农业环境科学学报 2010,29(9):1777-1783 Journal of Agro-Environment Science

铜-苯并[a]芘复合污染体系中铜的微生物吸附特性

叶锦韶¹², 尹 华², 白洁琼², 麦碧娴¹, 彭 辉² 张 娜²

(1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广州 510640;2.暨南大学环境工程系,广州 510632)

摘 要:研究了铜-苯并[a]芘(BaP)复合污染体系中 嗜麦芽窄食单胞菌对铜的微生物吸附特性。实验结果表明,该菌可以选择性地吸附 Cu²⁺,并把 NO5还原为 NO5, pH、投菌量、处理时间和铜浓度等因素及 BaP 均会对铜的生物吸附产生显著的影响,BaP 和这 4 个因素的相互作用对铜的生物吸附也达到了显著的水平。投菌量会对铜吸附过程中 F⁻、Cl⁻、NO5、NO5、PO³、和 SO²等离子的释放产生显著的影响,BaP 则会显著的影响 F⁻、NO5、NO5和 PO³、前浓度水平。当 BaP 的浓度为 0、0.1、1.0、10.0 mg·L⁻¹ 时 2.5 g·L⁻¹ 菌体对 pH 为 6.0、浓度为 2 mg·L⁻¹ 的铜溶液的吸附率分别高达 97.1%、93.8%、94.0% 和 93.3%。BaP 和铜在 2 h 内均没有造成菌体表面形态的明显变化 处理 10 mg·L⁻¹ Cu²⁺及其与 BaP 的复合污染 2 d 后,菌体表面会产生突起结构。

关键词 铜 苯并[a]芘 微生物吸附 烤麦芽窄食单胞菌

中图分类号:X172 文献标志码:A 文章编号:1672-2043(2010)09-1777-07

Biosorption Characteristics of Copper() from Copper-Benzo[a]pyrene Co-existed Solution

YE Jin-shao^{1,2}, YIN Hua², BAI Jie-qiong², MAI Bi-xian¹, PENG Hui², ZHANG Na²

(1.State Key Laboratory of Organic Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; 2.Department of Environmental Engineering, Jinan University, Guangzhou 510632, China)

Abstract (The biosorption characteristics of Cu^{2+} by *Stenotrophomonas maltophilia* have been studied in a benzo[a]pyrene(BaP)- Cu^{2+} combined pollution system. The results showed that *S. maltophilia* could adsorb Cu^{2+} selectively and reduce NO_3^- to NO_2^- . BaP, initial pH, biosorbent dosage, contact time and Cu^{2+} concentration were the significant factors for Cu^{2+} removal. The interactions between BaP concentration and these parameters also showed statistical significance. Moreover, the releases of F^- , Cl^- , NO_2^- , NO_3^- , PO_4^{3-} and SO_4^{2-} by different dosages of *S. maltophilia* were distinct, while the concentrations of BaP significantly affected the release of F^- , NO_2^- , NO_3^- and PO_4^{3-} . In the presence of 0, 0.1, 1 mg·L⁻¹ and 10 mg·L⁻¹ BaP, the maximum removal ratios of 2 mg·L⁻¹ Cu²⁺ at pH 6.0 were 97.1%, 93.8%, 94.0% and 93.3% respectively, when the biosorbent dosage was 2.5 g·L⁻¹. Morphological characteristics illuminated that co-existed BaP and Cu^{2+} did not present obviously toxic effects against *S. maltophilia* within 2 h. However, the cells were surrounded by granules after treated 10 mg·L⁻¹ Cu²⁺ and BaP for 2 d. **Keywords** (copper; benzo[a]pyrene; biosorption; *Stenotrophomonas maltophilia*

复合污染是广泛存在的环境问题,每个受污染的 环境都是多类型污染物联合作用的结果。复合污染物 间的交互作用,对污染物的迁移转化、生物效应和修 复技术存在的影响,仍需要系统而深入的研究。因此, 复合污染问题吸引了越来越多的科研工作者,对重金 属间、有机物间以及重金属-有机物间的毒性作用已 取得了较扎实的研究成果。

重金属-多环芳烃是水体和土壤中最常见的复合 污染种类之一,在复合污染中具有理想的代表性^[1-3]。 虽然国内外学者,在该复合污染的区域分布、迁移、生 物毒性和环境影响评估等方面做出了重要的贡献^[4-6], 但是,水体重金属-多环芳烃微生物吸附/降解的研究 仍处于启动状态,仅有为数极少的相关研究,也只是 初步地探讨了重金属-多环芳烃的微生物吸附/降解 性能,如 *Selenastrum capricornutum* 对 Cu²⁺、Cd²⁺、Zn²⁺ 等重金属离子的吸附,及对 FLU、PHE、PYR、BaP 等 多环芳烃的去除性能^[7]。因此,本文分别以铜和苯并[a]

收稿日期 2010-04-19

基金项目 国家自然科学基金委-广东联合基金(U0933002);广东省自 然科学基金(9151027501000055)

作者简介 叶锦韶(1977—),男 博士 ,讲师 ,主要研究方向为水污染控制与修复。E-mail jsye@jnu.edu.cn

通讯联系人 :尹 华 E-mail phjgc@jnu.edu.cn

芘(BaP)作为重金属与多环芳烃的代表物,开展该复 合污染情况下铜的生物吸附特性研究,对复合污染的 微生物处理具有重要的科学意义和环境价值。

1 材料与方法

1.1 材料

嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)由本课题分离保存。

培养液 2g·L⁻¹酵母浸出粉,10g·L⁻¹蛋白胨 5 g·L⁻¹NaCl 0.05g·L⁻¹MgSO₄·7H₂O pH 7.0~7.2。

BaP 购于 Sigma-Aldrich (St. Louis MO,USA), 200 mg·L⁻¹ BaP 母液由 BaP 溶于色谱级甲醇得到。 1 000 mg·L⁻¹ 铜母液由分析纯 Cu(NO₃)₂ 溶于高纯水 得到。

1.2 方法

1.2.1 微生物扩大培养

接种 S. maltophilia 于培养液中,于 30 ℃ 120 r· min⁻¹ 摇床中振荡培养 24 h。取菌液按 1%体积比接种 于新鲜培养液中,在上述条件下培养 48 h 6 000 r· min⁻¹ 离心 5 min 获取菌体。利用高纯水清洗菌体 3 次,备用。

1.2.2 铜的微生物吸附性能

(1)pH 和 BaP 对铜微生物吸附的影响: 取湿重 2.5 g·L⁻¹ 菌体,分别投加到 BaP 浓度为 0、0.1、1.0、 10.0 mg·L⁻¹ pH 为 3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、 7.0、7.5、8.0 的 2 mg·L⁻¹ 铜溶液中。 25 ℃ 100 r·min⁻¹ 摇床中振荡处理 120 min 后,于 6 000 r·min⁻¹ 离心 5 min 取上清液测定铜浓度,另设 2 批平行实验。

(2)菌体投加量和 BaP 对铜微生物吸附的影响: 分别取湿重 0.1、0.2、0.5、1.0、2.5、5.0、10.0 g·L⁻¹ 菌体, 投加到 BaP 浓度为 0、0.1、1.0、10.0 mg·L⁻¹ pH 为 6.0 的 2 mg·L⁻¹ 铜溶液中,振荡处理 120 min,离心后取上 清液测定铜浓度,另设 2 批平行实验。

(3)处理时间和 BaP 对铜微生物吸附的影响:取 湿重 2.5 g·L⁻¹ 菌体,分别投加到 BaP 浓度为 0、0.1、 1.0、10.0 mg·L⁻¹ pH 为 6.0 的 2 mg·L⁻¹ 铜溶液中,振 荡处理 10~7 200 min,于各设定时间取样离心后取上 清液测定铜浓度,另设 2 批平行实验。

(4)铜浓度和 BaP 对铜微生物吸附的影响:取湿
重 2.5 g·L⁻¹ 菌体,分别投加到 BaP 浓度为 0、0.1、1.0、
10.0 mg·L⁻¹ pH 为 6.0 的 0.02~12.50 mg·L⁻¹ 铜溶液
中,振荡处理 120 min,离心后取上清液测定铜浓度,
另设 2 批平行实验。

1.2.3 铜微生物吸附过程的阴离子变化

分别取湿重 0.1、0.2、0.5、1.0、2.5、5.0、10.0 g・L⁻¹ 菌体 投加到 BaP 浓度为 0、1.0 mg・L⁻¹ pH 为6.0 的 2 mg・L⁻¹ 铜溶液中,振荡处理 120 min 后,于 6 000 r・ min⁻¹ 离心 5 min 取上清液,用离子色谱仪ICS-900 (Dionex Sunnyvale JJSA)检测 F⁻、Cl⁻、Br⁻、NO²、NO³、PO³-和 SO²⁻ 浓度。分析柱为 Dionex IonPac[®] AS14(4 mmx 250 mm),流动相为 3.5 mmol・L⁻¹ Na₂CO₃ 和 1.0 mmol・ L⁻¹ NaHCO₃,流速 1.2 mL・min⁻¹,进样体积为 10 μL,共 开展 3 批平行实验。

1.2.4 菌体微观形态研究

取吸附 2 mg·L⁻¹ Cu²⁺和吸附 2 mg·L⁻¹ Cu²⁺+10 mg·L⁻¹ BaP 溶液 120 min 的菌体,滴加于载玻片上,迅 速风干后,利用原子力显微镜(Thermomicroscopes, USA)观察菌体微观形态,另取吸附前菌体进行对照 实验。

分別取处理 1 mg·L⁻¹ BaP、10 mg·L⁻¹ Cu²⁺和 10 mg·L⁻¹ Cu²⁺ + 1 mg·L⁻¹ BaP 2 d 后的菌液 1 mL 过滤于 0.22 μm PES 滤膜上 ,于-57~-60 ℃冷冻干燥 24 h ,真 空喷金镀膜后,利用扫描电子显微镜 (PHILIPS XL-30E SEM)进行观察和拍照。另取在双蒸水中振荡 2 d 的菌体作对照实验。

2 结果与分析

2.1 pH 和 BaP 对铜微生物吸附的影响

吸附液 pH 值是影响吸附的一个重要因素,对金 属离子的化学特性、细胞壁表面官能团的活性和金属 离子间的竞争均有显著影响。当 pH 值过低时,大量 氢离子会使吸附剂质子化,pH 值过高时,达到重金 属离子的 Ksp 值后,金属离子会生成氢氧化物沉淀, 无法体现生物吸附作用对金属的去除效果。图1的结 果也显示,pH 的变化会对铜浓度产生影响,当 pH 大 于 5.5 时,溶液中的铜浓度出现下降的趋势。

吸附实验结果则表明(图 2) pH 为 3.0 时,菌体 对铜的吸附效果较差,吸附率仅为 18%~26%,而当 pH 为 3.5~8.0 时,吸附效果理想且较平稳。该现象与 多种原因有关,当 pH 过低时,菌体表面的质子化会 抑制铜的吸附^[8-9];而且,过酸的环境对菌体正常生理 功能会产生影响,削弱菌体对铜的生物积累能力。菌 体对 pH 较宽的适应范围,说明该菌体对 pH 的适应 能力强,有利于应用到受重金属污染环境的治理中。 综合考虑 pH 对铜初始浓度的影响和菌体对铜的吸 附效果,并便于考察菌体在吸附铜的过程中,离子释

第29卷第9期

图 1 pH 值对铜浓度变化的影响

放或转化情况,以后的实验均不调节2mg·L⁻¹Cu²⁺溶 液的 pH 值(5.3~5.4)。

当处理体系分别存在 0.1、1.0、10.0 mg·L-1BaP 时,铜的吸附率均呈相同的变化趋势。可重复双因 素方差分析结果表明 pH(F-ratio=2195.1 F-crit=1.8) 和 BaP 浓度(F-ratio=101.5 F-crit=2.7)及这 2 个因素 的相互作用 对铜的吸附均产生了显著的影响。当 pH 小于 6.0 时 BaP 会对铜的吸附产生抑制作用 ,但是, 当 pH 为 6.0~8.0 时 ,BaP 反而促进了铜的吸附。

2.2 投菌量和 BaP 对铜微生物吸附的影响

吸附剂投加量是影响重金属生物吸附的重要因 素。图 3 显示,当投菌量为 0.1~1.0 g·L⁻¹时,单位质量 菌体对铜的吸附量随投菌量的增加呈线性下降的趋 势;投菌量为 2.5 g·L⁻¹ 时,吸附量的变化趋于平稳。不 少研究也有类似的结果。其主要原因是随着投菌量的 增加,吸附质与吸附剂的比例减小,从而导致单位质 量菌体可以吸附的 Cu²⁺减少。方差分析的结果表明, 投菌量(F-ratio=638.4 F-crit=2.3)对铜的吸附影响最 显著 BaP (F-ratio=48.9 F-crit=2.8) 和 BaP×投菌量

(F-ratio=18.3 F-crit=1.8) 的影响也达到了显著的水 平。当投菌量为 0.1~1.0 g·L⁻¹ 时 BaP 对铜的吸附呈 抑制趋势,但是,当投菌量大于1.0g·L-1时,BaP的存 在对铜生物吸附的影响不大。这也说明了适当高浓度 的菌体是抵抗复合污染的重要因素。

Figure 3 Effect of biosorbent dosage and BaP on the biosorption of 2 mg·L⁻¹ Cu²⁺ by 2.5 g·L⁻¹ S. maltophilia

2.3 处理时间和 BaP 对铜微生物吸附的影响

图 4 显示 ,10 min 内 S. maltophilia 就完成了大部 分铜的吸附 吸附率均高达 90%以上 随后吸附率均 小幅度增加。方差分析表明 吸附时间(F-ratio=27.0, F-crit=1.9)、BaP(F-ratio=29.0 F-crit=2.7)和吸附时 间×BaP(F-ratio=6.2 F-crit=1.6)对铜生物吸附的作用 均达到了显著的水平。但是,与溶液初始 pH 和投菌 量相比,吸附时间影响的显著程度明显小于这两个 因素。对各个吸附时间的单因素方差分析结果(表 1)表明,不同浓度 BaP 在吸附前期对铜吸附的影响 最明显。随着时间的推移 菌体对 BaP 的存在产生了

mg·L⁻¹ Cu²⁺ by 2.5 g·L⁻¹ S. maltophilia

叶锦韶等 :铜-苯并[a]芘复合污染体系中铜的微生物吸附特性

表 1 吸附时间和 BaP 对铜微生物吸附影响的方差分析

Table 1 Analysis of variance of influence of BaP concentration on Cu²⁺ removal in different time

时间/min	10	20	30	40	60	90	120	240	1 440	4 320	7 200
F-ratio	8.114	19.126	3.685	12.495	0.930	3.932	16.567	4.490	9.559	5.305	5.068
P-value	0.008	0.001	0.062	0.002	0.470	0.054	0.001	0.040	0.005	0.026	0.030
<i>F</i> -crit						4.066					

适应机制。

重金属的生物吸附通常分两个阶段:第一阶段是 快速吸附阶段,该阶段的吸附主要以表面吸附为主, 因此速度很快;第二阶段是细胞内积累阶段,由于细 胞膜的磷脂双层具有两亲性,亲水性的铜离子需要有 跨膜载体才能进入细胞内,该运输过程需要能量而且 可能会与其他元素的运输产生竞争,所以该过程是个 缓慢的阶段^[10]。

2.4 铜浓度和 BaP 对铜微生物吸附的影响

本实验按照等比的方式设定了铜的浓度,其中 2 mg·L⁻¹是铜的三级排放标准。图 5显示,铜的吸附率 随铜浓度的增加而下降,当浓度为 0.02~0.13 mg·L⁻¹ 时 *S. maltophilia* 可彻底去除溶液中的铜离子。随后, 吸附率基本呈线性下降的趋势。当铜浓度为 12.5 mg·

L⁻¹时 吸附率为47%~60%。双因素方差分析证明,铜 浓度(F-ratio=1578.4 ,F-crit=2.2)和 BaP 浓度(F-ra-tio=26.2 ,F-crit=2.7)均会显著地影响铜的生物吸附效果,铜和 BaP 浓度的增大均会抑制铜的生物吸附。BaP 与铜的联合抑制作用在这种污染物的浓度高时表现最明显。

2.5 铜微生物吸附过程的阴离子变化

活性细胞对重金属的吸附过程可能涉及菌体的 生理生化反应^[11-12],因此,本实验对不同投加量的*S. maltophilia*在 BaP 浓度为 0、1.0 mg·L⁻¹时,吸附铜后 的阴离子变化进行了检测。表 2 和表 3 结果表明, Cl⁻、NO²、PO³和 SO²基本上是随投菌量的增大而增 加;而 NO³的浓度则相反,呈下降趋势。这说明 Cl⁻、 NO²、PO³和 SO²的释放与投菌量有关,NO³浓度的降 低则表明菌体在吸附铜离子的同时,会吸附 NO³或者 把 NO³还原为 NO²。方差分析表明(表 4),投菌量与 F⁻、Cl⁻、NO²、NO³、PO³和 SO²的变化显著相关;但是 BaP 只会对 F⁻、NO²、PO³和 SO²的变化产生明显的影响。BaP 和投菌量对阴离子的变化没有显著的共同作用。

2.6 菌体表面形态观察

AFM 实验表明(图 6), 铜和 BaP 没有造成菌体表 面形态的明显变化, 各菌体均呈现杆状, 表面较粗糙。 综合全文研究结果, 各实验因素均会对铜的吸附产生 影响, 但是, 铜和 BaP 不会对菌体的表面形态产生可 观察的影响。这是因为菌体对铜和 BaP 的适应能力 较强, 而且实验所选用的污染物浓度不是太高。因此, 该复合污染没有对菌体产生明显的毒害作用。

表 2 投菌量对铜微生物吸附过程阴离子释放的影响								
Table 2	Effect of biosorbent dosage on release of anions during the biosorption of C	2u ²⁺						

			~	Ŭ	-	
投菌量/g·L⁻¹	F^{-}	Cl-	NO_2^-	NO_3^-	PO_4^{3-}	$\mathrm{SO}_4^{2\text{-}}$
0.1	0.001 8±0.001 6	0.230 8±0.191 9	0.101 1±0.015 8	4.387 3±0.263 0	0.055 2±0.032 6	0.231 5±0.137 1
0.2	0.005 0±0.000 2	2.073 7±0.265 5	0.122 2±0.008 7	4.365 1±0.104 8	0.121 1±0.023 5	0.348 7±0.038 7
0.5	0.005 4±0.001 1	2.896 6±0.318 9	0.151 7±0.005 9	4.347 4±0.381 7	0.157 9±0.009 5	0.635 1±0.056 7
1.0	0.005 5±0.000 6	3.438 1±0.109 2	0.218 7±0.010 3	4.139 6±0.273 4	0.131 3±0.017 9	0.725 7±0.190 9
2.5	0.007 3±0.002 2	4.535 7±0.255 4	0.867 7±0.092 7	3.315 7±0.381 9	0.204 8±0.032 8	0.666 8±0.088 2
5.0	0.006 6±0.000 7	5.451 3±0.289 3	2.021 9±0.089 2	1.990 3±0.232 8	0.239 5±0.038 5	1.000 0±0.154 8
10.0	0.006 2±0.001 5	9.586 0±0.721 6	2.810 8±0.043 4	1.093 2±0.164 8	0.382 3±0.078 1	1.170 9±0.138 6

表 3 投菌量和 BaP 对铜微生物吸附过程阴离子释放的影响

Table 3 Effect of biosorbent dosage and BaP on release of anions during the biosorption of Cu^{2+}

投菌量/g·L⁻¹	F^-	Cl-	NO_2^-	NO_3^-	PO_4^{3-}	SO_{4}^{2-}
0.1	0.005 0±0.000 4	1.792 5±0.181 3	0.162 2±0.010 7	4.394 5±0.355 2	0.143 0±0.006 2	0.325 6±0.030 3
0.2	0.003 1±0.001 1	2.031 7±0.239 3	0.112 0±0.003 6	3.787 4±1.481 4	0.133 6±0.007 5	0.275 3±0.109 3
0.5	0.004 3±0.000 5	2.509 5±0.108 2	0.120 3±0.013 7	4.035 8±0.229 7	0.142 4±0.005 3	0.631 7±0.118 2
1.0	0.004 9±0.000 6	3.060 7±0.159 0	0.118 2±0.004 9	3.574 7±0.448 0	$0.207 \ 5 \pm 0.067 \ 0$	0.399 4±0.021 1
2.5	0.004 8±0.001 2	5.418 7±0.842 5	0.479 1±0.372 0	2.720 0±0.652 1	0.163 4±0.005 0	1.266 5±0.213 1
5.0	0.004 8±0.000 4	5.890 4±0.233 4	1.124 3±0.285 7	1.561 5±0.355 9	0.335 7±0.052 4	0.871 6±0.119 8
10.0	0.004 3±0.000 6	9.705 4±1.854 9	1.808 4±0.050 6	0.475 3±0.054 0	0.510 3±0.023 8	1.115 2±0.205 5

表 4 投菌量和 BaP 对铜微生物吸附过程阴离子释放的方差分析

Table 4 Analysis of variance of effects of biosorbent dosage and BaP concentration on anions release

差异源	df	E ouit	F-		Cl-		NO_2^-	
		r-cm	<i>F</i> -ratio	P-value	F-ratio	P-value	<i>F</i> -ratio	P-value
投菌量	6.000	2.445	4.765	0.002	134.951	0.000	266.731	0.000
BaP 浓度	1.000	4.196	8.038	0.008	2.772	0.107	10.349	0.003
交互作用	6.000	2.445	5.071	0.001	2.031	0.095	13.025	0.000
差异源	df	Eit	NO ₃		PO ₄ ³⁻		SO ₄ ²⁻	
		<i>r</i> -crit	<i>F</i> -ratio	<i>P</i> -value	F-ratio	P-value	<i>F</i> -ratio	P-value
投菌量	6.000	2.445	43.970	0.000	65.301	0.000	39.278	0.000
BaP 浓度	1.000	4.196	7.830	0.009	19.026	0.000	0.142	0.709
交互作用	6.000	2.445	0.294	0.935	4.581	0.002	7.262	0.000

由 SEM 结果可见(图 7),对照菌体和处理 1 mg· L⁻¹ BaP 后的菌体均呈现内陷现象,这是冷冻干燥脱 水的缘故。但是,处理 10 mg·L⁻¹ Cu²⁺及其与 BaP 的复 合污染后,细胞外观呈更加饱满,而且细胞表面布满 了小的突起结构。出现该现象是由于 10 mg·L⁻¹ Cu²⁺ 会对菌体产生氧化作用,从而使细胞表面的生物分子 变性,最终导致细胞壁的硬化。经冷冻干燥后,菌体仍 能维持饱满的外观。

3 讨论

重金属废水的生物吸附法兼有对中低浓度重金 属废水处理效率高、处理费用低、菌种来源广泛、不同 的生物治理菌剂根据其生物特性,对不同的重金属具 有吸附专性和泛性、二次污染少、可回收贵重金属等

(a)対照菌体(2 μm) (b)吸附 2 mg·L⁻¹ Cu²⁺ 120 min 后的菌体(5 μm) (c)吸附 2 mg·L⁻¹ Cu²⁺和 10 mg·L⁻¹ BaP 120 min 后的菌体(3 μm)
(a)image of control sample(2 μm) (b)image of cell after biosorption of 2 mg·L⁻¹ Cu²⁺(5 μm); (c)image of cell after biosorption of 2 mg·L⁻¹ Cu²⁺ and 10 mg·L⁻¹ BaP(3 μm)
图 6 Stenotrophomonas maltophilia 的 AFM 图

Figure 6 AFM images of S. maltophilia

(a) 対照菌体 (b)处理 1 mg·L⁻¹ BaP 2 d 后的菌体 (c)吸附 10 mg·L⁻¹ Cu²⁺ 2 d 后的菌体 (d)吸附 10 mg·L⁻¹ Cu²⁺和 1 mg·L⁻¹ BaP 2 d 后的菌体 (a) image of control sample (b) image of cell after biodegradation of 1 mg·L⁻¹ BaP (c) image of cell after biosorption of 10 mg·L⁻¹ Cu²⁺;
 (d) image of cell after biosorption of 10 mg·L⁻¹ Cu²⁺ and 1 mg·L⁻¹ BaP

图 7 Stenotrophomonas maltophilia 的 SEM 图 Figure 7 SEM images of S. maltophilia

优点[13-14],在解决重金属污染和水资源短缺,以及维 护社会稳定方面倍受关注。经过近 20 a 的研究 已选 育出的重金属生物吸附菌种包括细菌¹¹⁵、酵母菌¹¹⁶、 放线菌[14]、霉菌[17]和藻类[18]在内的微生物类群,涉及 原核微生物和真核微生物的大部分种属。但是,有关 S. maltophilia 应用于生物吸附方面的研究还非常少。 因此 本文的研究结果有助于丰富生物吸附的研究成 果。与文献报道的吸附菌相比 S. maltophilia 对主要 影响因素的适应能力较强。如 Aspergillus niger^[19]、 Enteromorpha prolifera^[20]、Mucor rouxii^[8]和Lemna minor^[21] 对铜的适宜吸附 pH 分别为 4~5、3.5~4.5、5~6 和 4~ 6 Candida utilis^[16], Pseudomonas aeruginosa^[15], Enteromorpha prolifera^[20]、Mucor rouxii^[8]和 Lemna minor^[21]分别 在 5、15、20、20、40 min 时完成铜的快速吸附阶段 ,而 S. maltophilia 在 pH 为 3.5~8.0 时对铜的吸附效果理 想且较平稳,在10 min 内即达到饱和吸附值。

共存离子是影响重金属离子生物吸附和有机物 降解的重要因素。在实验室的研究中,对共存离子的 探讨主要以外源添加的方式进行。活菌体细胞内离子 的代谢、释放规律与污染物生物处理的关联,是阐明 污染物对微生物生理生化反应的作用规律,及分析污 染物生物处理机理的重要方面,也是目前重金属生物 吸附机理研究的薄弱环节。现有为数不多的研究也只 是集中于阳离子对重金属吸附影响方面,菌体阴离子 在吸附过程的释放和代谢研究则有待开展。如 Ngah W S W 等研究了壳聚糖吸附 5~30 mg·L⁻¹ Pb²⁺后,壳聚 糖释放 Ca²⁺、Mg²⁺、K⁺和 Na⁺等离子的规律,证明了 Pb²⁺ 的吸附存在离子交换^[22]。

本文不单表征了 Cu(NO₃)₂ 中的 NO₃ 变化情况, 同时分析了 NO₂ 、PO₄³⁻和 SO₄²⁺等离子的浓度变化,从 而阐明了菌体在处理 Cu(NO₃)₂ 时,可以选择性地吸 附 Cu²⁺。不存在 BaP 时,菌体对 NO₃的处理则以生物 还原的方式进行。随投菌量的增加 NO₃的减少量和 NO₂的增加量均具有理想的线性关系 线性方程和决定 系数分别为 y=-0.357 7x+4.363 1、y=0.294 5x+0.087 3 和 0.951 9、0.958 4。而当存在 BaP 时 *S. maltophilia* 对 NO₃的去除除了还原外,还有生物吸附。其原因包括 了两方面,首先,菌体利用了部分 BaP 作为碳源,相 应地,NO3 被作为氮源加以利用;其次,BaP 对菌体具 有生物毒性,会使部分菌体细胞受损,这些细胞对 NO3 进行了不耗能的生物吸附。菌体表面的微观形态 研究则证明,1 mg·L⁻¹ BaP 在 2 d 内不会对菌体产生 可观察的微观形态破坏,因此,BaP 使菌体受损而引 起的 NO3 浓度下降的贡献不大。在复合污染体系中, BaP 起了碳源的作用。

4 结论

pH、投菌量、处理时间、铜浓度和 BaP 是影响铜 单一污染体系和铜-苯并[a]芘复合污染体系中,铜微 生物吸附的重要因素。BaP 和这 4 个因素的相互作用 对铜的生物吸附也达到了显著的水平。

高浓度的 BaP (10.0 mg·L⁻¹) 会抑制铜的生物吸 附。但是,在实验设定的浓度水平,BaP 和铜在 2 h 内 均没有造成菌体表面形态的明显变化;处理 10 mg· L⁻¹ Cu²⁺及其与 BaP 的复合污染 2 d 后,菌体表面布满 了突起结构。

S. maltophilia 可以选择性地吸附 Cu^{2+} ,并把 NO_{3} 还原为 NO_{2}^{-} 。投菌量会对铜吸附过程中 $F^{-}Cl^{-}NO_{2}^{-}$ $NO_{3}^{-}PO_{4}^{+}$ 和 SO_{4}^{+} 等离子的释放产生显著的影响 BaP则会显著的影响 $F^{-}NO_{2}^{-}NO_{3}^{-}$ 和 PO_{4}^{+} 的浓度水平。当 BaP 的浓度分别为 0,0.1,1.0,10.0 mg· L^{-1} 时 2.5 g· L^{-1} 菌体对 pH 为 6.0 浓度为 2 mg· L^{-1} 的铜溶液的吸附率 分别高达 97.1%、93.8%、94.0% 和 93.3%。

参考文献:

- Amaraneni S R. Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India[J]. *Environment International*, 2006, 32(3) 294–302.
- [2] Sprovieri M, Feo M L, Prevedello L, et al. Heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in surface sediments of the Naples harbour(southern Italy)[J]. *Chemosphere*, 2007, 67(5): 998–1009.
- [3] Tang X J, Shen C F, Shi D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling 'An emerging e-waste recycling city in Taizhou area, China[J]. *Journal of Hazardous Materials*, 2010, 173(1-3) 653–660.
- [4] Geffard O, Geffard A, His E, et al. Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to *Crassostrea gigas* embryos and larvae[J]. *Marine Pollution Bulletin*, 2003, 46(4) ;481–490.
- [5] Ribeiro C A O, Vollaire Y, Sanchez-Chardi A, et al. Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the Eel (*Anguilla anguilla*) at the Camargue Nature Reserve, France[J]. *Aquatic Toxicology*, 2005, 74(1) 53-69.
- [6] Kan C A, Meijer G A L. The risk of contamination of food with toxic

substances present in animal feed [J]. Animal Feed Science and Technology, 2007, 133(1–2) 84–108.

- [7] Ke L, Luo L J, Wang P, et al. Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga *Selenastrum capricornutum*[J]. *Bioresource Technology*, 2010, 101(18) 6961–6972.
- [8] Majumdar S S, Das S K, Saha T, et al. Adsorption behavior of copper ions on *Mucor rouxii* biomass through microscopic and FTIR analysis[J]. *Colloids and Surfaces B Biointerfaces*, 2008, 63(1) :138–145.
- [9] Ertugay N, Bayhan Y K. The removal of copper() ion by using mushroom biomass(*Agaricus bisporus*) and kinetic modeling[J]. *Desalination*, 2010, 255(1-3):137-142.
- [10] Ye J S, Yin H, Mai B X, et al. Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of *Candida lipolytica* and dewatered sewage sludge[J]. *Bioresource Technology*, 2010, 101(11) 3893–3902.
- [11] Uzel A, Ozdemir G. Metal biosorption capacity of the organic solvent tolerant *Pseudomonas fluorescens* TEM08[J]. *Bioresource Technology*, 2009, 100(2) 542–548.
- [12] Gupta V K, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species :Kinetics and equilibrium studies [J]. Journal of Hazardous Materials, 2008, 152(1):407–414.
- [13] Serna D D, Moore J L, Rayson G D. Site-specific Eu() binding affinities to a *Datura innoxia* biosorbent[J]. *Journal of Hazardous Materials*, 2010, 173(1-3) 409-414.
- [14] Das N. Recovery of precious metals through biosorption A review[J]. Hydrometallurgy, 2010, 103 :180–189.
- [15] Silva R M P, Rodríguez A Á, Oca J M G M D, et al. Biosorption of chromium, copper, manganese and zinc by *Pseudomonas aeruginosa* AT18 isolated from a site contaminated with petroleum[J]. *Bioresource Technology*, 2009, 100(4) :1533–1538.
- [16] Zu Y G, Zhao X H, Hu M S, et al. Biosorption effects of copper ions on Candida utilis under negative pressure cavitation[J]. Journal of Environmental Sciences, 2006, 18(6):1254–1259.
- [17] Veit M T, Tavares C R G, Gomes-da-Costa S M, et al. Adsorption isotherms of copper () for two species of dead fungi biomasses[J]. *Process Biochemistry*, 2005, 40(10) 3303–3308.
- [18] Vijayaraghavan K, Jegan J, Palanivelu K, et al. Batch and column removal of copper from aqueous solution using a brown marine alga *Turbinaria ornate*[J]. *Chemical Engineering Journal*, 2005, 106(2): 177–184.
- [19] Dursun A Y. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper() and lead() ions onto pretreated *Aspergillus niger*[J]. *Biochemical Engineering Journal*, 2006, 28(2):187–195.
- [20] Özer A, Gürbüz G, Çalimli A, et al. Biosorption of copper () ions on Enteromorpha prolifera Application of response surface methodology (RSM)[J]. Chemical Engineering Journal, 2009, 146(3) 377–387.
- [21] Saygideger S, Gulnaz O, Istifli E S, et al. Adsorption of Cd(), Cu() and Ni () ions by *Lemna minor* L. Effect of physicochemical environment[J]. *Journal of Hazardous Materials*, 2005, 126(1–3) 96–104.
- [22] Ngah W S W, Fatinathan S. Pb()biosorption using chitosan and chitosan derivatives beads Equilibrium, ion exchange and mechanism studies[J]. Journal of Environmental Sciences, 2010, 22(3) 338–346.