯水季节)完成。

2.2 样品描述

沉积物样品自然风干后,在双目镜下进行矿物 成分的鉴定。根据颜色和矿物成分特征,将河床 WH、XY 沉积柱分成上(U)、下(L)两层,分层线自 上而下依次在42 cm、46 cm 处(图 2)。上层为黄褐 色或褐黄色,含粉砂、粘土矿物和云母碎片(间夹植 物残片/枝,表层偶见粒径大于 2 mm 的砾石)的浅 黄褐色粉砂质淤泥层;下层为褐黑色、灰黑色,明显 少含或不含粉砂和云母碎片,富集有机质和粘土矿 物的深黑色淤泥层。QN、QS 两沉积柱沉积物颜 色、矿物组成相对均匀,分层不明显,且其颜色、矿物 组成基本与WH、XY 两沉积柱的下层(L)的深黑色 淤泥层相同。

2.3 样品分析

样品在 40℃条件下烘干后, 过 60 目筛。再称取 5.0 g 样品用玛瑙研钵研磨, 过 200 目筛(< 75 以m), 得到粉末样品备各项分析之用。主量和微量重金属 元素分析在中国科学院广州地球化学研究所同位素 地球化学重点实验室 Perkin Elmer Elan6000 型等离 子质谱仪上进行。40.0 mg 粉末样品置 Teflon 密封 容器中,加1 mL 浓 HF 和 0.3 mL HNO₃(1:1)超声 波震荡后于电热板上蒸干,然后再加1 mL 浓 HF 和 0.3 mL HNO₃(1:1)密封加热(100°C)7 d。样品蒸 干后再加2 mL HNO₃(1:1)恒温 24 h 后再蒸干,加 2 mL 1:1 的 HNO₃ 溶解盐类,然后用 1% 的 HNO₃ 将样品转移到 50 mL 的容量瓶中,加入 Rh 内标溶 液,以 1% HNO₃稀释至40 g备测。对所有沉积物样 品都进行主量(另文报道,本文只报道 Ab O₃的分析 结果)和微量元素分析。微量元素分析数据均是 7次 平行分析的平均值,检测极限达 10×10^{-9} ,分析精度 好于 5%(刘英等, 1996)。

Pb 同位素分析选择河床 XY 和湖盆 QS 两沉 积柱的沉积物样品进行。分析(包括样品化学处理) 在中国科学院地球化学研究所环境地球化学国家重 点实验室 Nu Plasma 型多接收等离子质谱仪(MG-ICP-MS)上进行。50.0 mg 粉末样品于 T eflon 烧 杯中用 HF-H ClO+HNO3 混合酸溶解,再用 2% 的 高纯 HNO3 稀释,得到 Pb 浓度约为 2 ng/ml 的溶 液。加入²⁰⁵T l/²⁰³T l= 2.3875(同位素质量偏差校 正)的 T1 标定液。用 Dowex-1X8 型阴离子交换柱

分离纯化 Pb。再用 5 mL 1 mol/L 的 HNO³ 溶解经 分离纯化的 Pb,再上仪器进行 Pb 同位素分析。Pb 同位素分析除测定放射对非放射 Pb 同位素比值 (206 Pb/ 204 Pb、 207 Pb/ 204 Pb、 208 Pb/ 204 Pb)外,还测定放 射 Pb 同位素比值(208 Pb/ 206 Pb 及 207 Pb/ 206 Pb),因为 放射 Pb 同位素比值测定的精度高,而且不同源区 的放射 Pb 同位素比值变化较大(Monna et al., 2000; Schettler and Romer, 2006)。分析精度用标 准样品 NIST-981 检测,标准样品的 208 Pb/ 204 Pb、 207 Pb/ 204 Pb、 206 Pb/ 204 Pb、 208 Pb/ 206 Pb 及 207 Pb/ 204 Pb、 207 Pb/ 204 Pb、 206 Pb/ 204 Pb、 208 Pb/ 206 Pb 及 207 Pb/ 206 Pb 等比值(推荐值)依次为 36.6927、15.4892、 16 9364、2.16650及0914554,实测值依次为 36 7219、15 4963、16 9405、2.16771及0914750(*n* = 20)。沉积物样品 Pb 同位素比值分析精度(2SD) 依次为02%、0.06%、0.07%、0.005%及0001%。

3 分析结果

3.1 重金属元素

4 个沉积柱 87 件沉积物样品的 18 种元素及 Al₂O₃的含量分析结果见表 1, 其中 Ba 为碱金属元 素, Sc, V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Cd、Th 和 U 为过渡金属, Sn、Sb、Pb 和 T1 等为 A 族金属元素。 这些金属元素因为与人体健康关系密切, 常被纳入 广义的重金属进行分析和环境评价(Lee et al., 1998; 彭渤等, 2009)。对这些金属和其他微量元素 (表 2)进行分析, 目的是全面认识沉积物重金属污 染的特征。

由表1可见,位于湘江入湖河段河床沉积柱 (WH、XY、QN)沉积物的重金属含量变化较大,含 量平均值的标准偏差 RSD> 0.10(*n*= 31、28、13), 一些元素的RSD值甚至大于0.90,如Cd在WH沉 积柱U层的平均值为5.885 mg/kg(*n*= 15),其 RSD值高达0.92。即使是岩性较均一的底部淤泥 层(L),其重金属含量也变化较大(RSD>0.10)。 但对于湖盆沉积柱QS而言,沉积物重金属元素 (Mo、Sb除外)含量变化相对稳定(RSD<0.10)。 Mo、Sb二元素在QS沉积柱中的含量变化较大 (RSD分别达0.85、0.57,表1)。因此,除Mo、Sb 外,大多数重金属在湖盆沉积物中趋于均一,而在河 床沉积物中变化不稳定。反映河床相对复杂的物源 特征、矿物组成以及相对复杂的沉积水动力环境和 物理化学条件。

除Cd、Sn、Sb、Pb 在 XY 沉积柱是上层沉积物含 量低于下层的外(表 1),其余重金属均表现为在上层

沉积物中的含量明显低于其在下层沉积物中的含量, 如 WH 沉积柱自上到下层, 重金属 Zn 的平均含量(n = 31) 由 227.2 mg/kg 升高为 739.7 mg/kg, 在 XY 沉 积柱(n=28)则相应由367.1 mg/kg升高为382.1 mg/kg。同时,所有重金属元素在河床沉积物中的含 量均表现为自上游到下游、明显趋于升高的变化趋 势,如含量变化相对稳定(RSD< 0.20)的 Ba 和 Pb,其 在河床沉积柱中的平均含量自 WH \rightarrow XY \rightarrow ON(*n*= 31、28、13) 依次变化为 498.1 mg/ kg[→] 491.2 mg/ kg[→] 596.6 mg/ kg 和 149.6 mg/ kg 155.7 mg/ kg 248.4 mg/kg)。但自河床过渡到湖盆,除 Ba 外,所有重金 属元素的含量明显趋于降低,如 Pb 在 QS 沉积物中 的平均含量(n= 15)降低为 62.95 mg/kg, Zn 的平均 含量(表1)自WH^{\rightarrow}XY^{\rightarrow}QN^{\rightarrow}QS(*n*= 31、28、13、15) 依次变化为 483.5 mg/kg 374.7 mg/kg 906.4 mg/kg[→]170.3 mg/kg。显示重金属元素在入湖三角 洲沉积物中明显富集,而在湖盆沉积物中富集程度明 显降低的变化特征。

沉积物微量元素含量与沉积物的粒度和人为作 用等因素有关(Choi et al., 2007; Zhang et al., 2008)。故仅依据沉积物中元素的浓度,难于判定元 素的富集特征,也难于甄别重金属的来源(Roussiez et al., 2005; Schettler and Romer, 2006)。但具有 相同污染程度而碎屑颗粒粒度明显不同的沉积物, 其标准化的浓度值无明显区别(Roussiez et al., 2005)。故研究者们多采用标准化的方法来衡量沉 积物 中元素 的 富集特征(Peng et al., 2004; Roussiez et al., 2005; Zhang et al., 2008)。其计 算公式如下:

EF = (X/Al) sample/(X/Al) background(1)式中(X/Al) sample 为样品中元素 X 对 Al 的比值,(X/Al) background 为自然背景中元素 X 对 Al 的比值。Al的含量用 Al2 O3 的质量百分数按公式: Al = A l2 O3(%) × [2mAl/(2mAl + 3mo)](mAl, mo分别为 Al, O)的摩尔质量) 换算得到。

以往对流域沉积物元素背景值研究取得了很多 分析结果(张立成等,1983;刘汉元和李远鄂,1984; 李健等,1986;钱杏珍和李霞,1988)。但流域沉积物 元素背景值的系统分析研究尚不多见。故本文以分 析元素种类较全的元素背景值分析结果(李健等, 1986)为参照,对比其他研究者得到的分析结果(张 立成等,1983;刘汉元和李远鄂,1984;钱杏珍和李 霞,1988;童霆,2005),采取对同一元素的不同背景 值取中间值的方法,得到用于本研究的元素背景值

表1 湘江沉积物 Al₂O₃(%) 及重金属元素含量(mg/kg) 分析结果

Table 1 Concentrations of major element $Al_2 O_3(\%)$ and heavy metals (mg/kg) of the sediments from

the four sediment cores of the Xiangjiang River

样品	$A \downarrow O_3$	Ba	Bi	Sc	V	Cr	Mn	Co	Ni	Cu	Zn	Mo	Cd	Sn	Sb	Pb	Tl	Th	U
WH 汐	ī 积柱																		
W1	12.50	457.0	8.04	9.515	78.89	70. 19	1602.7	15.95	29.30	41.72	296.4	1.577	8.085	25. 23	25.06	137.7	1. 265	23.32	5.917
W2	10.82	438.0	4.87	7.432	60.88	60. 37	982.5	12.51	20.80	30.54	215.4	0.997	5.221	17.02	10.57	103.4	1. 275	16.56	4.964
W3	12.39	455.4	3.80	10.06	73.85	62.34	1217.3	16.35	26.66	30.79	173.6	1.177	3.353	20.10	37.17	90.65	1. 257	20.91	5.625
W4	15.65	518.5	2.61	13.85	102.8	91. 22	17/7.1	18.27	36.56	36.75	189.5	1.440	2.293	13.18	8. 298	83.99	1. 339	23.07	6.009
WS W6	11.2	123 2	5.45 2.53	0.042	70.33	61 80	1912. 8	17.15	21 55	17 67	152 0	1.383	2 607	13.00	6 5 85	92.75	1. 200	20.32	0.244
W0 W7	11.2	425.2	2.55	9.042	61 25	55 10	807.2	10.09	10 0/	27 31	132.0	0 703	2.007	13.41	1 301	01.32 71.30	1. 121	17.05	4.900
w9	9 68	402.2	4 42	6 459	51 41	49 47	748 4	11 79	16.88	27.51	133 9	0.755	1 952	17 27	5 678	69 10	1 145	15.57	3 476
W11	10.24	438.0	2.18	6.698	57.73	52.65	864.4	11.74	19.02	23.05	160.7	0.704	3.756	28.93	3.996	76.80	1. 223	15.24	4.313
W13	12.52	460.8	3.15	11.07	85.56	74.06	1168.1	15.76	30.34	41.54	230.4	1.319	7.065	15.87	6.409	103.3	1. 247	20.03	5.824
W14	12.95	452.8	2.80	11.36	87.70	76. 15	1121.9	14.69	28.60	35.17	188.6	1.068	3.931	14. 75	5.400	87.57	1. 097	18.66	5.371
W16	14.25	494. 5	3.08	12.93	95. 59	80. 39	1280.4	16.73	33.78	41.41	202.3	1.199	2.893	17.17	5. 305	100. 3	1. 234	21.27	5.530
W18	15.58	473.0	4.03	12.86	109.4	93.05	1373.0	17.04	40.43	46.62	297.1	1.270	9.368	17.85	15.06	107.5	1. 245	22.00	6.132
W 19	14.71	435.0	3.65	11.53	99.47	91. 74	1550.3	17.12	38.26	45.23	282.2	1.212	8.258	16.15	14.37	106.3	1. 198	17.93	5.633
W20	13.36	452.5	4.83	12.03	110.7	95.34	2204.2	22.92	44.62	61.86	525.7	1.551	23.46	17.14	7. 288	140. 7	1. 267	17.92	5.595
U 层 平均	12.78	455. 9	3.71	10. 39	83. 18	73. 26	1300. 1	15.76	29.48	38.29	227.2	1.174	5.885	17. 51	11.21	96.84	1. 222	19.34	5.311
RSD ^①	0.16	0.08	0.40	0.23	0.24	0.22	0.33	0. 19	0.29	0.26	0.43	0.22	0. 92	0.25	0. 81	0. 22	0.06	0.18	0.15
W22	12.34	456.6	4.28	11.18	103.0	96.89	2075.1	21.85	36.53	55.02	497.4	1.434	19.93	25. 74	6.136	134. 3	1. 189	17.87	5.546
W24	15.72	534.4	8.50	14.85	124.0	135.3	2527.1	25.15	54.98	83.64	939.2	1.719	69. 99	25.66	11.06	192. 5	1. 433	21.66	6.304
W25	15.5	521.4	8.64	14.72	123.2	133.9	2314.0	23.17	53.91	83.49	831.6	1.587	67.35	26.22	9.055	199.4	1. 442	22.96	6.603
W26	16.15	520.4	9.25	15.81	143.6	142.4	2657.8	24.20	59.71	88.21	862.2	1.773	71.25	26.62	9. 421	202.0	1. 443	21.35	5.993
W27	15.91	512.4	7.81	14.24	132.6	136.6	3019.4	27.59	56.55	75.19	805.8	1.649	64.43	24.97	11. 18	182.3	1. 360	19.92	5.885
W29	13.98	456.3	4.91	11.01	103.4	99.33	3396.4	32.13	41.79	51.85	54/.2	1.279	35. 33	15.39	8.504	139.8	1.031	16.16	5.161
W 30 W 21	15.1	505. 9 607 7	0.05	13.68	113.5	129.1	1913.5	23.42	46.80	//.40	6/9.9 722 7	1.301	31.18	21. 73	16 20	18/.1	1.406	22.14	6.246
W 31 W 33	18.20	507.7	10.31	10.04	159.5	178.0	2109.7	27.12	72 53	88 50	731 6	1.042	41. 80	29.09	0 301	222.0	1.000	26.40	7 758
W 35	18.6	571.9	10.22	20.03	130.7	141 0	2468 0	25.80	76 47	92 47	742 8	2 163	39.28	36 77	8 583	215.6	1. 738	25.77	6 903
W 35	18.36	591.4	11.02	18 52	157.9	149.5	2727.1	25.54	76.75	85.49	742.1	2.044	29 75	28 56	13 76	223.5	1.533	25.61	7.161
W 37	19.39	620. 2	16.53	19.49	152.3	151.5	2598.0	26.93	73.79	110.8	933.1	1.962	27.01	37.65	12.65	301.1	1. 528	31.7	8.490
W39	16.5	526.0	12.06	15.18	127.5	127.1	2583.4	24.69	57.50	94.78	818.2	1.536	24.08	31.88	9.530	254.4	1. 438	27.63	6.772
W40	16.44	519.8	10.03	15.93	120.0	133.6	1812.5	22.90	49.23	80.60	741.5	1.245	20. 23	24. 79	9.077	221.8	1. 335	26.94	6.251
W41	15.61	514.6	8.35	13.38	103.8	119.1	1712.2	20.30	45.22	73.05	676.2	1.287	18.45	22. 51	7.093	195.6	1. 380	22.73	5.512
W43	18.1	550.5	6.27	16.84	124.1	142.3	1806.5	22.22	53.85	82.33	562.7	1.882	16.68	24.28	7.147	151.2	1. 419	24.89	6.626
L层 平均	16.40	541. 7	9.07	15. 69	128.6	136.6	2382.8	24.90	57.84	81.96	739.7	1.668	38.96	26.88	10	202.4	1. 444	23.75	6.531
RSD ⁽¹⁾	0.12	0.09	0.33	0.17	0.14	0.16	0. 20	0. 11	0.22	0.17	0.17	0.17	0.49	0.20	0.26	0. 21	0.13	0.17	0.13
WH 平均	14.58	498.8	6.39	13. 04	105.9	104.9	1841.4	20.33	43.66	60.13	483.46	1.421	22.42	22.2	10. 61	149.6	1. 333	21.54	5.921
RSD ^①	0 19	0 12	0.56	0.28	0.28	0.35	0.38	0.26	0 41	0.42	0 59	0.26	0.98	0.31	0.61	0 42	0 13	0.2	0.17
XY 沉	积柱	0.12	0.00	0.20	0.20	0.00	0.20	0. 20	01.11	01.12	0.07	0.20	0.70	0.01	0.01	0. 12	01.10	0.2	0.17
X39	7.55	304.4	1.55	3.925	34.56	35. 74	618.3	6.547	8.363	13.89	118.5	0.427	2.411	26.51	2.726	54.35	1. 139	10.18	3.053
X38	9.73	392.1	2.72	6.997	56.40	52.95	1031.5	10.55	18.45	25.41	220.6	0.668	6.435	139.3	4.088	78.19	1. 242	23.64	5.317
X37	7.92	317.7	1.91	5.139	44.44	45.45	774.0	8.96	142. 9	16.83	166.5	0.624	5.094	13. 34	8. 305	65.50	1. 201	23.65	4.053
X36	10.09	408.4	3.75	6.135	51.21	56.93	856.5	9. 512	16.14	30.66	222.2	0.901	3.663	14.01	3. 223	93.29	1. 339	26.18	4.073
X35	14.88	502.7	9.30	14.09	99. 41	87.96	1345.4	16.97	36.78	73.80	468.6	1.718	6.328	23.01	18.23	202.3	1. 581	26.53	6.414
X34	15.38	531.8	9.67	14.73	111.0	116.9	1700.6	19.67	42.64	80.61	498.8	2.156	6.782	22.66	7.269	214.3	1. 647	28.15	7.159
X32	13.79	465.5	8.07	12.88	97.25	92.04	1427.1	16.10	33.99	71.52	418.0	1.604	5.695	26.65	23.12	185.5	1. 420	27.97	7.277
X31	11.32	412.1	6.37	9.383	72.28	76.01	1022.4	12.78	96.59	61.68	329.8	1.514	4.641	25.95	8. 290	145.6	1. 352	49.17	9.599
X30 X20	10.73	419.3	6.51	8.741	69.31	91.96	941.5	11.92	21.76	56.44	308.2	1.194	4.301	18.13	7.489	132.7	1. 366	29.39	6.986
X28 X27	15.05	502.4	11.37	15.41	90.9/	97.30	1488. 3	1/.0/	34.09	90.55	490.9	1.780	5.511	24. 10	0.020	218.4	1.009	30.05	0.391
Λ2/ V25	15.75	510 0	15.92	10. 29	119.0	120.7	2009.7	21.10	45.14	108.8	166 6	2.1//	6.546	27.10	9.039	243.5	1. 700	23.40	0.300
л <i>2</i> Э Х24	10.45	577.8	14 46	19 25	145 5	137 0	2000 3	20.40	58 57	91 13	537 0	2.508	6 032	29.90 52.00	12 01	305.0	1. 920 2 102	26.03	7 276
X23	19.14	614 6	13.05	19.25	156 7	128 6	3762 4	23.01	57.63	84 67	526.2	3,203	6.046	53 76	13 28	311.2	1. 962	28.72	7.087
X22	19.91	643.0	13.15	21.15	161.1	140.9	3303.0	21.79	60.99	89.27	516.2	3.181	5.772	56.39	12.86	354.7	2. 167	26.63	6.938
X20	19.59	624.7	14.65	19.73	154.3	120.6	3240. 9	21.51	56.49	91.39	525.3	3.423	6.394	55. 22	15.68	394.2	2. 372	28.02	7.789
X19	13.96	460. 9	6.78	12.02	89.10	82.10	1619.8	14.19	32.96	52.04	321.2	1.729	3.290	22.14	9.336	145.4	1. 436	20.81	5.419
X18	16.92	517.3	6.49	15.17	110.6	107.4	2073.7	18.49	40.94	59.33	34.90	1.665	3.967	15.61	4.829	132.0	1. 434	23.26	6.353
X17	9.94	376.3	2.93	7.354	54.47	53.92	913.9	10.44	18.17	32.10	189.4	0.823	1.589	10. 91	2.913	78.59	1. 083	12.13	3.294

28	7

																		续	表1
样品	Al_2O_3	Ba	Bi	Sc	V	Cr	Mn	Co	Ni	Cu	Zn	Mo	Cd	Sn	Sb	Pb	Tl	Th	U
U 层 平均	13.95	481. 3	8.29	12.75	96. 89	92, 31	1723. 0	16.02	45.68	63.55	367.1	1.824	5.082	34. 62	9. 427	189. 2	1. 583	24.78	6.246
RSD ^①	0.28	0.21	0.54	0.42	0.41	0.35	0.55	0.33	0.68	0.45	0.46	0.53	0. 29	0.85	0.58	0. 53	0.23	0.39	0.27
X15	19.28	508.6	5.82	17.65	130.9	145.1	2051.0	20.91	43.06	64.95	311.5	1.484	2.553	16.84	3.410	98.02	1. 371	21.53	5.656
X13	7.59	287.4	13.60	5.747	44.09	41.69	660.0	7. 734	11.65	40.14	191.8	0.954	1.682	12.92	4. 500	86.52	1.056	93.11	9.276
X11	16.42	508.6	8.42	15.35	122.4	118.1	1335.7	18.74	40.31	80.77	460.7	1.801	5.206	17.73	5. 512	148.8	1. 403	21.00	6.637
X10	15.79	488.9	6.51	15.06	109.7	116.5	1571	19.61	112.3	77.00	451.3	1.649	4.418	18.76	4.770	135. 2	1. 433	20.78	5.428
X8 X6	14.72	4/3.1	6.65	13.37	103.1	96.95	1567.3	16.99	50.01	62.90	3/3.7	1.674	4.217	21.82	13.81	122.2	1. 343	20.33	5.193
ло Х4	19.2 20.53	540.1	9.49	20 33	143.9	159.5	2488 9	21.15	53 83	72.79	404.9	1.077	4.845	19 30	8 065	138. 3	1. 585	25.29	5.884 6.436
X2	19.25	544.1	5.48	18.38	131.2	123.6	1420.0	19.71	101. 9	57.82	344.4	2.869	3.336	15.99	4. 117	112.4	1. 490	25.93	6.600
X1	17.75	559.1	5.43	18.47	136.0	123.3	1493.4	20.09	44.79	59.02	355.9	1.643	3.600	16.36	5. 832	109.7	1. 467	26.58	6.581
L层 平均	16.73	500. 9	7.75	15.86	117.5	117.9	1637. 9	18.62	54.62	65.47	382.1	1.72	3. 87	17.48	6. 20	122. 3	1. 420	31.30	6.41
RSD ^①	0.21	- 0.16	- 0.32	- 0.25	- 0.24	- 0.25	- 0.26	- 0. 22	- 0.51	- 0.18	- 0.23	- 0.17	- 0.29	- 0. 13	- 0.48	- 0.16	- 0.1	- 0.74	- 0.19
XY 平均	15.34	491. 2	8.02	14. 3	107.2	105.1	1680.5	17.32	50.15	64.51	374.6	1.771	4.478	26.05	7.812	155. 7	1.50	28.65	6.328
RSD ^①	0.27	0. 19	0.49	0.36	0.35	0.33	0.49	0.29	0.62	0.37	0.39	0.47	0.34	0.98	0.65	0. 58	0.22	0.5	0.24
QN 沉 [;]	积柱																		
Q1	19.01	611.4	15.60	20.46	146.6	97.95	3586.6	27.26	69.12	83.94	608.8	3.275	20.74	62.57	13.10	223. 2	1. 859	30.84	9.080
Q2	19.05	619. 2	16.28	20.93	179.4	116.8	4906.2	28.34	101.9	96.54	637.2	4.061	20.35	50.89	35.81	227. 2	1. 850	31.24	9.559
Q3	18.82	617.3	19.46	20.44	200.5	134.5	6391.0	31.09	115.0	102.9	692.5	4.130	22.99	59.02	17.13	260.6	1.811	31.74	9.565
Q4	18.56	573.5	31.86	20.95	183.5	134.2	5582.5	28.80	97.63	132.4	917.6	4.875	29.66	87.3/	23.03	357.9	1.917	29.35	9.390
09 08	18.10	597.8	27.10	20.05	131.0	107.4	40/1.0	27.88	73 37	07 57	1041	2 906	30.62	82.95 58.20	13 70	2003. I 207 5	1.8/3	29.40	8.819
09	18.34	576 4	13.07	21.22	163.7	117.4	3941.0	29.73	77.98	111 9	927.6	3.045	36 71	65.96	16 29	251.6	1. 82.7	27.32	8 372
011	18.25	602.9	17.18	19.63	135.2	125.9	3113.2	29.89	67.42	107.5	967.5	2.374	44. 19	90. 14	11.97	202.0	1. 692	25.72	7.111
Q13	17.4	577.4	9.90	18.72	134.0	123.2	3473.1	27.70	66.67	90.43	965.2	2.257	44.48	46.45	14.31	183. 2	1. 611	24.87	6.878
Q14	17.89	558.8	10.57	20.68	163.6	138.8	4307.2	27.05	86.07	96.59	862.4	2.777	39. 25	45.68	23.28	187.1	1. 664	26.81	8.323
Q16	17.98	589.4	13.83	20.32	148.0	147.7	3388.7	27.75	69.90	104.4	1134.6	2.281	59.80	59. 27	10.60	230. 4	1. 649	26.89	7.706
Q19	18.42	608.0	12.93	20.47	151.9	128.7	3679.9	27.10	83.69	108.8	1165.3	3.295	73.29	50.37	13.86	280.3	1.757	27.98	8.185
Q20	18.99	626. 2	12.94	20.05	139.7	132.6	2603.0	27.78	101.4	101. 5	10/6	2.436	64.88	47.19	13. 51	245. 6	1. 795	26.84	1.572
QN 平均	18.44	596.6	16.69	20. 19	156.7	125.0	4027. 7	28.30	83.29	103. 8	906.4	3.15	40. 28	62.01	17.61	248.4	1. 770	28.3	8.37
RSD ⁽¹⁾	0.03	0.03	0.38	0.04	0.13	0.11	0.26	0.04	0.19	0.12	0.2	0.25	0.42	0. 25	0. 39	0. 22	0.05	0.08	0.11
<u>QS沅枝</u> QS1	只在 14_02	512.2	0.01	14 76	1 12 5	1 12 2	1014 9	10 40	62 41	54.26	144 6	5 072	0.000	0 202	1 725	52 64	0.754	14.04	2 107
053	14.05	573.8	0.91	14.70	12.5	90.75	1073 6	20 38	49 51	55 87	155 8	0.856	1 046	0.205	8 1 28	52.04 60.66	0. 754	15 33	3 329
Q55 Q54	16 18	587.6	0.97	17.64	120.9	90.01	961.1	19.74	48 22	51 19	152.1	0.850	0.927	9.294	2.043	56.88	0.921	17.00	3 733
$\tilde{Q}S5$	14.41	591.2	0.92	18.19	134.9	98.59	1 109. 5	21.77	58.19	56.36	168.1	0.909	1.074	8.907	2.276	59.39	0. 883	16.66	3.916
\tilde{Q} S7	13.08	543. 2	0.73	16.58	126.0	90. 61	1087.3	21.89	53.29	61.51	172.1	0.880	1.204	7.206	1. 509	60.89	0.697	14.42	3.241
Q S9	14.6	612.6	0.84	19.72	149.6	106.4	1313. 1	24.67	59.23	77.81	211.1	1.164	1.252	8.888	2.126	88.23	0.812	15.66	3.605
QS11	14.31	641.4	0.84	19.44	150.6	105.8	1301.0	24.60	60.78	75.01	209.7	1.088	1.217	8.565	4. 300	86.82	0. 783	14.93	3.462
QS13	13.81	604. 0	1.08	18.65	141.7	102.2	1365.1	23.30	57.77	67.57	190.7	1.115	1.254	8.224	1. 954	69.85	0. 781	16.25	3.657
QS15 0S17	13.24	562.6	0.74	16.31	127.0	92.97	1218.3	20.84	103.0	57.41	171.6	0.916	1.191	7.462	2.322	63.21	0.743	13.85	3.249
Q317 QS19	13.31	611 2	0.85	18 85	138 9	102 7	1307.7	$\frac{21.47}{22.60}$	56.86	60 99	178 6	1 019	1.11/	9.052	2.550	63 25	0.787	16 63	3 652
0520	14.19	580.6	0.88	17.62	127.5	98.47	1 196. 7	20.75	52.57	56.17	164.5	1.266	1.365	8.848	3. 037	56.27	0.853	15.74	3.491
QS21	13.96	571.7	0.95	17.4	123.9	97.93	1251.9	21.02	51.15	54.55	163.6	0.914	1.496	9.581	4. 940	55.59	0. 843	16.00	3.606
QS22	13.66	575.6	1.00	16.25	115.1	87.81	1054.5	19.23	46.03	49.28	153.4	0.832	1.378	10.88	5. 282	53.65	0. 889	16.86	3.620
QS23	13.69	562.1	0.90	16.38	121.6	92.70	1 159. 0	20.16	145.0	51.84	150.6	0.935	1.374	9.357	2.661	54.45	0. 893	16.82	3.611
QS 平均	14.14	578.9	0.90	17. 41	129.9	97. 54	1 170. 1	21.46	63.69	59.20	170.3	1.25	1. 2	8. 85	3. 15	62.95	0. 830	15.72	3.52
RSD ^①	0.06	0.05	0.10	0.08	0.09	0.07	0. 10	0. 08	0.40	0.14	0.12	0.85	0.13	0.10	0. 57	0. 17	0.08	0.07	0.06
<u>背景值²</u>	12.28	554.1	0.30	0.8	42.00	44.00	450.0	10.30	21.2	20.0	76.0	16.5	0.33	2.50	1. 10	22.0	0.60	14.8	3.6

注:① 为各沉积柱平均值的相对标准偏差:② 据张立成等(1983)、刘汉元和李远鄂(1984)、李健等(1986)、钱杏珍和李霞(1988),对于同一元素的不同背景值,这里取中间值。

(表 1)。该沉积物元素背景值(表 1)与中国土壤元 素背景值(鄢明才等, 1997)可对比。故本文参照该 背景值(表 1)来计算元素的 *EF* 值。*EF* 值计算结 果统计如表 3。依 Sutherland (2000)关于富集程度 的评价标准(表 3), 湘江入湖河段沉积物明显富集 (*EF*> 2) Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb 等重金属元素, 其中 V、Mn、Ni、Cu 等重金属达中等 富集(2< *EF*< 5), Sc、Zn、Pb、Sn、Sb 等重金属为显

表 2 湘江沉积物其他微量元素含量(mg/kg)及元素比值

Table 2 Concentrations (mg/kg) of other trace elements of sediments from the four sediment cores in the Xiangjiang River

样品	Ga	Ge	Rb	Sr	Y	Zr	Ηf	N b	Та	Cs	Zn/ Pb	Zn/Cd	V/Cr	Th/U	Ga/Ge	Rb/Sr	Zr/Hf	Nb/ Ta	Th/Sc	Zr/ Sc
WH 沉	<u></u> 枳柱		1												1	1				1
W 1	17.53	1. 74	172.1	45.67	31.82	352.5	10.69	14.43	1.81	15.97	2. 15	36.7	1.12	3. 94	10.1	3.77	33.0	7. 99	2.45	37.0
W 2	14.66	1. 58	175.2	41.05	30.05	301.4	9.11	12.75	1.52	14.16	2. 08	41.3	1.01	3. 34	9.30	4.27	33.1	8.42	2. 23	40.6
W 3	16.81	1. 58	166.6	43.45	30.58	314.0	9.55	15.44	2.23	15.46	1. 92	51.8	1.18	3. 72	10.6	3.83	32.9	6. 92	2. 08	31.2
W4	21.88	1. 99	180.0	53.46	34.83	273.4	8.34	17.48	2.07	19.35	2. 26	82.6	1.13	3. 84	11.0	3.37	32.8	8.46	1. 67	19.7
W 5	21.03	1. 92	175.2	50.87	33.81	244.0	7.40	17.59	1.95	18.57	2. 32	62.2	1.20	4. 25	11.0	3.44	33.0	9.04	2.05	18.9
W6	15.36	1.60	165.4	39. 71	26.21	328.7	9.32	14.43	1.64	14.45	1.87	58.3	1.14	3. 64	9.60	4.17	35.3	8.82	1. 97	36.4
W 7	13.94	1. 51	161.2	40.47	23.97	335.4	9.92	13.98	1.92	13.74	2.04	56.4	1.11	3. 30	9.30	3.98	33.8	7. 28	1. 69	41.6
W 9	12.67	1. 51	168.5	38.08	19.61	266.4	7.66	12.62	1.55	13.75	1. 94	68.6	1.04	4.36	8.40	4.42	34.8	8. 15	2.35	41.2
W11	13. 11	1. 53	177.9	38. 76	25.02	216.6	6.89	12.37	1.45	13.80	2. 09	42.8	1.10	3. 53	8.60	4.59	31.4	8. 55	2. 28	32.3
W13	17.24	1. 78	171.8	46.60	30.43	305.0	9.52	16.74	1.90	16.67	2. 23	32.6	1.16	3. 44	9. 70	3.69	32.1	8. 82	1.81	27.6
W14	17.69	1. 72	161.8	45.98	35.33	332.1	9.52	17.80	1.88	15.36	2. 15	48.0	1.15	3. 47	10.3	3.52	34. 9	9.45	1.64	29. 2
W16	20. 74	1. 97	173.0	48.53	36.48	308.5	9.10	19.70	2.15	17.19	2. 02	69.9	1.19	3. 85	10.5	3.56	33. 9	9. 17	1. 65	23.9
W18	21.01	1.84	168.6	50.01	36.28	267.2	7.95	18.12	2.11	17.69	2. 76	31.7	1.18	3. 59	11.4	3.37	33.6	8. 59	1. 71	20.8
W19	19.60	1.86	164.0	47. 23	33.46	264.1	7.94	16.65	1.87	17.39	2.65	34.2	1.08	3. 18	10.5	3.47	33.3	8. 92	1.56	22.9
W20	19.11	1.56	165.4	50.83	30.34	217.4	6.70	15.36	1.89	16.12	3. 74	22.4	1.16	3. 20	12.2	3.25	32.4	8.14	1. 49	18.1
U 层平均	17.49	1.710	169.8	45.38	30.55	288.5	8.640	15.70	1. 860	15.98	2.35	38.6	1.14	3. 64	10.2	3.78	33. 3	8.45	1. 91	29.4
$\mathrm{RSD}^{(1)}$	0. 17	0. 10	0.03	0. 11	0. 16	0.15	0.14	0. 14	0.13	0.11	1. 97	0.47	1.11	0. 09	0. 10	0.11	0.03	0. 08	0. 16	0.29
W22	17.39	1. 72	153.1	49.98	29.30	221.4	6.52	12.75	1.53	14.77	3. 70	25.0	1.06	3. 22	10.1	3.06	34.0	8. 33	1.60	19.8
W24	22.77	1. 99	172.4	58.25	34.84	243.0	7.12	17.25	2.10	19.54	4.88	13.4	0.92	3.44	11.4	2.96	34.1	8. 23	1.46	16.4
w25 W26	21.92 22.70	2.10	174 7	58.28	35.83	230.0 230.2	7.98 6.76	17.98	2.46	19.40	4.17	12.5	0.92	5.48 3.56	10.4	2.97	34 1	7. 51 8 46	1. 50	14 6
W27	21.65	1. 96	168.4	55. 13	34.10	205.5	6.05	16.46	2.02	18.34	4. 42	12.5	0.97	3. 38	11.0	3.05	34.0	8. 14	1. 40	14.4
W29	16.90	1. 20	141.4	45.32	27.88	175.3	5.22	11.73	1.43	13.72	3. 91	15.5	1.04	3. 13	14.1	3.12	33.6	8. 18	1.47	15.9
W30	21.65	1. 81	171.0	53.54	31.27	213.0	6.27	16.24	1.95	18.77	3. 63	18.0	0.88	3. 54	12.0	3.19	33.9	8. 33	1. 62	15.6
W31	26.45	2. 12	190.8	61.16	38.75	255.9	7.61	19.93	2.31	23.57	3. 25	17.3	0.82	3. 62	12.5	3.12	33.6	8. 61	1.54	15.0
W33 W34	27.65	2.19	208 8	62.94	38.73	253.3	7.37	19.91	2.39	23.62	3.40	18.3	0.85	3.38	12.6	3.10	34.4	8.35	1.38	13.3
W34 W35	27. 55	2. 23	198.2	63. 15	39.30	221.3	6.37	19.44	2.18	23. 10	3. 32	24.9	1.06	3. 58	12.4	3.14	34.8	8. 91	1. 29	11.9
W37	28.65	2. 28	202.4	61.42	38.25	236.2	6.86	20.96	2.43	25.88	3. 10	34.5	1.01	3. 73	12.6	3.30	34.4	8. 62	1. 63	12.1
W39	24.50	2. 03	185.8	58.23	36.54	220.3	6.70	18.07	2.13	20.82	3. 22	34.0	1.00	4. 08	12.1	3.19	32.9	8.49	1.82	14.5
W40	22.74	1. 89	172.8	54.05	33.33	259.5	7.83	18.35	2.26	19.85	3. 34	36.7	0.90	4. 31	12.0	3.20	33.2	8. 13	1. 69	16.3
W41 W43	21.76	2.03	103 6	55.00 60.07	32.16	223.0	6.73	17.29	2.04	19.02	3.46	36.7	0.87	4. 12 3. 76	10.7	3.25	33.1	8.46	1.70	16.7
w45 L 层平均	23. 40	2. 24	180.0	57.35	34.83	202. 2	6.81	17.67	2.10	20. 32	3. 65	19.0	0.87	3. 64	11.4	3.14	33.7	8. 42	1. 40	14.9
RSD ①	0. 15	0. 13	0.10	0. 09	0. 11	0.10	0.11	0. 14	0.13	0.16	0.84	0.35	0.88	0. 09	0. 09	0.04	0.02	0. 05	0. 09	0.15
XY 沉积	í																			
X39	8.82	1. 25	156.5	29.68	10.98	343.5	10.67	10.19	1.37	9.05	2. 18	49.1	0.97	3. 33	7.1	5.27	32.2	7.44	2. 59	87.5
X38	12.37	1.47	167.8	37.61	26.94	723.3	19.65	14.31	2.11	11.10	2. 82	34.3	1.07	4.45	8.4	4.46	36.8	6. 79	3. 38	103.4
X37	10.29	1. 39	170.2	32.36	15.71	267.6	7.94	19.51	8.40	10.46	2.54	32.7	0.98	5.84	7.4	5.26	33.7	2. 32	4.60	52.1
X36	12.68	1.44	177.1	38.00	18.73	229.9	7.19	10.38	1.60	12.36	2. 38	60.7	0.90	6. 43	8.8	4.66	32.0	6.49	4. 27	37.5
X35	19.99	1. 76	168.7	58.76	25.05	144. 0	4.17	16.72	2.23	17.81	2. 32	74.1	1.13	4. 14	11.3	2.87	34. 5	7.50	1.88	10.2
X34	22.00	1.97	179.3	63. 20	34.43	316.1	10.09	18.14	2.27	18.84	2. 33	73.5	0.95	3. 93	11.2	2.84	31.3	8.00	1. 91	21.5
X32	18.50	1. 74	167.7	56.57	34.16	469.3	13.89	17.52	2.03	16.46	2. 25	73.4	1.06	3. 84	10.6	2.96	33.8	8.62	2. 17	36.4
X31	14.50	1.43	152.3	50.94	36.44	956.4	26.65	18.28	2.20	12.79	2. 27	71.1	0.95	5. 12	10.2	2.99	35.9	8. 29	5. 24	101.9
X30	14.05	1. 69	167.0	52.54	29.20	619.6	17.56	15.03	1.86	12.65	2. 32	71.7	0.75	4. 21	8.30	3.18	35.3	8. 10	3. 36	70.9
X28	18.77	1.86	166.4	72.37	29.99	312.8	9.51	16.82	1.99	16.37	2. 25	89.1	1.00	4.56	10.1	2.30	32.9	8.44	2. 24	23.3
X27	24. 31	2.08	185.6	77.05	36.60	276.3	8.05	19.98	2.16	19.22	2. 51	101.7	0.99	4.00	11.7	2.41	34. 3	9. 25	1.56	17.0
X25	23. 73	2. 01	192.8	58.76	36.61	301.4	8.99	18.92	2.12	20. 71	1. 97	71.3	1.08	3. 55	11.8	3.28	33.5	8. 92	1. 69	18.8
X24	28.36	1. 99	226.7	63. 57	40.66	256.2	7.52	20.46	2.26	23. 27	1. 76	89.2	1.06	3. 70	14.2	3.57	34. 1	9. 05	1.40	13.3
X23	29.45	1. 43	235.4	63.67	40.00	221.2	6.50	20.72	2.15	25.00	1. 69	87.0	1.22	4. 05	20.6	3.70	34. 1	9.65	1. 45	11.2
X22	30. 71	2. 48	249.4	62. 25	41.49	197. 1	5.81	20.96	2.22	25.48	1.46	89.4	1.14	3. 84	12.4	4.01	33.9	9.43	1. 26	9.30
X20	30. 16	1. 93	253.5	60.44	41.66	209.4	5.98	20.83	2.19	26.16	1. 33	82.2	1.28	3. 60	15.6	4.19	35.0	9.50	1. 42	10.6
X19	19.56	1. 71	182.7	50.14	29.75	238.6	7.05	15.98	2.34	17.21	2. 21	97.6	1.09	3. 84	11.4	3.64	33.8	6.84	1. 73	19.6
X18	23.35	1. 68	185.2	56. 22	30.89	244.5	7.37	17.82	1.98	20. 74	0. 26	8.80	1.03	0. 02	13.9	3.29	33. 2	9. 01	0. 01	16.1
X17	12.55	1. 42	156.0	34. 77	20.32	157.9	4.52	11.31	1.25	11.82	2. 41	119. 2	1.01	3. 68	8.80	4.49	34. 9	9.06	1. 65	21.5

28	9

(4 ま つ

Hall Ga Ga Ga Ga Ka Ya Y																				头1	R Z
U U	样品	Ga	Ge	Rb	Sr	Y	Zr	Hf	Nb	Та	Cs	Zn/ Pb	Zn/Cd	V/Cr	Th/U	Ga/Ge	Rb/Sr	Zr/Hf	Nb/ Ta	Th/Sc	Zr/ Sc
nb 0 0.8	U 层平均	19.69	1. 72	186.3	53.63	30.51	341.3	9.95	17.05	2.35	17.24	1. 94	72.2	1.05	3. 97	11.3	3.65	34.0	8.04	2. 31	35.9
N1 2 2 2 1	RSD ^①	0.35	0. 18	0.17	0. 25	0.30	0.62	0.58	0. 20	0.63	0.31	0.86	1.56	1.18	0. 31	0. 28	0.24	0.03	0. 21	0.56	0.88
X1 110. 16 1. 24 1. 25 15. 26 3. 26 9. 22 14. 40 1. 66 1. 06 1. 06 1. 06 1. 07 1. 24 3. 36 3. 22 3. 35 3. 12 3. 35 1. 17 3. 34 3. 20 3. 35 3. 12 3. 35 3. 12 3. 35 3. 12 3. 35 3. 12 3. 35 3. 12 3. 35 3. 11 1. 2. 93 3. 47 9. 80 1. 27 3. 48 9. 00 1. 37 3. 68 3. 36 9. 01 1. 2. 93 3. 47 9. 80 1. 32 3. 36 9. 60 3. 32 20. 38 3. 68 3. 60 3. 68 3. 68 3. 60 3. 68 3. 61 3. 30 1. 31 3. 16	X15	28.22	2.29	191.7	63.85	30.27	22.8.5	6.360	19.00	1.99	25.26	3. 18	122.0	0.90	3. 81	12.3	3.00	35.9	9. 55	1. 22	12.9
X11 21. 70 1. 85 1. 75 1. 92 1. 73 1. 88 3. 10 8. 7.0 1. 70 3. 18 9. 77 0. 70 1. 77 3. 78 9. 78 1. 30 1. 78 1. 78 1. 78 2. 78 3. 75 9. 78 1. 38 1. 78 <th< td=""><td>X13</td><td>10.16</td><td>1. 24</td><td>129.5</td><td>35.60</td><td>26.46</td><td>432.8</td><td>14.03</td><td>13.63</td><td>1.66</td><td>9.200</td><td>2. 22</td><td>114.0</td><td>1.06</td><td>10.0</td><td>8. 20</td><td>3.64</td><td>30.8</td><td>8. 23</td><td>16.2</td><td>75.3</td></th<>	X13	10.16	1. 24	129.5	35.60	26.46	432.8	14.03	13.63	1.66	9.200	2. 22	114.0	1.06	10.0	8. 20	3.64	30.8	8. 23	16.2	75.3
Allo 21, 21, 1, 19, 17, 5, 9(2, 27, 9) 36, 4, 9, 10 18, 18, 3, 40 102, 2 0, 94 3.58 11, 1 2, 94 3, 76 9, 20 1, 38 2, 30 Xa 21, 31 10, 17, 76 9, 20 27, 37 36 22, 31 24, 13, 30 70, 86 3, 36 6, 30 9, 30 2, 31 18, 18 30, 60 9, 80 9, 22 21, 36 22, 31 2, 31 2, 31, 47 9, 50 1, 38 10, 8 3, 30 9, 31 1, 41 10, 18 10, 30 9, 80 1, 10 10, 60 30, 41 11, 1 1, 59 1, 41 1, 15 1, 41 1, 15 1, 41 1, 51 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41 1, 51 1, 44 1, 41	X11	21.70	1. 85	157.9	92.36	33.58	321.2	9.230	18.75	1.93	18.18	3. 10	88.5	1.04	3. 16	11.7	1.71	34.8	9.69	1. 37	20.9
XAB 21. JJ 1. 2.JJ 1. 7.1 1. 7.4 1. 7.1 1. 7.1 1. 7.1 1. 7.1 1. 7.1 1. 7.1 1. 7.1 1. 7.1 2.7.1	XI0 X0	23. 21	1. 93	175.3	70.84	33.60	302.4	8.070	19.08	1.95	18.78	3.34	102.2	0.94	3. 83	12.1	2.47	37.5	9.78	1. 38	20.1
Xiii Xiiii Ziiii Yiiii Ziiii Yiiii Ziiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiii Ziiiiii Ziiiiii Ziiiiii Ziiiiii Ziiiiii Ziiiiiii Ziiiiiiiii Ziiiiiiiiiii Ziiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	А8 Х6	21.20	1. 91	102 0	59.42 70.09	32.79	305.4 227 0	10. 52	10.06	2.08	18.18	3.00	88.0	1.00	3. 91	11.1	2.99	34.7	9.50	1. 52	12 /
X2 27. 38 1.65 193.7 6 6 6 8 3 54 5 4 22.5 7 6 200 19.82 2.14 22.67 3.66 103.2 1.06 3.93 1.10 4.01 12.0 X1 28.17 2.06 195.3 67.18 33.57 21.3 62.20 0.3.34 2.18 2.3.0 3.24 98.9 1.01 4.00 4.81 12.2 2.80 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 4.9 93.4 1.41 1.21 1.41 1.15 1.41 1.21 1.41 1.15 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41 1.21 1.41<	хо Х4	31 10	2.24	204 2	70.08	37 79	22 7. 8	6 130	21 30	2.08	26 10	3.50	96.8	0.98	4. 50	12.7	2.77	35.9	9.02	1.30	10.8
NA 28. 17 21.60 10.7.1 67.18 327 323 62.00 324 929 320 489 11.0 404 122 280 320 330 320 330 320 330 320 330 320 330 320 330 320 330 330 330 330 330 330 330 330 330 330 330 330 330 3	X2	27. 38	1. 95	193.7	66. 68	34.54	22.2.7	6.290	19.82	2.14	22. 67	3.06	103. 2	1.06	3. 93	14.1	2.90	35.4	9. 25	1. 41	12.1
L EF NB 2 4.4 1.9.7 1.9.9 6.5.1 3.1.3 2.4.6 8.10 1.8.9 2.0.7 0.2.3 1.9 0.70 0.9.4 0.85 1.2.2 2.8.0 3.4.9 9.9.3 0.0.5 0.70 vor metric vor	X1	28.17	2.06	195.3	67.18	33.67	213.3	6.200	20.34	2.18	23.50	3. 24	98.9	1.10	4.04	13.6	2.91	34.4	9. 31	1.44	11.5
neb 0	L 层平均	24.41	1.97	179.9	66. 51	33.13	281.6	8.160	18.89	2.01	20. 55	3. 12	98.6	1.00	4.88	12.2	2.80	34. 9	9.39	3. 03	22.6
QN JURDE QL QL <	RSD ^①	0. 23	0.15	0.12	0. 22	0. 08	0.26	0.31	0. 11	0.07	0.23	1.39	0. 79	0.94	0.45	0. 12	0.18	0.05	0.04	1.60	0.87
OI Sole 1.57 20.8 66.27 45.84 22.8 2.46 24.99 2.73 29.4 1.50 3.40 15.3 3.48 32.9 8.61 1.51 11.2 Q2 29.25 1.66 224.1 71.75 52.26 22.8 7.100 21.4 2.47 24.19 2.80 31.3 1.54 3.27 15.8 3.13 1.4 8.72 1.55 11.2 Q4 28.01 2.10 2.16 6.80 2.1 2.55 2.95 28.4 1.26 3.34 1.9 3.41 3.1 4.8 8.06 1.40 10.7 Q8 2.76 2.42 211.3 66.07 4.3.9 2.74 2.43 2.14 1.60 3.40 2.5 1.57 1.29 3.20 1.26 3.30 3.25 1.5 3.30 3.2 8.05 1.40 1.10 Q8 2.35 2.46 24.17 2.43 2.45 2.5.7 1.29	ON 沉利	只柱																			
Q2 D3 D4 D4 <thd4< th=""> D4 D4 D4<</thd4<>	01	30.05	1 97	230.8	66 27	45 84	228 3	6 9 50	21.2	2.46	24 59	2 73	29 4	1 50	3 40	15 3	3 48	32.9	8 61	1 51	11.2
Qi Qi<	02	20.25	1.86	22010	71 55	18 50	22 0. 0	7 1 10	21 4	2.10	24 10	2.80	31 3	1 54	3 27	15.8	3 13	31.5	8 66	1 /0	10.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q2	29.20	1. 00	212 0	71. 55	52.20	22.5. 0	7.110	21.4	2.47	24.19	2.00	20.1	1.34	3. 27	12.0	2.74	21.4	0.00	1. 49	10. 7
Q4 2x.0 2x.0 1x.3 48.22 2x.10 6x.85 1x.45 1x.4	Q3	28.66	2. 14	213.0	11.12	52.26	229.8	1.320	22.4	2.57	24. 38	2.66	30.1	1.49	3. 32	13.4	2.74	31.4	8. 72	1. 55	11.2
O6 27.74 2.33 22.22 2193 65.30 43.58 21.3 7.40 21.5 2.5.7 25.55 2.5.8 3.46 25.7 1.29 3.50 12.6 3.36 3.25 8.68 1.55 1.7 Q9 27.68 2.41 21.33 64.07 40.47 21.0 6.500 10.9 2.36 25.3 1.39 3.20 11.5 3.30 3.22 8.20 1.29 1.07 3.62 12.0 3.22 2.4 7.66 1.31 11.4 Q13 25.66 2.42 19.7.3 65.19 8.87 24.07 7.520 19.7 2.42 2.46 12.0 1.00 3.40 11.5 3.10 3.5 8.77 1.30 1.29 2.83 1.40 1.8 3.21 1.20 1.10 3.40 1.53 3.12 2.3 1.29 2.41 1.46 1.50 1.10 3.42 1.28 2.41 1.46 1.50 1.41 3.22 8.93 1.31 1.10 0.30 3.5 8.5 1.32 1.23	Q4	28.01	2. 19	220.9	71.78	48.22	216.9	6.880	21.8	2.70	25. 17	2.56	30.9	1.37	3. 13	12.8	3.08	31.5	8. 05	1.40	10.4
08 27. 92 2.22 219.3 65. 50 45. 60 21.3 2.45 25. 28 3.46 25.7 1.29 3.50 12.6 3.36 32.5 8.68 1.55 11.7 Q9 27.68 2.41 211.3 64.07 40.47 217.0 6.500 19.4 2.58 2.61 3.99 3.26 11.5 3.30 32.2 8.20 1.29 10.2 Q11 27.99 2.33 215.5 66.48 43.21 224.0 6.920 2.55 2.43 2.183 5.27 2.17 1.00 3.49 11.5 3.00 31.7 8.36 1.22 1.19 Q14 28.03 2.35 2.040 7.218 42.5 7.070 19.85 2.40 4.61 15.9 1.18 3.22 1.9 3.03 3.5 8.57 1.30 11.9 Q10 2.68 2.09 2.15 6.60 42.17 24.64 7.400 4.38 16.6 1.55 1.25 3.88 1.27 1.13 3.22 8.37 1.40	Q6	27.74	2. 33	222.8	65.30	43.58	221.3	7.040	21.0	2.57	25.35	2. 95	28.4	1.26	3. 34	11.9	3.41	31.4	8. 20	1. 47	11.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Q8	27.92	2. 22	219.3	65.30	43.90	217.4	6.690	21.3	2.45	25.28	3.46	25.7	1.29	3. 50	12.6	3.36	32.5	8.68	1. 55	11.7
Q11 27.99 2.33 21.5.5 66.86 43.21 22.40 6.920 20.5 2.58 26.13 4.79 21.9 1.07 3.62 12.0 3.22 3.24 7.96 1.31 11.4 Q13 25.66 2.33 197.3 63.19 38.87 240.7 7.50 19.7 2.43 21.83 5.27 21.7 1.09 3.62 1.5 3.10 3.17 3.57 1.30 1.18 3.22 11.9 2.83 3.57 1.30 1.19 Q16 27.17 2.68 2.09 20.1.5 68.66 42.30 24.7 2.40 4.41 4.16 1.59 1.18 3.42 12.8 2.94 31.8 8.26 1.37 1.00 Q20 2.915 2.39 21.5 6.969 42.17 24.64 7.409 9.95 2.38 2.470 4.38 16.6 1.05 3.54 12.2 3.11 3.8 2.8 1.40 1.4 Q20 2.915 2.39 1.65 1.479 1.48 1.53	Q9	27.68	2.41	211.3	64.07	40.47	217.0	6.530	19.4	2.36	24.16	3. 69	25.3	1.39	3. 26	11.5	3.30	33.2	8. 20	1. 29	10.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q 11	27.99	2. 33	215.5	66.86	43.21	224.0	6.920	20.5	2.58	26.13	4. 79	21.9	1.07	3. 62	12.0	3.22	32.4	7.96	1. 31	11.4
Q 14 28,03 2.35 204.0 72.18 45.17 24.65 7.370 20.34 2.37 22.42 4.61 22.0 1.18 3.22 11.9 2.83 33.5 8.57 1.30 11.9 Q 16 27.17 2.36 196.3 65.50 40.53 20.9 7.910 20.25 2.42 2.96 4.92 19.0 1.00 3.49 11.5 3.00 31.7 8.36 1.32 12.3 Q N 29 15 2.30 16.56 19.05 2.38 2.430 4.38 16.6 1.00 3.42 12.8 3.13 32.2 8.37 1.40 1.41 Q N ** 2.01 0.03 0.06 0.08 0.05 0.06 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.	Q 13	25.66	2. 23	197.3	63. 19	38.87	240. 7	7.520	19.7	2.43	21.83	5. 27	21.7	1.09	3. 62	11.5	3.12	32.0	8. 11	1. 33	12.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q 14	28.03	2.35	204.0	72.18	45.17	246.5	7.370	20.34	2.37	22.42	4.61	22.0	1.18	3. 22	11.9	2.83	33.5	8. 57	1.30	11.9
Q 19 26.85 2.00 201.5 68.8 42.36 22.4 7 700 19.85 2.40 24.21 4.16 15.9 1.18 3.42 12.8 2.94 31.8 8.28 1.37 11.0 $Q20$ 29.15 2.39 216.5 69.69 42.17 24.64 7.490 19.95 2.38 24.30 4.38 16.6 1.05 3.54 12.2 3.11 32.9 8.39 1.34 12.3 QN Ψ 49 20.8 2.221 213.3 68.31 44.24 229.8 7.137 20.70 2.474 24.23 3.65 22.5 1.25 3.38 12.7 3.13 32.2 8.37 1.40 11.4 RSD 0.04 0.08 0.05 0.06 $0.$	0.16	27. 17	2.36	196.3	65.50	40.53	250.9	7.910	20.25	2.42	22.96	4, 92	19.0	1.00	3, 49	11.5	3.00	31.7	8.36	1. 32	12.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.19	26.85	2 09	201 5	68 63	42 36	224 5	7 070	10.85	2 40	24 21	4 16	15 0	1 18	3 42	12.8	2 94	31.8	8 28	1 37	11.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.20	20. 05	2.0)	201.5	60.00	42.50	224. 5	7.400	10.05	2.40	24.20	4 20	16.6	1.10	2 54	12.0	2.11	22.0	0.20	1. 37	12.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 N JU	29. 15	2. 39	210.5	69.09	42.17	240. 4	7.490	19.95	2.30	24. 50	4. 50	10.0	1.05	3. 34	12.2	2.12	32.9	0. 39	1. 54	12.5
RSD© 0.04 0.08 0.05 0.06 0.06 0.05 0.04 0.05 0.91 0.48 1.22 0.05 0.10 0.07 0.02 0.03 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 <	QN 平均	28.01	2. 221	213.3	68. 31	44.24	229.8	7.13/	20.70	2. 4/4	24. 23	3.65	22.5	1.25	3. 38	12.7	3.13	32.2	8.37	1.40	11.4
QS JURXE QS1 18.46 1.56 129.5 114.7 29.78 245.3 6.79 18.55 1.48 8.53 2.75 144.7 1.00 4.39 11.8 1.13 36.1 12.56 0.95 16.6 QS3 20.64 1.73 148.5 116.4 31.75 232.8 6.63 18.85 1.58 10.27 2.57 148.9 1.40 4.60 11.9 1.28 35.1 11.89 0.92 14.0 QS4 21.86 1.80 147.7 115.5 36.62 244.5 7.03 19.69 1.58 10.21 2.83 156.5 1.37 4.25 12.1 1.28 34.8 12.45 0.92 13.4 QS7 20.33 1.65 127.1 137.0 31.63 251.1 6.98 19.70 1.53 7.84 2.83 142.9 1.39 4.45 12.4 0.93 36.0 12.91 0.87 13.6 QS11 <td><u>RSD</u>⊕</td> <td>0.04</td> <td>0. 08</td> <td>0.05</td> <td>0.06</td> <td>0. 08</td> <td>0.05</td> <td>0.05</td> <td>0.04</td> <td>0.04</td> <td>0.05</td> <td>0. 91</td> <td>0.48</td> <td>1.22</td> <td>0. 05</td> <td>0. 10</td> <td>0.07</td> <td>0.02</td> <td>0. 03</td> <td>0. 0/</td> <td>0.07</td>	<u>RSD</u> ⊕	0.04	0. 08	0.05	0.06	0. 08	0.05	0.05	0.04	0.04	0.05	0. 91	0.48	1.22	0. 05	0. 10	0.07	0.02	0. 03	0. 0/	0.07
QS1 18. 46 1. 56 129. 5 114. 7 29. 78 245. 3 6. 79 18. 55 1.48 8. 53 2. 75 144. 7 1.00 4. 39 11.8 11.13 36. 1 12. 56 0. 95 16. 6 QS3 20. 64 1. 73 148.5 10.4 31.75 23.2 8 6.63 18.85 1.58 10.27 2.57 148.9 1.40 4.60 11.9 1.28 35.1 11.89 0.92 14.0 QS4 21.86 1.82 152.5 102.3 32.44 24.5 7.03 19.69 1.58 10.21 2.83 156.5 1.37 4.25 12.1 1.28 34.8 12.45 0.92 13.4 QS7 20.33 1.66 127.1 137.0 31.63 251.1 6.98 10.70 1.53 7.84 2.83 142.9 1.39 4.45 12.4 0.93 36.0 12.91 0.87 13.01 0.77 11.5 QS1 21.79 1.71 138.7 132.5 31.6 25.7 7.16	QS JUAS	۲۹±						< - 0			0.50				1.00					0.05	
QS3 20. 64 1. 73 148.5 116.4 31.75 232.8 6.63 18.85 1.58 10.27 2.57 148.9 1.40 4.60 11.9 1.28 35.1 11.89 0.92 14.0 QS4 21.86 1.82 152.5 102.3 32.44 243.4 7.05 18.34 1.54 10.85 2.67 164.1 1.39 4.55 12.0 1.49 34.5 11.85 0.92 13.4 QS7 20.33 1.65 127.1 137.0 31.63 21.1 6.98 19.70 1.53 7.84 2.83 166.5 1.41 4.34 12.1 0.97 36.3 13.04 0.79 11.5 QS1 22.86 1.89 1.47 140.1 149.9 32.05 21.84 5.98 20.22 1.55 9.45 2.42 172.3 1.42 4.31 12.3 0.93 36.5 1.30 0.77 11.2 QS13 21.72 1.71 138.7 132.5 31.46 5.57 7.16 20.33 1.58 <td< td=""><td>QSI</td><td>18.46</td><td>1. 56</td><td>129.5</td><td>114.7</td><td>29.78</td><td>245.3</td><td>6.79</td><td>18.55</td><td>1.48</td><td>8.53</td><td>2.75</td><td>144. 7</td><td>1.00</td><td>4. 39</td><td>11.8</td><td>1.13</td><td>36.1</td><td>12.56</td><td>0. 95</td><td>16.6</td></td<>	QSI	18.46	1. 56	129.5	114.7	29.78	245.3	6.79	18.55	1.48	8.53	2.75	144. 7	1.00	4. 39	11.8	1.13	36.1	12.56	0. 95	16.6
Q S4 21. 86 1. 82 152. 102.3 32. 44 24.3.4 7.05 18.34 1.0.4 10.85 2.67 164.1 1.39 4.55 12.0 1.49 34.5 11.85 0.96 13.8 QS5 21.80 1.80 147.7 115.5 36.62 244.5 7.03 19.69 1.53 7.84 2.83 165.5 1.37 4.25 12.1 1.28 34.8 12.45 0.92 13.4 QS7 20.33 1.65 127.1 137.0 31.63 251.1 6.98 19.70 1.53 7.84 2.83 142.9 1.39 4.45 12.4 0.93 36.0 12.91 0.87 15.1 QS9 22.86 1.89 144.8 148.7 34.12 22.59 6.23 21.34 1.63 9.95 2.39 168.6 1.41 4.31 12.3 0.93 36.5 13.00 0.77 11.2 QS13 21.72 1.71 138.7 13.62 5.87 7.16 20.33 1.58 9.16 2.69	Q S3	20.64	1. 73	148.5	116.4	31.75	232.8	6.63	18.85	1.58	10.27	2. 57	148.9	1.40	4.60	11.9	1.28	35.1	11.89	0. 92	14.0
QS521. 801. 80147.7115.536.62244.57.0319.691.5810.212.83156.51.374.2512.11.2834.812.450.9213.4QS720.331.651.71137.031.63251.16.9819.701.537.842.83142.91.394.4512.40.9336.012.910.8715.1QS922.861.891.47.7140.1149.932.05218.45.9820.221.559.452.42172.31.424.3112.30.9336.513.010.7711.2QS121.721.71138.7132.533.16253.77.1620.331.589.922.73152.11.394.4412.71.0535.412.860.8713.6QS1520.001.66132.8130.931.86254.66.8718.751.458.702.71144.11.374.2612.01.0137.112.890.8515.6QS1720.341.57136.1127.531.44259.77.3218.771.589.162.69150.31.364.5412.91.0137.112.890.8515.6QS1720.341.5718.3147.512.832.824.176.8519.091.5310.92.82152.51.354.5512.11.2135.312.460.88<	Q S4	21.86	1.82	152.5	102.3	32.44	243.4	7.05	18.34	1.54	10.85	2.67	164. 1	1.39	4. 55	12.0	1.49	34.5	11.85	0.96	13.8
QS720. 331. 65127.1137.031.63251.16.9819.701.537.842.83142.91.394.4512.40.9336.012.910.8715.1QS922.861.89144.8148.734.1222.596.2321.341.639.952.39168.61.414.3412.10.9736.313.040.7911.5QS1121.891.77140.1149.932.05218.45.9820.221.559.452.42172.31.424.3112.30.9336.513.010.7711.2QS1321.721.71138.7132.533.16253.77.1620.331.589.922.73152.11.394.4412.71.0535.412.860.8713.6QS1520.001.66132.8130.931.86254.66.8718.751.458.702.71144.11.374.2612.01.0137.112.890.8515.6QS1720.341.57136.1127.531.44259.77.3218.771.589.162.69150.31.3564.5412.91.0735.511.870.9415.6QS1922.271.83147.5121.832.88241.76.8518.901.579.842.94109.41.271.411.2135.312.460.8812.8QS21 <t< td=""><td>QS5</td><td>21.80</td><td>1.80</td><td>147.7</td><td>115.5</td><td>36.62</td><td>244.5</td><td>7.03</td><td>19.69</td><td>1.58</td><td>10. 21</td><td>2. 83</td><td>156.5</td><td>1.37</td><td>4. 25</td><td>12.1</td><td>1.28</td><td>34.8</td><td>12.45</td><td>0. 92</td><td>13.4</td></t<>	QS5	21.80	1.80	147.7	115.5	36.62	244.5	7.03	19.69	1.58	10. 21	2. 83	156.5	1.37	4. 25	12.1	1.28	34.8	12.45	0. 92	13.4
QS922.861.89144.8148.734.1222.5.96.2321.341.639.952.39168.61.414.3412.10.9736.313.040.7911.5QS1121.891.77140.1149.932.05218.45.9820.221.559.452.42172.31.424.3112.30.9336.513.010.7711.2QS1321.721.71138.7132.533.16253.77.1620.331.589.922.73152.11.394.4412.71.0535.412.890.8713.6QS1520.001.66132.8130.931.86254.66.8718.751.458.702.71144.11.374.2612.01.0137.112.890.8515.6QS1720.341.57136.1127.531.44259.77.3218.771.589.162.69150.31.364.5412.91.0735.511.870.9415.6QS1922.271.83147.5121.832.38241.76.8519.091.559.882.9212.551.354.5512.11.2135.312.460.8812.8QS2121.331.77142.1113.830.83244.36.8718.911.579.842.94109.41.274.4411.31.2935.712.110.9214.1 <td< td=""><td>QS7</td><td>20. 33</td><td>1. 65</td><td>127.1</td><td>137.0</td><td>31.63</td><td>251.1</td><td>6.98</td><td>19.70</td><td>1.53</td><td>7.84</td><td>2. 83</td><td>142.9</td><td>1.39</td><td>4.45</td><td>12.4</td><td>0.93</td><td>36.0</td><td>12.91</td><td>0.87</td><td>15.1</td></td<>	QS7	20. 33	1. 65	127.1	137.0	31.63	251.1	6.98	19.70	1.53	7.84	2. 83	142.9	1.39	4.45	12.4	0.93	36.0	12.91	0.87	15.1
QS11 21.89 1.77 140.1 149.9 32.05 218.4 5.98 20.22 1.55 9.45 2.42 172.3 1.42 4.31 12.3 0.93 36.5 13.01 0.77 11.2 QS13 21.72 1.71 138.7 132.5 33.16 253.7 7.16 20.33 1.58 9.92 2.73 152.1 1.39 4.44 12.7 1.05 35.4 12.86 0.87 13.6 QS15 20.00 1.66 132.8 130.9 31.86 254.6 6.87 18.75 1.45 8.70 2.71 144.1 1.37 4.26 12.0 1.01 37.1 12.89 0.85 15.6 QS17 20.34 1.57 136.1 127.5 31.44 259.7 7.32 18.77 1.58 9.16 2.69 150.3 1.36 4.55 12.1 1.21 35.3 12.46 0.88 12.88 QS10 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 <td< td=""><td>QS9</td><td>22.86</td><td>1.89</td><td>144.8</td><td>148.7</td><td>34.12</td><td>225.9</td><td>6.23</td><td>21.34</td><td>1.63</td><td>9.95</td><td>2. 39</td><td>168.6</td><td>1.41</td><td>4.34</td><td>12.1</td><td>0.97</td><td>36.3</td><td>13.04</td><td>0. 79</td><td>11.5</td></td<>	QS9	22.86	1.89	144.8	148.7	34.12	225.9	6.23	21.34	1.63	9.95	2. 39	168.6	1.41	4.34	12.1	0.97	36.3	13.04	0. 79	11.5
QS13 21. 72 1. 71 138. 7 132. 5 33. 16 253. 7 7. 16 20. 33 1.58 9.92 2. 73 152. 1 1.39 4.44 12. 7 1.05 35. 4 12. 86 0. 87 13. 6 QS15 20.00 1.66 132.8 130.9 31.86 254.6 6.87 18.75 1.45 8.70 2.71 144.1 1.37 4.26 12.0 1.01 37.1 12.89 0.85 15.6 QS17 20.34 1.57 136.1 127.5 31.44 259.7 7.32 18.77 1.58 9.16 2.69 150.3 1.36 4.55 12.1 1.21 35.5 14.7 0.94 15.6 QS19 22.27 1.83 147.5 121.8 32.38 241.7 6.85 19.09 1.55 9.88 2.92 120.5 1.21 1.21 1.25 35.6 12.46 0.89 13.9 1.22 2.82 12.5 1.35 1.2.1 1.25 35.6 12.46 0.89 13.9 1.22 1.41 0.92	QS11	21.89	1. 77	140.1	149.9	32.05	218.4	5.98	20.22	1.55	9.45	2.42	172.3	1.42	4. 31	12.3	0.93	36.5	13.01	0. 77	11.2
A QS15 20.00 1.66 132.8 130.9 31.86 254.6 6.87 18.75 1.45 8.70 2.71 144.1 1.37 4.26 12.0 1.01 37.1 12.89 0.85 15.6 QS17 20.34 1.57 136.1 127.5 31.44 259.7 7.32 18.77 1.58 9.16 2.69 150.3 1.36 4.54 12.9 1.07 35.5 11.87 0.94 15.6 QS19 22.27 1.83 147.5 121.8 32.38 241.7 6.85 19.09 1.52 9.88 2.92 120.5 1.35 4.55 12.1 1.21 35.3 12.46 0.88 12.8 QS20 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 2.92 120.5 1.29 4.51 12.1 1.25 35.6 12.46 0.89 13.9 QS21 21.37 1.89 141.9 109.7 30.84 244.7 6.85 18.90 1.57 9.8	OS13	21.72	1.71	138.7	132.5	33.16	253.7	7.16	20.33	1.58	9.92	2. 73	152.1	1.39	4.44	12.7	1.05	35.4	12.86	0.87	13.6
QS17 20.34 1.57 136.1 127.5 31.44 259.7 7.32 18.77 1.58 9.16 2.69 150.3 1.36 4.54 12.0 1.07 35.5 11.87 0.94 15.6 QS17 20.34 1.57 136.1 127.5 31.44 259.7 7.32 18.77 1.58 9.16 2.69 150.3 1.36 4.54 12.9 1.07 35.5 11.87 0.94 15.6 QS19 22.27 1.83 147.5 121.8 32.38 241.7 6.85 19.09 1.53 10.9 2.82 152.5 1.35 4.55 12.1 1.21 35.3 12.46 0.88 12.8 QS20 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 2.92 120.5 1.29 4.51 12.1 1.25 35.6 12.46 0.89 13.9 1.57 9.84 2.94 109.4 1.27 4.44 11.3 1.29 35.7 12.11 0.92 14.1	0515	20.00	1 66	132.8	130.9	31 86	254 6	6 87	18 75	1 45	8 70	2 71	144 1	1 37	4 26	12.0	1 01	37 1	12.89	0.85	15.6
QS17 20.54 1.57 150.1 127.5 51.44 25.7 7.52 10.77 17.58 91.16 2.65 150.5 11.50 4.54 12.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 11.67 55.5 12.1 1.21 35.3 12.46 0.88 12.8 QS20 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 2.92 120.5 1.29 4.51 12.1 1.25 35.6 12.46 0.89 13.9 0.82 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92 14.1 0.92	0517	20.34	1 57	136 1	1 27 5	31 44	250 7	7 32	18 77	1 58	0.16	2.60	150.3	1 36	1 54	12.0	1.07	35.5	11 87	0.02	15.6
QS19 22.27 1.85 147.5 121.8 52.38 241.7 6.85 19.09 1.53 10.9 2.82 152.5 1.53 4.55 12.1 1.21 55.5 12.46 0.88 12.8 QS20 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 2.92 120.5 1.29 4.51 12.1 1.25 35.6 12.46 0.89 13.9 QS21 21.37 1.89 141.9 109.7 30.84 244.7 6.85 18.90 1.57 9.84 2.94 109.4 1.27 4.44 11.3 1.29 35.7 12.11 0.92 14.1 QS22 21.02 1.51 145.1 107.2 32.48 264.5 7.42 18.72 1.61 10.2 2.86 111.3 1.31 4.66 13.9 1.35 35.7 11.63 1.04 16.3 QS23 19.64 1.74 139.5 105.8 30.62 252.3 7.26 18.34 1.53 10.1	Q517	20. 54	1. 57	1 47 5	127.5	22 20	20 9. 7	1.52	10.00	1.50	10.0	2.09	150.5	1.30	4.54	12.9	1.07	25.5	12.40	0.94	12.0
QS20 21.33 1.77 142.1 113.8 30.83 244.3 6.87 18.91 1.52 9.88 2.92 120.5 1.29 4.51 12.1 1.25 35.6 12.46 0.89 13.9 QS21 21.37 1.89 141.9 109.7 30.84 244.7 6.85 18.90 1.57 9.84 2.94 109.4 1.27 4.44 11.3 1.29 35.7 12.11 0.92 14.1 QS22 21.02 1.51 145.1 107.2 32.48 264.5 7.42 18.72 1.61 10.2 2.86 111.3 1.31 4.66 13.9 1.35 35.7 11.63 1.04 16.3 QS23 19.64 1.74 139.5 105.8 30.62 252.3 7.26 18.34 1.53 10.1 2.77 109.6 1.31 4.66 11.3 1.32 34.8 12.02 1.03 15.4 QS 平均 21.04 1.73 140.9 122.3 32.13 245.1 6.880 19.26 1.550 9.730	Q519	22.21	1. 85	147.5	121.8	32.38	241.7	0.85	19.09	1.55	10.9	2. 82	152.5	1.35	4. 55	12.1	1.21	35.5	12.40	0.88	12.8
QS21 21. 37 1. 89 141.9 109.7 30.84 244.7 6.85 18.90 1.57 9.84 2.94 109.4 1.27 4.44 11.3 1.29 35.7 12.11 0.92 14.1 QS22 21.02 1.51 145.1 107.2 32.48 264.5 7.42 18.72 1.61 10.2 2.86 111.3 1.31 4.66 13.9 1.35 35.7 11.63 1.04 16.3 QS23 19.64 1.74 139.5 105.8 30.62 252.3 7.26 18.34 1.53 10.1 2.77 109.6 1.31 4.66 11.3 1.32 34.8 12.02 1.03 15.4 QS 平均 21.04 1.73 140.9 122.3 32.13 245.1 6.880 19.26 1.550 9.730 2.710 141.4 1.330 4.470 12.20 1.170 35.60 12.40 0.910 14.20 RSD [®] 0.05 0.05 0.05 0.05 0.04 0.03 0.09 0.68 0.91 1.17	QS20	21.33	1. 77	142.1	113.8	30.83	244.3	6.87	18.91	1.52	9.88	2. 92	120. 5	1.29	4. 51	12.1	1.25	35.6	12.46	0.89	13.9
QS22 21.02 1.51 145.1 107.2 32.48 264.5 7.42 18.72 1.61 10.2 2.86 111.3 1.31 4.66 13.9 1.35 35.7 11.63 1.04 16.3 QS23 19.64 1.74 139.5 105.8 30.62 252.3 7.26 18.34 1.53 10.1 2.77 109.6 1.31 4.66 11.3 1.32 34.8 12.02 1.03 15.4 QS 平均 21.04 1.73 140.9 122.3 32.13 245.1 6.880 19.26 1.550 9.730 2.710 141.4 1.330 4.470 12.20 1.170 35.60 12.40 0.910 14.20 RSD ^① 0.05 0.06 0.05 0.15 0.05 0.05 0.04 0.03 0.09 0.68 0.91 1.17 0.03 0.05 0.15 0.02 0.03 0.08 0.91 1.17 0.03 0.05 0.15 0.02 0.03 0.08 0.91 1.17 0.03 0.05 0.15 0.02 <th< td=""><td>QS21</td><td>21.37</td><td>1.89</td><td>141.9</td><td>109.7</td><td>30.84</td><td>244.7</td><td>6.85</td><td>18.90</td><td>1.57</td><td>9.84</td><td>2. 94</td><td>109.4</td><td>1.27</td><td>4.44</td><td>11.3</td><td>1.29</td><td>35.7</td><td>12.11</td><td>0. 92</td><td>14.1</td></th<>	QS21	21.37	1.89	141.9	109.7	30.84	244.7	6.85	18.90	1.57	9.84	2. 94	109.4	1.27	4.44	11.3	1.29	35.7	12.11	0. 92	14.1
QS23 19.64 1.74 139.5 105.8 30.62 25.3 7.26 18.34 1.53 10.1 2.77 109.6 1.31 4.66 11.3 1.32 34.8 12.02 1.03 15.4 QS 平均 21.04 1.73 140.9 122.3 32.13 245.1 6.880 19.26 1.550 9.730 2.710 141.4 1.330 4.470 12.20 1.170 35.60 12.40 0.910 14.20 RSD ^① 0.05 0.06 0.05 0.12 0.05 0.05 0.04 0.03 0.09 0.68 0.91 1.17 0.03 0.05 0.15 0.02 0.03 0.08 0.11	QS22	21.02	1. 51	145.1	107.2	32.48	264.5	7.42	18.72	1.61	10.2	2.86	111.3	1.31	4.66	13.9	1.35	35.7	11.63	1.04	16.3
QS 平均 21.04 1.73 140.9 122.3 32.13 245.1 6.880 19.26 1.550 9.730 2.710 141.4 1.330 4.470 12.20 1.170 35.60 12.40 0.910 14.20 RSD ^① 0.05 0.06 0.05 0.12 0.05 0.05 0.04 0.03 0.09 0.68 0.91 1.17 0.03 0.05 0.15 0.02 0.03 0.08 0.11	QS23	19.64	1. 74	139.5	105.8	30.62	252.3	7.26	18.34	1.53	10.1	2. 77	109.6	1.31	4.66	11.3	1.32	34.8	12.02	1. 03	15.4
RSD (1) 0.05 0.06 0.05 0.12 0.05 0.05 0.05 0.05 0.04 0.03 0.09 0.68 0.91 1.17 0.03 0.05 0.15 0.02 0.03 0.08 0.11	QS 平均	21.04	1. 73	140.9	122.3	32.13	245.1	6.880	19.26	1.550	9.730	2.710	141.4	1. 330	4.470	12.20	1. 170	35.60	12.40	0. 910	14.20
	RSD ⁽¹⁾	0. 05	0.06	0.05	0. 12	0. 05	0.05	0.05	0. 04	0.03	0.09	0. 68	0. 91	1.17	0. 03	0. 05	0.15	0.02	0. 03	0. 08	0.11

注: ① RSD 为标准偏差。

著富集(5< *EF*< 20), 而 Bi 和 Cd 等则达显著和极度 富集程度(*EF* 甚至大于 100)。Ba、Mo、Cr、Co、T L Th、U(V)等重金属在河床沉积物(WH、XY、QN)中 的富集不明显(*EF*< 2)。湖盆沉积物中所有重金属 元素的富集程度明显降低,即使是河床沉积物中极度

富集的 Cd, 在湖盆沉积物中也变为中等富集。

3.2 其他微量元素

沉积物中其他微量元素含量分析结果见表 2。 与重金属元素相比, 高场元素 Ga、Ge、Zr、Hf、Nb、 Ta, 及大离子亲石元素 Rb、Sr、Y、Cs 等在河床沉积

表 3 湘江沉积物重金属元素相对于 AI 的富集系数 EF 统计结果

Table 3 Enrichment factors (EF) of heavy metals relative to index element Al of the sediments

from the four sediment cores in the Xiangjiang River

沉积柱	元素	Ba	Bi	Sc	V	Cr	Mn	Со	Ni	Cu	Zn	Pb	Mo	Cd	Sn	Sb	Tl	Th	U
WH 之	最小值	0.66	8.54	10.0	1.55	1.40	2.11	1.30	1.01	1.44	1.96	3.90	0.05	5.45	4.13	4.16	1.63	1.01	1.22
U 层	最大值	0. 95	26.3	13.8	2.42	1.99	4.50	2.04	1.93	2.61	6.36	8.01	0.09	65.3	13.9	22.4	2.45	1.55	1.62
(<i>n</i> = 15)	平均值	0. 79	11.9	12.5	1.90	1.60	2.78	1.47	1.34	1.84	2.87	4.23	0.07	17.1	6.73	9.80	1.96	1.26	1.42
WH之	最小值	0.67	14.2	12.1	1.94	1.98	2.99	1.46	1.68	2.28	5.02	4.66	0.05	34.3	5.41	4.41	1.51	0.96	1.20
L层	最大值	0. 83	29.2	16.6	2.60	2.67	6.63	2.74	2.39	3.53	9.66	7.18	0.08	165	10.2	10.0	1.97	1.39	1.53
(<i>n</i> = 16)	平均值	0. 76	22.6	14.7	2. 29	2.33	3.96	1.81	2.04	3.07	7.29	6. 89	0.07	88.4	8.05	6.81	1.80	1.20	1.36
ΧΥŻ	最小值	0.67	8.30	7.98	1.34	1.32	2.23	1.03	0.64	1.13	0.33	4.01	0.04	5.95	4.53	3.56	1.73	1.01	1.13
U 层	最大值	0. 89	36.2	16.3	2.39	2.39	5.37	1.60	10.5	4.25	6.33	9.94	0.14	24.6	17.2	18.7	2.61	3.60	2.89
(<i>n</i> = 19)	平均值	0.76	24.3	14.0	2.03	1.85	3.37	1.37	1.90	2.80	4.25	757	0.10	13.6	12.2	7.55	2.32	1.55	1.53
ХYŻ	最小值	0.58	11.7	11.6	1.70	1.53	2.37	1.21	0.88	1.80	2.61	2.84	0.05	4.93	4.29	1.97	1.45	0.93	1.00
L 层	最大值	0.84	73.4	15.2	2.24	2.14	3.31	1.48	4.12	3.25	4.62	6.37	0.11	11.8	8.37	6.62	2.85	10.2	1.38
(<i>n</i> = 9)	平均值	0. 66	21.4	14.3	2.05	1.97	2.99	1.33	1.89	2.40	3.95	4.08	0. 09	10.9	8.34	5.69	1.73	1.55	1.31
ON	最小值	0. 68	23.3	15.2	2.15	1.44	3.74	1.71	2.11	2.71	5.18	5.84	0.09	39.8	13.1	7.32	1.88	1.17	1.33
QN (12)	最大值	0.73	70.3	17.3	3.89	2.29	9.27	1.97	3.53	4.38	10.2	10.9	0.19	148	24.3	21.0	2.11	1.40	1.73
(n=13)	平均值	0.72	37.0	16.8	2.48	1.89	5.96	1.83	2.62	3.46	7.90	7.52	0.13	81.3	16.5	10.7	1.97	1.27	1.55
05	最小值	0.81	2.30	16.1	2.25	1.55	1.93	1.45	1.73	1.94	1.66	1.96	0.03	2.13	2.87	1.37	1.10	0.83	0.73
Q.5	最大值	0. 99	3.19	20.9	3.08	2.23	2.69	2.01	4.51	2.68	2.37	3.39	0.26	3.99	3.91	5.98	1.25	1.02	0.93
(n= 18)	平均值	0. 91	2.60	18.9	2.69	1.93	2.26	1.81	2.61	2.57	1.95	2.49	0.07	3.17	3.08	2.49	1.19	0.92	0.85

注: 据Sutherland (2000), EF< 2, 为无明显富集; 2< EF< 5, 为中等富集; 5< EF< 20, 为显著富集; 20< EF< 40, 为高度富集; EF> 40, 为极度 富集。

柱 WH、QN、QS 的沉积物中的含量相对稳定, 其平 均值的 RSD 依次小于 0.15、0.08、0.09(*n*= 31、28、 13, 表 2)。但这些元素在 XY 沉积柱中的含量变化 仍较大(RSD 值可高达 0.60, *n*= 28)。微量元素 *EF* 值计算结果(略)表明,除 Ga 在沉积物中(*EF* 值 介于 1.3~3.9 之间, 平均 3.20, *n*= 87) 有轻度富集 之外, 其余微量元素在所有沉积柱沉积物中均不明 显富集(*EF*< 2.0)。

对一些元素比值而言,与河床沉积物(WH、 XY、QN)中重金属元素的比值变化大(如 Zn/Pb、 Zn/Cd、V/Cr等比值依次变化在 0.26~4.92、12.1 ~122、0.75~1.54 之间,其相应平均值的 RSD> 0.35)相比,Th/U、Ga/Ge、Rb/Sr、Zr/Hf、Nb/Ta、 Th/Se、Zr/Se等比值相对稳定,如WH沉积柱沉积 物的Th/U值变化在 3.2~4.4 之间(RSD< 0.09)。 虽然 XY 沉积柱上、下层这些元素的比值变化较大 (RSD> 0.12),但Ga/Ge、Zr/Hf、Nb/Ta等比值仍 明显相对稳定,各沉积柱的平均值依次变化在 10.2 ~12.7、32.2~34.9、8.04~9.4(*n*= 87)之间,相对 偏差 RSD< 0.10(表 2)。

湖盆沉积物(QS) 重金属元素比值变化也不稳 定,如Zn/Pb、Zn/Cd、V/Cr 等比值之平均值(n= 15,下同)的RSD> 0.68。但Th/U、Ga/Ge、Zr/Hf、 Nb/Ta、Th/Sc 等比值变化则明显相对稳定,其相应 平均值的 RSD< 0.05(表 2)。且 Th/U、Ga/Ge 平 均值(4.47、12.2)与河床沉积物的相应值可对比,但 Zr/Hf、Nb/Ta 平均值(35.6、12.4)明显高于河床沉 积物的相应值,而 Th/Sc 值(平均0.91)明显低于河 床沉积物。湖盆沉积物的 Rb/Sr、Zr/Sc 比值变化 明显(RSD> 0.11),且平均值(1.17、14.2)明显小于 河床沉积物相应比值。这些微量元素比值变化特 征,暗示河床与湖盆沉积物在物源和沉积环境等方 面的明显差别。值得进一步研究。

根据上述重金属微量元素在沉积物中的富集及 元素比值变化特征(表 2, 3),似可将这些重金属微 量元素分成两类:①受人为作用影响的重金属元素, 包括 Bi、Sc、Cd、V、Ni、Cu、Zn、Pb、Sn、Sb 等,这些元 素在沉积物中明显富集(*EF*> 2),且元素比值变化 大;②自然来源重金属微量元素,包括 Ba、Cr、Co、 Mo、Tl、Th、U、Ga、Ge、Zr、Hf、Nb、Ta、Rb、Sr、Y、 Cs 等,这些元素在沉积物中不富集(*EF*< 2),元素 比值变化相对较小。

3.3 铅同位素

XY、QS两沉积柱沉积物样品的 Pb 同位素分析结果见表 4。XY 柱 U 层沉积物的 Pb 同位素比值²⁰⁶ Pb/²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁸ Pb/²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁶ Pb、²⁰⁸ Pb/²⁰⁶ Pb 依次变化在 18.509~ 18.680、 15.700~ 15.728、38.811~ 38.939、0.8418~

0 8482、2.085~2 097 之间,平均依次为 18 587、 15 715、38 881、0 8453、2 0918 (*n*= 19),RSD 值依 次为 0.05、0.06、0 04、0 26、0.16。L 层沉积物 Pb 同位素比值依次变化在 18.503~18 680、15 687~ 15 714、38 774~38.953、0.8412~0.8478、2 0852 ~2 0956 之间,平均依次为 18.580、15 703、 38 863、0 8451、2.0916 (*n*= 11),RSD 值依次为 0 003、0 001、0 01、0 002、0 002)。可见,XY 柱上 层沉积物 Pb 同位素组成变化较下层大,且下层沉 积物的²⁰⁶ Pb/²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁸ Pb/²⁰⁴ Pb 等比值 明显低于上层。显示明显的分层特征,进而支持肉 眼观察的分层结果。但上、下层沉积物的²⁰⁷ Pb/²⁰⁶ Pb、²⁰⁸ Pb/²⁰⁸ Pb 值(上层平均值依次为:0.8455、 2 0918,下层:0.8451、2.0916)近相等。

湖盆 QS 柱沉积物的 Pb 同位素组成(²⁰⁶ Pb/ ²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁸ Pb/²⁰⁴ Pb、²⁰⁷ Pb/²⁰⁶ Pb、²⁰⁸ Pb/ ²⁰⁸ Pb) 变化更小(RSD 值依次为 0 003、 0 0003、 0 001、 0 002、 0 001)。 Pb 同位素比值之平均值(依次为 18 572、 15 685、 38 778、 0 8446、 2 0881, *n* = 15) 明显 低于河床 XY 柱上、下层沉积物的相应比值(表 4)。 河床(XY) 及湖盆(QS) 沉积物 Pb 同位素组成及其变 化特征、说明 Pb 同位素能用于沉积物物源示踪分析。

在²⁰⁶ Pb/²⁰⁴ Pb-²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁶ Pb/²⁰⁴ Pb-²⁰⁸ Pb/ ²⁰⁴ Pb投影图(图 3)上,沉积物投影点均位于 Stacey-Kramers 地壳增长线(Stacey and Kramers, 1975) 上方,显示 U、L 层及 QS 沉积物有基本一致的 Pb 同位素组成。且 XY、QS 沉积物与长江河流沉积物 (YZ)的 Pb 同位素组成(Millot et al, 2004; Choi et al., 2007; Zhang et al., 2008)基本一致,但与海 洋沉积物(OS, Kramers and Tolstikhin, 1997)明 显不同。表明湘江与长江河床沉积物一样,铅同位 素组成为明显富放射成因 Pb。且湘江下游河段河 床沉积物与湖盆沉积物可能有相似的 Pb 来源。

4 讨论

4.1 沉积物重金属污染

对沉积物重金属污染程度的评价,最常见的是 求地累积指数(Muller, 1969)来进行。地累积指数 计算公式如下:

Igere = log²[*C*i/(*K*(*B*i)] (2) (2)式中, *Igere* 为地累积指数, *C*i为评价元素 i 在沉积 物中的浓度, *B*i为该评价元素 i 的环境背景值, *K*为 考虑成岩作用引起背景值的变动, 一般取 1.5。

河床沉积物重金属含量变化大,故沉积物重金

属污染程度地累积指数(I_{geo}) 评价结果用箱型图来 表示(图 4)。根据地累积指数对沉积物重金属污染 的评价标准(Muller, 1969),由图 4 可知,河床沉积 物(WH、XY、QN)存在 Cd、Sb、Bi、Sn、Pb、Zn、U、 Tl、Th、Mn 等重金属污染。其中 Cd 达严重污染程 度($I_{geo} > 5$),Sb、Bi、Sn、Pb 等重金属达重度至中度 污染程度($2 < I_{geo} < 5$),而 Zn、U、Tl、Th、Mn、Cu 等 重金属为中度污染程度($1 < I_{geo} < 2$)。其余重金属 Cr、Co、Ni、V、Sc、Ba 等均未达到污染水平($I_{geo} <$ 1)。湖盆沉积物除 Cd、Sb 达中度污染程度($2 < I_{geo} <$ 4)外,其余重金属均未达到污染水平。

这一结果与已有评价结果(Qian et al., 2005; 姚志刚等,2006;郭朝晖等,2008)有明显差别,主要 原因可能是选取的环境背景值不同所致。尽管本次 工作选取的背景值(表 1)是否合理尚需进一步检 验,但所选背景值(表 1)与中国土壤背景值(鄢明才 等,1997)的对比特征,笔者认为本文选取的背景值 (表 1)有一定的合理性。

另外,本研究还表明,湖盆沉积物重金属污染的 元素种类减少,污染程度明显降低。似乎洞庭湖沉 积物重金属污染主要存在于入湖三角洲沉积物中, 而湖盆内的重金属污染则不明显。这与一些研究 (姚志刚等,2006)也不一致。由于本文仅得到一个 沉积柱 15 个样品的分析结果,故究竟洞庭湖湖盆沉 积物重金属污染怎样?还值得进一步研究。

4.2 重金属污染源

4.2.1 Pb浓度粒度效应的启示

与长江下游沉积物 Pb 含量(平均 35.0±8.5 mg/kg, Zhang, 1999)、长江河口潮间带沉积物 Pb 含 量(平均 27.3±5.6 mg/kg, Zhang et al., 2008)及长 江三角洲悬浮物的 Pb 含量(35.5 mg/kg, Feng et al., 2004)等相比,湘江入湖河段沉积物 Pb 的富集十 分明显,含量明显是长江沉积物 Pb 含量的 2 倍以上 (表 1)。因此,尽管湘江沉积物与长江沉积物具有相 似的 Pb 同位素组成,但湘江沉积物中铅的明显富集 特征,预示其 Pb 来源可能明显不同。

大量研究表明, 河流沉积物 A b O₃ 的含量是其 粘土矿物含量的指标, 沉积物 A b O₃ 含量越高, 其颗 粒粒径越小, 故沉积物 A b O₃含量被用于表征沉积 物的粒度特征(Zhang et al., 2008; Singh, 2009)。 XY 柱 U、L 层, 及 QS 柱沉积物 A b O₃含量依次变 化在 7.55%~ 19.9%、7.59%~ 20.5% 及 13.2%~ 16.2% 之间, 平均依次为 13.9% (*n*= 19)、15.7% (*n*= 11) 及 14.1% (*n*= 15), 即沉积物中 A b O₃的含

表 4 湘江沉积物 Pb 同位素比值、Pb 的富集系数及其人为源比例计算结果

 Table 4
 Pb isotopic ratios, EF values of lead, and calculated proportions of anthropogenic Pb

in	sediments	from t	the X	Y and	OS sediment	cores in the	Xiangjiang	River
	500000000				Zo beamers	eores in en.	· · · · · · · · · · · · · · · · · · ·	

++		涩 庙()	206 D1 / 204 D1	207 DL (204 DL	208 pl (204 pl	207.51 (206.51	20851 (2065)		\mathbf{D} (\mathcal{O})	\mathbf{D} (\mathcal{O})
	刀层	/木皮(cm)	19 (902	²⁰ Pb/ ²⁰ Pb	200 Pb/ 204 Pb	0. 84170	200 Pb/ 200 Pb		$PD_{anth-1}(\%)$	$PD_{anth-2}(\%)$
X 139		1~ 2	18. 6802	15. 7255	38.939	0.84179	2.08558	4.02	58.05	59.18
X Y 38		2~ 4	18. 6469	15. /1/6	38.928	0.84292	2.08765	4.48	/0.80	/1.40
X 137		4~ 0	18. 0502	15. 7218	38.902	0.84269	2.08514	4.62	05.40	05.95
X Y36		6~ 8	18.5550	15. 7083	38.848	0.84659	2.09367	5.16	75.67	76.16
X Y 35		8~ 10	18.514/	15. 7005	38.818	0.84798	2.09660	7. 59	88.23	88.79
X Y34		10~ 12	18. 5094	15.7001	38.811	0.84822	2.09687	7.78	88.85	89.40
X Y 32		12~ 14	18. 5415	15. /045	38.837	0.84700	2.09454	7.51	87.15	87.72
X Y31		16~ 18	18. 5991	15.7106	38.866	0.84471	2.08967	7.18	83.71	84.30
X Y 30	XY	18~ 20	18.6172	15. 7145	38.890	0.84408	2.08893	6.90	82.21	82.82
X Y28	柱上层	22~ 24	18.5172	15.7057	38.833	0.84814	2.09713	8.93	89.03	89.60
X Y27		24~ 26	18.5183	15. 7066	38.845	0.84817	2.09766	8.71	90.11	90.71
X Y 25		28~ 30	18. 5952	15. 7216	38.905	0.84542	2.09202	8.05	89.48	90.14
X Y24		30~ 32	18.6034	15. 7218	38.905	0.84510	2.09130	9.32	91.48	92.16
X Y23		32~ 34	18.6110	15. 7254	38.915	0. 84493	2. 09094	9.08	91.58	92.26
X Y21		36~ 38	18.6246	15. 7279	38.926	0.84448	2.09003	9.94	92.37	93.07
X Y20		38~ 40	18.6216	15. 7254	38.914	0.84447	2.08975	11.2	92.98	93.67
X Y 19		40~ 42	18.6060	15.7184	38.900	0.84483	2.09073	5.81	83.71	84.33
X Y 18		42~ 44	18. 5558	15. 7092	38.863	0. 84658	2.09435	4.35	82.41	82.99
XY17		44~ 46	18. 5844	15.7151	38.869	0.84559	2.09148	4.42	71.25	71.73
平均			18. 58/2	15. 7148	38.881	0.84546	2. 09179	7.57	82.90	83.49
RSD			(0.06)	(0.06)	(0.04)	(0.26)	(0.16)	(0.09)	(0.03)	(0.03)
X Y 15		50~ 52	18. 5633	15. 6926	38.834	0.84537	2. 09198	2.84	76.64	77.20
X Y14		52~ 54	18.6090	15.7058	38.868	0.84400	2.08867	6. 37	73.57	74.11
X Y13		56~ 58	18.6198	15. 7141	38.882	0. 84395	2.08821	5.06	73.56	74.09
X Y11		58~ 60	18.5028	15.6865	38.774	0.84781	2.09557	4.78	84.39	84.90
X Y 10	XY	60~ 62	18. 5422	15. 7000	38.836	0.84672	2.09450	4.63	82.81	83.39
XY9	柱下层	62~ 64	18. 5489	15.7026	38.848	0.84653	2.09435	4.03	81.98	82.56
XY8	11 1 12	66~ 68	18.5710	15. 7080	38.877	0. 84582	2. 09347	4.06	81.02	81.64
XY6		70~ 72	18. 5550	15.6988	38.847	0.84606	2.09359	3.26	83.12	83.72
XY4		//6~ //8	18.5738	15. 7031	38.868	0. 84543	2.09266	3.45	84.16	84.81
XY2		78~ 80	18.6206	15.7089	38.905	0.84363	2.08940	4.08	79.23	79.90
XY1		50~ 52	18.6801	15.7141	38.953	0.84122	2.08521	2.84	78.48	79.23
平均			18.5806	15.70	38.863	0.84514	2.09160	6.37	79.91	80.50
RSD			(0.003)	(0.001)	(0.001)	(0.002)	(0.002)	(0.26)	(0.05)	(0.05)
QSI		0~ 2	18.6247	15. 6882	38.814	0.84233	2.08401	2.09		
QS3		4~ 6	18. 5972	15.68/2	38.802	0.84352	2.08645	2.23		
QS4		6~ 8	18.6044	15.6844	38.814	0.84305	2.08626	1.96		
Q85		8~ 10	18. 5868	15. 6846	38. 798	0.84385	2.08/41	2.30		
QS/		12~ 14	18.5583	15.6834	38.764	0.84509	2.08879	2.60		
Q59		18~ 20	18.5107	15.6/88	38. 707	0.84701	2.09104	3.37		
QSII	og ++	20~ 22	18.4572	15.6742	38.671	0.84921	2.09513	3.39		
QS13	QS 柱	24~ 26	18. 5206	15.6815	38.732	0.84671	2.09127	2.82		
QS15		28~ 30	18. 5252	15.6815	38.737	0.84650	2.09108	2.66		
QSI7		32~ 34	18. 5476	15.6833	38.764	0.84556	2.08995	2.62		
QS19		36~ 38	18. 5747	15.6841	38.779	0.84438	2.08773	2.44		
QS20		38~ 40	18. 5986	15.6871	38.804	0.84346	2.08642	2. 21		
QS21		40~ 42	18.6076	15.6877	38.812	0.84307	2.08582	2.22		
QS22		42~ 44	18. 6455	15.6915	38.852	0.84159	2.08374	2.19		
QS23		44~ 46	18.6141	15.6894	38.823	0.84288	2.08566	2.22		
半均			18. 5715	15.6845	38.778	0.84455	2.08805	2.49		
RSD			(0.003)	(0.0002)	(0.001)	(0.002)	(0.001)	(0.17)		

注: RSD 为相对标准变差; *EF*为 Pb 的富集系数, 计算公式见文中方程(1); Pb_{anth 1}和 Pb_{anth 2}分别为根据文中方程(3)和(4) 计算得到的人为源 铅的百分比。

图 3 铅同位素比值²⁰⁶ Pb/²⁰⁴ Pb-²⁰⁷ Pb/²⁰⁴ Pb、²⁰⁶ Pb/²⁰⁴ Pb-²⁰⁸ Pb/²⁰⁴ Pb 投影图

Fig. 3 Plots of lead isotopic ratios ²⁰⁶Pb/ ²⁰⁴Pb to ²⁰⁸Pb/ ²⁰⁴Pb and ²⁰⁶Pb/ ²⁰⁴Pb to ²⁰⁸Pb/ ²⁰⁴Pb

Geochron-地幔单阶段演化线(据 Bodet and Scharer, 2001), UC-上陆壳演化线(据 Zartman and Haines, 1988); AC-平均地壳(据 Stacey and Kramers, 1975); YZ-长江沉积物(据 Millot et al., 2004; Choi et al., 2007; Zhang et al., 2008); GR-湖南花岗岩(据 Zhu, 1995); OS-海洋沉积物(据 Kramers and Tolstik hin, 1997);其他见文中

Geochron—A single-stage evolution of the earth mantle (after Bodet and Scharer, 2001); UC—the evolution of upper continental crust (after Zartman and Haines, 1988); AC—average continental crust (after Stacey and Kramers, 1975); YZ—bed sediments of the Yangtze river (after Millot et al., 2004; Choi et al., 2007; Zhang et al., 2008); GR—granites in southern Hunan Province, upper river of the Xiangjiang River (after Zhu, 1995); OS—sediment of the ocean (after Kramers and Tolstikhin, 1997); for detail see the text

量变化相对较小(RSD 值依次为 0.06、0.28 及 0.05),总体基本一致(表 1)。河床(XY 柱)沉积物 Al₂O₃与 Pb 含量明显线性正相关,L、U 层沉积物的 线性相关系数 r^2 依次为 0.849、0.40(图 5a)。但湖 盆(QS 柱)沉积物的 Al₂O₃与 Pb 含量之间明显非线 性相关(r^2 = 0.008,图 5b)。即河床沉积物 Pb 含量 有明显的粒度效应,而湖盆(QS 柱)沉积物则不然。 河床沉积物 Pb 含量明显的粒度效应表明其中的铅 有来自上游岩石风化(自然过程)贡献的 Pb。

4.2.2 Pb 同位素示踪分析

在²⁰⁷ Pb/²⁰⁴ Pb-²⁰⁶ Pb/²⁰⁴ Pb、²⁰⁸ Pb/²⁰⁴ Pb-²⁰⁶ Pb/²⁰⁴ Pb投影图上, XY、QS 柱沉积物的投影点总体不显明显的线性关系(图 3a、b)。但将 XY 柱 U、L 层及 QS 柱等不同层位沉积物分别投影作图,则不同

层位沉积物的²⁰⁷ Pb/²⁰⁴ Pb-²⁰⁶ Pb/²⁰⁴ Pb、²⁰⁸ Pb/²⁰⁴ Pb 2⁰⁶ Pb/²⁰⁴ Pb 投影点明显线性相关(图 3c、d)。XY 柱 U、L 层及 QS 柱沉积物²⁰⁷ Pb/²⁰⁴ Pb 对²⁰⁶ Pb/²⁰⁴ Pb 的 线性相关系数(r^2) 依次分别为 0. 76 (n = 19)、0. 73 (n = 11)及 0. 94 (n = 15), ²⁰⁸ Pb/²⁰⁴ Pb 对²⁰⁶ Pb/²⁰⁴ Pb 的依次分别为 0. 88、0. 89 及 0. 98。这与长江河口 沉积物 Pb 同位素比值非线性相关的特征(Millot et al., 2004; Choi et al., 2005; Zhang et al., 2008) 明显不同。而在²⁰⁷ Pb/²⁰⁶ Pb-²⁰⁸ Pb/²⁰⁶ Pb 的投影图 上,所有沉积物的投影点构成一条相关系数 $r^2 =$ 0. 89 (n = 45)的直线(图 6a)。表明湘江沉积物中的 Pb 总体为二元混合铅,即为来自两个具不同铅同位 素组成特征的源区 Pb 的混合。

· QS 柱等不同层位沉积物分别投影作图,则不同 如前述,湘江沉积物 Pb 的富集较强,人为来源 ◎ 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Pb 所占比例较高。故用²⁰⁷ Pb/²⁰⁶ Pb 对 1/[Pb] 作图 来判别铅源特征(Hansmann and Koppel, 2000;

图 6 沉积物²⁰⁷ Pb/²⁰⁶ Pb-²⁰⁸ Pb/²⁰⁶ Pb 投影(a) 及其与潜在源 Pb 同位素对比(b) 图

Fig. 6 Plots of ²⁰⁷ Pb/²⁰⁶ Pb ²⁰⁸ Pb/²⁰⁶ Pb (a) and Pb isotopic comparison (b) for potential Pb sources SL一元古宇板岩(据刘海臣和朱炳泉, 1994); GR 一花岗岩(据Zhu, 1995); CR一古生界碳酸盐岩(据陶琰等, 2001)、SKS一水口山铅锌矿矿 石(据陈毓蔚等, 1980); HPb一湘南铅锌矿矿石平均(据Zhu, 1995); H Cu一湘南某铜铅锌矿矿石(据Zhu, 1995); Dust一燃煤烟尘(据 Chen et al., 2005; Zhang et al., 2008), Coal一华南煤(据 Mukai et al., 2001; Diaz Somoano et al., 2009); SPM 一长江河流悬浮物(据Zhang et al., 2008); AE一珠三角交通排放(据 Zhu et al., 2001); CP一计算得到的人为源铅同位素比值; Ch. ore line一中国矿石铅(据 Choi et al., 2007)

SL—slates of the Proterozoic (after Liu and Zhu, 1994); GR—granite in southern Hunan Province (after Zhu, 1995); CR—carbonates of the Palaeozoic (after Tao et al., 2001); SKS—Pb-Zn ores from Shuikuoshan deposit (after Chen et al., 1980); HPb—average Pb isotopic ratios of Pb-Zn ores from shouthern Hunan Province (after Zhu, 1995); HCu—ores from a Cu Pb-Zn deposit in southern Hunan (after Zhu, 1995); Dust—dust from coal combustion (after Chen et al., 2005; Zhang et al., 2008); Coal—coal from South China area (after Mukai et al., 2001; Diaz-Somoano et al., 2009); SPM—suspended particle materials of the Yangtze River (after Zhang et al., 2008); AE—automobile exhausts distributed in the Pearl River Delta (after Zhu et al., 2001); CP—anthropogenic Pb isotopic ratios by calculation; Ch. ore line—China ore Pb isotopic line (after Choi et al., 2007)

Nguessan et al., 2009)。在²⁰⁷ Pb/²⁰⁶ Pb-1/[Pb] 图 上, XY 柱沉积物与长江河口沉积物(Zhang et al., 2008) 一样, 投影点非线性相关, 其中 U、L 层沉积物 的相关系数 r^2 分别为 0. 33 (n= 19)、0. 35 (n= 11)。 表明 XY 柱沉积物中的铅除有人为来源的Pb 之外, 还应有其他来源的 Pb。结合沉积物 Pb 粒度效应分 析结果, 这种其他来源的铅即为岩石风化(自然) 带 来的 Pb。故河床(XY 柱) 沉积物中的铅为岩石铅 (自然来源) 与人为来源的铅组成的多元混合铅。

湖盆 QS 柱沉积物的²⁰⁷ Pb/²⁰⁶ Pb-1/[Pb] 投影点 则明显线性相关(图 7a),相关系数 r^2 为 0.81 (n=15)。表明湖盆沉积物中的 Pb 主要为人为来源的 Pb(Zhang et al., 2008; Nguessan et al., 2009),而 受上游岩石风化的影响较小。这与前述铅富集特征 及铅含量粒度效应(图 5b)等分析结果相对应。虽 然河床 XY 柱与湖盆 QS 柱沉积物中 Pb 富集特征 不同,但二者的 Pb 同位素组成相似(见前述)。在 人为来源 Pb 占主导作用的前提下,河床和湖盆沉 积物中人为来源部分的 Pb 可能为相同来源的铅。 故借助 QS 柱沉积物 Pb 同位素比值与 1/[Pb]的线 性关系可厘定人为来源 Pb 的同位素组成特征。若 1/[Pb]= 0,则²⁰⁷ Pb/²⁰⁶ Pb= 0.8580 (图 7a)。该值 即代表 QS 柱沉积物中人为来源 Pb 的²⁰⁷ Pb/²⁰⁶ Pb 比值。同样,根据²⁰⁸ Pb/²⁰⁶ Pb-1/[Pb] 的线性关系可 得到人为来源 Pb 的²⁰⁸ Pb/²⁰⁶ Pb 比值为 2.1077(图 7b)。故河床和湖盆沉积物中人为来源的 Pb 可能 为来自铅同位素比值²⁰⁷ Pb/²⁰⁶ Pb= 0.8580、²⁰⁸ Pb/ ²⁰⁶ Pb= 2.1077 的源区。

湘江流域上游分布有前震旦系砂岩板岩、古生界碳酸盐岩、中新生界砂岩、印支期一燕山期花岗岩和第四系沉积物等地层岩石(图1)。这些岩石的风化产物是河床沉积物主要的物源,也是沉积物中自然来源 Pb 的主要贡献者。而流域有色金属矿床的开采、汽车尾气排放、燃煤烟尘、农业施肥等工业活动则可能构成沉积物中人为来源 Pb。由于湘江流域沉积物 Pb 同位素分析研究程度较低,这里参考邻近省区相关环境介质、流域基岩及典型 Pb-Zn 矿床矿石等的相关 Pb 同位素资料来进行对比分析。将沉积物、花岗岩(Zhu, 1995)、古生界碳酸盐岩(陶 琰等, 2001)、元古 宇板 岩(刘海 臣 和 朱炳 泉,

图 7 湖盆(QS)沉积物²⁰⁷ Pb/²⁰⁶ Pb-1/[Pb](a)和²⁰⁸ Pb/²⁰⁶ Pb-1/[Pb](b)投影图 Fig. 7 Plots of ²⁰⁷ Pb/²⁰⁶ Pb to 1/[Pb] (a) and ²⁰⁸ Pb/²⁰⁶ Pb to 1/[Pb] (b) for QS core sediments

1994)、长江河流悬浮物(Zhang et al., 2008) 以及 典型 Pb-Zn 矿矿石(陈毓蔚等, 1980; Zhu, 1995)、 华南煤(Mukai et al., 2001; Chen et al., 2005; Diaz Somoano et al., 2009)、华南燃煤烟尘(Mukai et al., 2001; Chen et al., 2005; Diaz-Somoano et al., 2009)、交通排放(Zhu et al., 2001; Chen et al., 2005) 等的 Pb 同位素比值作²⁰⁷ Pb/²⁰⁶ Pb-²⁰⁸Pb/²⁰⁶Pb 投影图(图 6b)。可见,①河床 XY 与湖 盆 OS 沉积物的²⁰⁷ Pb/²⁰⁶ Pb-²⁰⁸ Pb/²⁰⁶ Pb 投影点线性 相关地位于中国矿石铅线(Choi et al., 2007) 左上 方,反映沉积物相对富 The Pb 的特征。且沉积物与 长江河流悬浮物(Choi et al., 2007)、湖南 Pb-Zn 矿 床矿石(Zhu, 1995)的 Pb 同位素组成基本相同。 由于湘江沉积物与长江沉积物的 Pb 同位素组成相 同(图 3a, b),故推断湘江河流悬浮物与长江河流悬 浮物的 Pb 同位素组成也可能相同。因此, 与长江 一样,湘江河流沉积物是现今流域上游各种自然和 人为作用的反映。沉积物与 Pb-Zn 矿床矿石(陈毓 蔚等, 1980; Zhu, 1995) 具有十分一致的 Pb 同位 素组成, 说明流域上游 Pb-Zn 矿床的开采对沉积物 中 Pb 的贡献可能起决定性作用。 ②古生界碳酸盐 岩(陶琰等,2001)、元古宇板岩(刘海臣和朱炳泉, 1994) 等自然 Pb 源及交通排放(Zhu et al., 2001; Chen et al., 2005) 等人为源的铅同位素投影点明 显远离沉积物,且远离沉积物相关性直线。表明这 些潜在的铅源对沉积物铅的贡献较少。 ③花岗岩 (Zhu, 1995)、华南燃煤烟尘(Mukai et al., 2001; Chen et al., 2005; Diaz-Somoano et al., 2009)、华 南煤(Mukai et al., 2001; Iuoue and Tanimizu, 2008; Diaz-Somoano et al., 2009) 等潜在 Pb 源的 投影点位于矿石铅线之上. 且与沉积物投影点及其

相关性直线明显靠近。特别是,计算得到的人为 Pb 源的²⁰⁷ Pb/²⁰⁶ Pb (0.8580)、²⁰⁸ Pb/²⁰⁶ Pb (2.1077) 值 (图 7) 与华南煤及其烟尘等的²⁰⁷ Pb/²⁰⁶ Pb (2.1077) 值 (图 7) 与华南煤及其烟尘等的²⁰⁷ Pb/²⁰⁶ Pb (2.1009、2.1040) 值 (Mukai et al., 2001; Chen et al., 2005; Iuoue and Tanimizu, 2008; Diaz-Somoano et al., 2009) 十分 接近。表明沉积物中的铅与花岗岩、华南燃煤烟尘 等潜在铅源有关。故推断流域上游花岗岩风化可能 成为沉积物中自然来源 Pb 的主要贡献者。 ④沉积 物 Pb 同位素组成与湖南区域 Pb-Zn 矿床矿石的 Pb 同位素组成平均值十分一致,而与单个矿床如水口 山 Pb-Zn 矿 (陈毓蔚等, 1980)、某 Cu-Pb-Zn 矿床 (Zhu et al., 2001) 的矿石 Pb 同位素组成相差很 大。说明沉积物中人为来源的 Pb 是来自多个金属 矿床矿石 Pb 的混合铅。

综上,河床沉积物的铅主要来自花岗岩风化(自 然源 Pb)、流域上游 Pb-Zn 矿床矿石(人为源 Pb)和 燃煤烟尘(人为源 Pb)。是一个自然源 Pb 和两个人 为源 Pb 组成的多元混合铅。而湖盆沉积物中的 Pb 则主要来自流域上游 Pb-Zn 矿床矿石和燃煤烟尘, 是两个人为源 Pb 构成的二元混合铅。

4.2.3 重金属污染源

沉积物重金属污染源分析是认识重金属污染机 理和进行重金属污染防治的关键(Monna et al., 2000; Zhang et al., 2008; Borrk et al., 2009)。重 金属微量元素 Al标准化值的相关性分析显示,沉 积物中自然(岩石)来源的微量元素 Ba、Cr、Co、Mo、 Th、U、Ga、Ge、Zr、Hf、Nb、Ta、Rb、Sr、Y、Cs等与 Pb含量非线性相关,而人为来源的重金属 Sc、Cd、 Bi、V、Ni、Cu、Zn、Pb、Sn、Sb、Tl等与 Pb含量则明 显线性相关,如 Cd、Bi、Cu、Zn、Sn、Sb 等与 Pb 的相

297

关性十分明显。因此,河床沉积物中 Sc、Cd、Bi、Cu、 Zn、Sn、Sb 等人为来源的重金属与 Pb 一样,为多元 混合重金属,即来自自然过程和人为作用。自然过 程主要为流域上游花岗岩风化释放的重金属,人为 来源主要包括来自上游 Pb-Zn 矿床的重金属和燃 煤释放的重金属。湖盆沉积物重金属则主要为人为 来源,受花岗岩风化的影响较小。主要为来自 Pb-Zn 矿床矿石和燃煤烟尘构成的二元混合重金属。

4.3 人为源重金属所占比例估算

估算沉积物中重金属自然源和人为源所占比 例,对于重金属污染防治等具有重要的实际意义,也 是当前环境重金属污染研究的热点(Choi et al., 2007; Bur et al., 2009; Nguessan et al., 2009)。 对沉积物中人为来源重金属所占比例进行估算,除 了用微量元素方法(Bur et al., 2009; Nguessan et al., 2009)外,还可利用 Pb 同位素比值来进行。因 为沉积物中人为来源和自然来源的 Pb 存在如下平 衡关系(Choi et al., 2007):

 $\begin{aligned} & Pb_{m} \times ({}^{207} Pb/{}^{206} Pb)_{m} = Pb_{g\infty} \times ({}^{207} Pb/{}^{206} Pb)_{g\infty} \\ & + Pb_{anth} \times ({}^{207} Pb/{}^{206} Pb)_{anth} & (3) \\ & Pb_{m} \times ({}^{208} Pb/{}^{206} Pb)_{m} = Pb_{g\infty} \times ({}^{208} Pb/{}^{206} Pb)_{g\infty} \\ & + Pb_{anth} \times ({}^{208} Pb/{}^{206} Pb)_{anth} & (4) \end{aligned}$

其中 Pbm、Pbgeo、Pbanth 分别代表混合铅(即沉积物样 品中的 Pb)、地质(自然)来源铅、人为来源铅。 计算 时,地质来源铅的浓度取 Pb 的背景值 22.0 mg/kg (表 1), (²⁰⁷Pb/²⁰⁶Pb)_g, (²⁰⁸Pb/²⁰⁶Pb)_g, 比值取花岗 岩的值,依次为 0.83678、2.07084(Zhu, 1995); (²⁰⁷Pb/²⁰⁶Pb) anth 和(²⁰⁸Pb/²⁰⁶Pb) anth 比值取计算值 (图7b)。利用方程(2)、(3),分别计算河床沉积物 中人为来源铅所占比例 Pbanth 1、Pbanth 2,结果列于表 4。可见,两方程计算结果基本相同。河床 XY 柱上 层沉积物人为来源铅所占比例平均为 82.9% 或 83.5% (RSD= 0.03), 下层沉积物平均为79.9% 或 80.5%(RSD=0.05)。即河流沉积物中有80%的 铅为人为来源的铅。据此并根据 Pb 与重金属元素 的相关关系.推断河床沉积物中 80% 的重金属为人 为来源的.即河床沉积物中80%的重金属来自流域 上游 Pb-Zn 矿床的开采和燃煤排放等人为作用过 程。

5 结论

 (1) 湘江入湖河段沉积物明显富集 Bi、Sc、V、 Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb 等多种重金属元素,
 其中 V、Mn、Ni、Cu 等达中等富集, Sc、Zn、Pb、Sn、 Sb 等重金属为显著富集, 而 Bi 和 Cd 等则达显著和 极度富集程度。而 Ba、Mo、Cr、Co、Tl、Th、U(V)等 其他重金属在河床沉积物中富集不明显。所有在河 床沉积物中富集的重金属在湖盆沉积物中的富集程 度明显降低。

(2) 沉积物中的重金属微量元素可分成人为来 源和自然来源两类。人为来源的重金属微量元素包括Bi、Sc、Cd、V、Ni、Cu、Zn、Pb、Sn、Sb等,自然来源 的包括Ba、Cr、Co、Mo、Tl、Th、U、Ga、Ge、Zr、Hf、 Nb、Ta、Rb、Sr、Y、Cs等。

(3) 湘江入湖河段河床沉积物存在 Cd、Sb、Bi、 Sn、Pb、Zn、U、Tl、Th、Mn、Cu 等多种元素的重金属 污染,其中 Cd 达严重污染程度,Sb、Bi、Sn、Pb 等达 到中度至重度污染程度,Zn、U、Tl、Th、Mn、Cu 等 达中度或轻度污染程度,而 Cr、Co、Ni、V、Sc、Ba 等 重金属污染不明显。湖盆沉积物除存在中度污染程 度的 Cd、Sb 污染外,其余元素种类的重金属污染不 明显。

(4) 河床沉积物的铅为流域花岗岩风化带入的 自然源 Pb、流域上游 Pb-Zn 矿床的矿石 Pb(人为源 Pb)和燃煤烟尘带入的 Pb(人为源 Pb)组合成的多 元混合铅。且河床沉积物中 80%的 Pb 为人为源 Pb。湖盆沉积物中的 Pb 则以流域上游 Pb-Zn 矿床 的矿石 Pb(人为源 Pb)和燃煤烟尘带入的 Pb(人为 源 Pb)构成的人为源 Pb 为主,受上游岩石风化影响 较小。

(5) 河床沉积物存在的 Sc、Cd、Bi、Cu、Zn、Sn、 Sb 等重金属污染与 Pb 一样,为来自花岗岩风化带 入的自然源重金属、流域上游 Pb-Zn 矿床和燃煤烟 尘释放的人为源重金属。其中 80% 的重金属为人 为来源,值得引起重视。

致谢:中国科学院地球化学研究所彭建华副研 究员完成 Pb 同位素分析工作,特此致谢。感谢两 位匿名审稿人提出的建设性修改意见。

参考文献

- 陈毓蔚, 毛存孝, 朱炳泉. 1980. 我国显生代金属矿床铅同位素组成特 征及其成因探讨. 地球化学, 3: 215~229.
- 陈喜保,章申.1986. 湘江水体中重金属的化学形态及分布特征的研究.环境科学学报,6(2):131~140.
- 陶瑛, 高振敏, 金景富, 曾令交. 2001. 湘中锡矿山式锑矿成矿物质来 源探讨. 地质地球化学, 29(1): 14~20.
- 郭朝晖,肖细元,陈同斌,廖晓勇,宋杰,武斌.2008.湘江下游农田土 壤和蔬菜的重金属污染.地理学报,63(1):3~11.
- 刘海臣,朱炳泉. 1994. 湘西板溪群及冷家溪群地层时代研究. 科学通 报, 39(2): 148~150.

- 刘汉元. 1981. 地质矿产 对湘 江污染的探讨. 中南矿 冶学院学报, 3: 97~105.
- 刘汉元,李远鄂. 1984. 湘江流域若干重金属元素在岩石、残坡积物及 水中的背景值研究. 环境科学学报, 4(1):17~32.
- 刘英, 刘海臣, 李献华. 1996. 用 ICP-MS 准确测定岩石样品中 40 余 种微量元素. 地球化学, 25(6):552~556.
- 李健, 曾北危, 姚岳云. 1986. 洞庭湖水系水体环境背景值调查研究. 环境科学, 7(4): 62~68.
- 毛美洲, 刘子蕙, 魏金玺. 1983. 湘江表层底泥中重金属化学形态的研 究. 环境科学, 2(5): 35~41.
- 彭渤, Frei R, 涂湘林. 2006. 湘西沃溪 ₩-Sb-Au 矿床白钨矿 Nd-Sr-Pb 同位素对成矿流体的示踪. 地质学报, 80(4): 561~ 570.
- 彭渤,唐晓燕,余昌训,许来生,谢淑容,杨广,尹春燕,涂湘林.2009. 湘中 HJC 铀矿区土壤重金属污染的地球化学分析.地质学报, 83(1):89~106.
- 钱杏珍,李霞.1988.洞庭湖水系沉积物的地球化学背景值.科学通报,6:458~462.
- 童霆. 2005. 河口三角洲元素含量与矿产资源: 以湘资沅澧为例. 第四 系研究, 25(3): 298~ 305.
- 王东坡, 陈宗团, 汪碧华. 1987. 湘江株洲至洞庭湖江段现代沉积速率 研究. 长春地质学院学报, 17(1): 29~34.
- 鄢明才, 顾铁新, 迟华清. 1997. 中国土壤化学元素丰度与表生地球化 学特征. 物探与化探, 21(3): 161~167.
- 姚志刚, 鲍征宇, 高璞. 2006. 洞庭湖沉积物重金属环境地球化学. 地 球化学, 35(6): 629~638.
- 翟鹏济. 1985. 湘江底床稀有元素的分布特征. 环境科学, 6(2): 49~ 55.
- 翟鹏济. 1986. 株洲霞湾港底沉积物柱样中微量元素的分布. 科学通报, 112: 932~ 935.
- 张立成, 董文江, 郑建勋, 赵桂久. 1983. 湘江河流沉积物重金属的形 态类型及其形成因素. 地理学报, 38(1):55~63.
- 张立成,赵桂久,董文江,饶莉丽,赵桂久.1987.湘江水系河水的地球 化学特征.地理学报,42(3):243~251.
- 曾北危. 1982. 湘江沉积物污染初步评价. 环境化学, 1(5): 62~ 68.
- Bodet F, Scharer U. 2001. Pb isotope systematics and time integrated Th/U of SE-Asian continental crust recorded by single K-felds par grains in large rivers. Chem. Geol., 177: 265 ~ 285.
- Borrk D M, Wanty R B, Ridley W I. 2009. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed. Appl. Geochem., 24: 1270~ 1277.
- Bur T, Probst J L, Nguessan M, Probst A. 2009. Distribution and original of lead in strean sediments from small agricultural catchment draining Miocene molassic deposits (SW France). Appl. Geochem., 24: 1324~ 1338.
- Chen J S, Tan M, Li Y, Lu W, Tong Y, Zhang G, Li Y. 2005. A lead isotope record of Shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasline. Atmospheric Environment, 39: 1245~ 1253.
- Choi M S, Yi H I, Yang S Y, Lee C B, Cha H J. 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. M arine Chemistry, 107: 255~ 274.
- Diaz-Somoano M, Kylander M E, Lopez-Anton M A, Suarez-Ruiz I, Martinez-Tarazona M R, Ferrat M, Kober B, Weiss D J. 2009. Stable lead isotope compositions in selected coals from around the world and implications for present day aerosol source tracing. Environ. Sci. Technol., 43: 1078~ 1085.

- Feng H, Han X F, Zhang W G, Yu L Z. 2004. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin, 49: 910~ 915.
- Hansmann W, Koppel V. 2000. Lead-isotopes as traces of pollutants in soils. Chem. Geol., 171: 123~ 144.
- Inoue M, Tanimizu M. 2008. Anthropogenic lead inputs to the western Pacific during the 20th century. Sci. Total Environ., 406: 123~ 130.
- Kramers J, Tolstikhin I. 1997. Two terrestrial lead paradoxes, forward transport modeling, core formation and the history of the continental crust. Chem. Geol., 139: 75 110.
- Lee J S, Chon H T, Kim J S, et al. 1998. Enrichment of potentially toxic elements in areas underlain by black shales and slates in Korea. Envion. Geochem. and Health, 20: 135~ 147.
- Millot R, Allegre C J, Gaillardet J, Roy S. 2004. Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol., 203: 75~ 90.
- Monna F, Clauer N, Toulkeridis T. 2000. Influence of anthropogenic activity on the lead isotope signature of Thau Lake sediments (southern France): origin and temporal evolution. Appl. Geochem., 15: 1291~1305.
- Muller G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2(3): 108~ 118.
- Mukai H, Tanaka A, Fujii T. 2001. Regional characteristics of sulfur and lead isotope ratios in the atmosphere at several Chinese urban sites. Environ. Sci. Technol., 35: 1064~ 1071.
- Nguessan Y M, Probst J L, Bur T, Probst A. 2009. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Sci. Total Environ., 407: 2939~2952.
- Peng B, Song Z L, Tu X L, Lv H Z, Wu F C. 2004. Release of heavy metals during weathering of the Lower Cambrian black shales in western Hunan, China. Environ. Geol., 45: 1137~ 1147.
- Qian Y, Zheng M H, Gao L, Zhang B, Liu W, Jiao W, Zhang X, Xiao K. 2005. Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People's Republic of China. Environmental Contamination and Toxicology, 75: 204~ 210.
- Roussiez V, Ludwig W, Probst JL, Monaco A. 2005. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on ¹³³Cs normalized and lead isotope measurements. Environ. Pollution, 138: 167 ~ 177.
- Schettler G, Romer R L. 2006. Atmospheric Pb-pollution by premedieval mining detected in the sediments of the brackish karst lake An Loch Mor, western Island Appl. Geochem., 21: 58~ 82.
- Singh P. 2009. Major, trace and REE geochemistry of the Ganga River sediments: influence of province and sedimentary processes. Chem. Geol., 266: 251~264.
- Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet. Sci. Lett., 26: 207~ 221.

Sutherland R A. 2000. Bed sedimentassociated trace elements in an urban stream, Oahu, Hawaii. Environ. Geol., 39: 330~ 341.
Zartman R E, Haines S. 1988. The plumbotectonics model for

Pbisotopic systematics among major terrestrial reservoirs—a case bidirectional transport. Geochim. Cosmochim. Acta, 52: 1327~ 1339.

- Zhang L C, Zhao G J. 1996. The species and geochemical characteristics of heavy metals in the sediments of Kangjiaxi River in the Shuikoushan mine area, China. Appl. Geochem., 11: 217~ 222.
- Zhang J. 1999. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: significance of verine transport to the ocean. Continental Shelf Research, 19:1521~

1243.

- Zhang W G, Feng H, Chang J N, Qu J, Yu L Z. 2008. Lead (Pb) isotopes as a tracer of Pb origin in Yangtze River intertidal zone. Chem. Geol., 257: 257~ 263.
- Zhu B Q. 1995. The mapping of geochemical provinces in China based on Pb isotopes. J. Geochem. Explor., 55: 171~ 181.
- Zhu B Q, Chen Y W, Peng J H. 2001. Lead isotope geochemistry of the urban environment in the Pearl river delta. Appl. Geochem., 16: 409~ 417.

Heavy Metal Contamination of Inlet Sediments of the Xiangjiang River and Pb Isotopic Geochemical Implication

PENG Bo^{1,2)}, TANG Xiaoyan¹⁾, YU Changxun¹⁾, TAN Changyin¹⁾,

TU Xianglin³⁾, LIU Qian¹⁾, YANG Kesu¹⁾, XIAO Min¹⁾, XU Jingzhe¹⁾

1) Faculty of Resource and Environmental Science, Hunan Normal University, Changsha, 410081;

2) School of Earth and Environment, The University of Western Australia, WA 6009 Perth, Australia;

3) Guangz hou Institute of Geochemistry, Chinese Academy of Science, Guanghzou, 510640

Abstract

Xiangjiang River is one of the rivers that have been contaminated most seriously by heavy metals in China. The present study conducted a systematic analysis of concentrations of trace metals and Pb isotopic composition of the sediments using ICP-MS and MG-ICP-MS techniques. The results show that the river sediments are significantly concentrated and enriched with heavy metals Bi, Sc, V, Mn, Ni, Cu, Zn, Pb, Cd, Sn and Sb. This metal enrichment may cause heavy metal contamination to the sediments. Evaluation by using the geo-accumulation index (I_{geo}) show that the river sediments were potentially contaminated by heavy metals Cd, Sb, Bi, Sn, Pb, Zn, U, Tl, Th, Mn and Cu, among which metal Cd arrives an extremely high degree of contamination, metals Sb, Bi, Sn and Pb strongly to moderately high degree of contamination, and metals Zn, U, Tl, Th, Mn and Cu moderately to slightly high degree of contamination. However, the lake sediments were not significantly contaminated by these metals except moderately high degree of contamination of metals Cd and Sb. Pb isotopic compositions of the sediments suggest that Pb in the river sediments is a mixture of multi-sources of Pb, which Pb contributed from both natural and anthropogenic processes. Pb of natural source may be the Pb contributed from weathering of granites distributed in upper river areas, and the anthropogenic Pb may mostly include Pb from different Pb-Zn ores distributed and exploited in the upper river areas and Pb from coal combustion in the lower river areas. The proportion of such anthropogenic Pb in the river sediments is about 80%. Pb in the lake sediments is mostly composed of anthropogenic Pb from Pb-Zn ores and coal combustion, and is less influenced by Pb from granite weathering taken place in upper river areas. It can be deduced that the heavy metals Sc, Cd, Bi, Cu, Zn, Sn and Sb also are mixtures of natural and anthropogenic processes, like metal Pb. Therefore, the protection of heavy metal contamination for the region should be stressed on various industrial activities of mineral application of Pb-Zn metal ores in the watershed.

Key words: heavy metal contamination; lead isotope; Pb of anthropogenic source; Pb of natural source; sediments; the Xiangjiang River