西藏措勤地区则弄群火山岩源区

——地球化学及 Sr-Nd 同位素制约

刘 伟¹,李奋其¹,袁四化^{1,2},张万平^{1,3},卓皆文¹,王保弟^{1,4},唐文清¹

 (1. 中国地质调查局成都地质调查中心,四川成都 610081; 2. 中国地质科学院研究生部,北京 100037; 3. 中国地质大学地球科学与资源学院,北京 100083; 4. 中国科学院广州地球化学研究所同位素年代学和地球化学实验室,广东广州 510640)

摘 要: 西藏中冈底斯带出露大面积早白垩世则弄群火山岩。措勤地区则弄群火山岩具有较高的 SiO₂ 含量(61.91% ~ 74.28%),轻稀土元素相对富集,富集大离子亲石元素 Rb,Ba,Th、U,亏损高场强元素 Nb、Ta 等,并具 Sr 负异常,同时 具有高的初始 Sr 同位素(0.70789~0.71017)和低的 Nd 的同位素(-3.4~-9.3)特征,与壳源岩浆的地球化学特征类 似。在 ɛ N d(*t*)-(⁸⁷Sr/⁸⁶Sr);图解上,措勤地区则弄群火山岩所有样品均投于第四象限,而且都分布在上地壳与雅鲁藏 布江 M ORB 型亏损地幔混合线附近。微量元素构造环境判别图解显示,则弄群火山岩形成于岛弧环境。综合已有研 究成果以及最新1:25 万区域地质调查资料,认为措勤地区则弄群长英质火山岩很可能是幔源基性岩浆的热量促使地 壳物质脱水发生重熔的产物,其形成的大地构造背景很可能与班公湖.恕江特提斯洋南向的俯冲作用有关。 关键词:地球化学;Sr-Nd 同位素;岩石成因;措勤则弄群火山岩;冈底斯带 中图分类号:P59;P588.1 文献标识码:A 文章编号:1000-6524(2010)04036710

Volcanic rock provenance of Zenong Group in Coqen area of Tibet: geochemistry and Sr-Nd isotopic constraint

LIU Wei¹, LI Ferrqi¹, YUAN Si hua^{1,2}, ZHANG Warrping^{1,3}, ZHUO Jie wen¹, WANG Bao-di^{1,4} and TANG Werrqing¹

Chengdu Center, China Geological Survey, Chengdu 610081, China; 2. Graduate School of Chinese Academy of Geological Sciences, Beijing 100037, China; 3. College of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
 Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract: Magmatic rocks of Early Cretaceous Zenong Group are extensively developed in the Gangdise belt of T ibet, and the genesis of these rocks has given rise to much controversy. In view of this, the authors sampled and analyzed systematically felsic volcanic rocks of Zenong Group in Coqen area of Gangdise orogenic belt. The results show that magmatic rocks of Zenong Group are characterized by high SiO₂ content, relative enrichment of LREE and evident enrichment of LILE, Rb, Ba, Th and U, depletion of such HFS elements as Nb and Ta, and the appearance of Sr negative anomalies, with isotopic features of high Sr (0.707 89~ 0.710 17) and low Nd ($-3.4 \sim -9.3$). They are aluminum-oversaturated (A/CNK= 1.09~ 1.17) and geochemically similar to the crustal magma. In the diagram of $\varepsilon Nd(t) - ({}^{87}Sr/{}^{86}Sr)_i$, all the samples fall in the No. 4 quadrant and are distributed around the mixture line of the upper crust and the Yarlung Zangbo River MORB-type depleted crust, suggesting the existence of fairly abundant upper crust matters and the participation of small amounts of mantle

收稿日期: 2009-12-18; 修订日期: 2010-03-17

基金项目: 国土资源大调查资助项目"雅鲁藏布江成矿带基础地质综合研究(1212010818016)"

作者简介: 刘 伟(1983-), 男, 工程师, 主要从事青藏高原及邻区基础地质研究, 电话: 028-83229011, E-mail: cdcgs_liuwei@163.com。

^{© 1994-2012} China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

materials. Moreover, magnatic rocks of Zenong Group are extensively distributed almost in the whole region. The diagram of La/Sm-La indicates that the felsic magnatic rocks of Zenong Group are probably different partial melting products from the same magma source. The felsic magmatic rocks are greatly enriched in LREE and have a spidergram very similar to that of the upper continental crust. The tectonic setting discrimination diagram of trace elements implies that magmatic rocks of Zenong Group were formed in a island-arc tectonic setting. Based on previous research results and the latest 1: 250 000 regional geological survey, the authors hold that the felsic magmatic rocks of Zenong Group might be products of the dehydration and remelting of the crustal materials caused mainly by the heat of the mantle basic magma with the participation of some mantle materials. The tectonic setting of the magmatic rocks of Zenong Group was probably associated with the southward subduction of the Bangong Lake Nujiang River Tethys oceanic crust.

Key words: geochemistry; Sr-Nd isotope; petrogenesis; magmatic rocks of Zenong Group in Coqen; Gangdise orogenic belt

西藏冈底斯带是指位于西藏南部的印度河雅 鲁藏布江缝合带(IYZSZ)与北部的班公湖怒江缝合 带(BNSZ)之间近东西向的狭长地域,长约2500 km,南北宽150~300 km,面积达4.5×10⁵ km²的 巨型构造岩浆岩带(图1)(潘桂棠等,2004;朱弟成 等,2006)。前人对该带的研究主要集中在其南部地 区(常承法等,1973;周云生等,1981;Coulon *et al.*, 1986;Pearce and Mei,1988;李才等,2003;翟庆国等, 2005;和钟铧等,2005,2006),该带中北部地区大面 积出露的早白垩世岩浆岩,目前国内仅有少数学者 对其进行年代学和岩石地球化学的研究(宋全友等, 1999;朱弟成等,2008a,2008b;康志强等,2008)。冈 底斯带中北部广泛分布的早白垩世岩浆岩,归因于 冈底斯和羌塘地块碰撞过程中增厚下地壳的重熔 (Xu *et al.*,1985;Pearce and Mei,1988),还是冈底斯 和羌塘地块碰撞后软流圈上涌引起的地壳熔融 (Harris et al., 1990),或者是班公湖怒江洋南向俯 冲(莫宣学等,2004,2005;潘桂棠等,2006;朱弟成 等,2006)还存在激烈的争论,也有部分学者认为与 雅鲁藏布江洋壳向北俯冲有关(宋全友等,1999)。 造成这些争论的主要原因,在一定程度上是因为对 该带早白垩世岩浆岩的研究程度低以及缺少同位素 地球化学的约束。鉴于此,本文对西藏措勤地区早 白垩世则弄群进行了地球化学及Sr-Nd同位素研究, 以期为进一步查明中冈底斯早白垩世火山岩的岩石 成因和构造背景提供新资料。

1 区域地质概况和样品描述

冈底斯带自北往南分为:北冈底斯(N. Gangde-

图 1 冈底斯带构造单元 (据潘桂棠等, 2004; 朱弟成等, 2006)

Fig. 1 Tectonic subdivisions of the Gangdise orogenic belt (after Pan *et al.*, 2004; Zhu *et al.*, 2006) © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net se)、中冈底(M. Gangdese)、冈底斯弧背断隆带 (GBAFUB)和南冈底斯(S. Gangdese)(图1)(潘桂棠 等,2004;朱弟成等,2006)。则弄群火山-沉积地层 从东到西呈面状展布于噶尔-隆格尔-扎日南木错措 麦断裂带和狮泉河拉果错-永珠-纳木错-嘉黎蛇绿 混杂岩带的中冈底斯带地区,东西延伸达1000 km, 南北宽数千米到数十千米。垂向上,则弄群火山-沉 积地层下部主要为火山熔岩夹火山碎屑岩,上部主 要为沉积火山碎屑岩、火山碎屑沉积岩、正常火山质 砂砾岩夹火山熔岩和火山碎屑岩,平均厚度超过1 000 m(朱弟成等,2006)。横向上则弄群角度不整合 于下伏较老的地层之上,在措勤申扎地层分区其上 被捷嘎组(K1*j*)整合覆盖,在班戈八宿地层分区其 上则被多尼组(K1*d*)或郎山组(K1*l*)整合覆盖。

则弄群火山岩的时代,在措勤夏东英安岩中获 得 Rb-Sr 年龄为 111~114 Ma, 措勤达瓦错西夹举则 弄群下部之顶的安山玄武岩中获得 128.6 Ma 的 Ar-Ar 年龄(1: 25 万措勤县幅)[●], 在格仁错南岸的尼阿 节附近安山岩的 LA-ICP-MS 锆石 U-Pb 年龄为 113.6 ±1.0 Ma(康志强等, 2008)。措勤地区则弄群 中英安岩、流纹岩的锆石 U-Pb SHRIMP 年代学和 U-Pb LA-ICP MS 研究表明, 措勤地区则弄群火山 作用可能开始于大约 130 Ma, 停息于约 110 Ma, 作 用时间持续约 20 Ma(朱弟成等, 2008a)。笔者在研 究区所采 2 件样品的 LA-ICP-MS 锆石 U-Pb 年龄值 分别为 112.7 ±1.0 Ma 和 108.6 ±1.6 Ma(作者待 刊数据), 108.6 Ma 与措勤县南东尼雄花岗闪长岩 (108 Ma)(朱弟成等, 2008a) 的侵位时代非常吻合, 可能代表了则弄群火山活动的上限。

本文所讨论的则弄群火山岩位于措勤县城西 (图2),与上覆洁居纳卓群不整合接触,整体上朝北 东方向倾斜,倾角在30°左右。出露的岩浆岩主要有

图 2 西藏措勤地区地质简图(据: 25万措勤县幅⁹,1: 25万措勤区幅⁹修绘)

Fig. 2 Simplified geological map of Coqen area, Tibet(modified after 1 250 000 Geological Map of Cuoqen County Sheet and Coqen District Sheet)

[●] 刘登忠, 陶晓风, 马润则, 等. 2003. 中华人民共和国 1: 25 万区域地质调查报告措勤县幅.

^{●1} 环毒生個物元h 奔建兵。第demic 中华人民中和黑山 25 万区博物炼调查报告措勤区幅 rights reserved. http://www.cnki.net

英安岩、流纹岩、熔结凝灰岩、以及凝灰岩等(图 3)。 本次用于化学分析的样品为英安岩和流纹岩,二者 均具斑状结构,流纹状构造。英安岩的斑晶以中性 斜长石为主,其次为碱性长石和少量的石英,基质主 要由长石和石英组成。流纹岩的斑晶主要为石英、 碱性长石和少量的斜长石,基质多为隐晶质。

2 分析方法

为了解措勤地区则弄群火山岩的化学成分特征 和形成环境,从野外采集的样品中挑选出新鲜、弱蚀 变的 8 件样品进行主量元素、微量元素和 SrNd 同 位素分析,具体采样位置如图 2。主量元素含量由国 土资源部西南矿产资源监督检测中心完成,微量元 素和 SrNd 同位素分析由核工业北京地质研究院分 析测试研究中心完成。 主量元素使用 X 射线荧光法测定,分析误差优 于 5%, 微量元素及稀土素含量分析所用仪器为 Finnigan MAT 制造的HR-ICPMS (Element I),分 析精度: 当元素含量大于 10×10^{-6} 时, 精度优于 5%,当含量小于 10×10^{-6} 时, 精度优于 10%。SF-Nd 同位素分析在 ISOPROBE-T 热电离质谱仪上完 成,化学分析和同位素比值测试流程参考 Chen 等 (2000, 2002)介绍的方法。

3 岩石地球化学特征

3.1 主量元素

从表1可以看出,所分析的8件火山岩样品的 SiO2含量较高,均大于60%,最高者达74.28%,平 均值达69.13%。则弄群火山岩P₂O₅含量较低,为 0.05%~0.16%,平均0.10%。根据TAS分类(图 4),措勤地区则弄群火山岩属于流纹岩、英安岩组 合,而且所有样品均属亚碱性系列。根据SiO₂-K₂O 判别图,除一件样品属于钾玄岩系列外,其余均属于 中高钾钙碱性系列(图5)。8件火山岩样品均为铝 质过饱和(A/CNK=1.09~1.17)。

3.2 稀土元素

火山岩稀土元素总量在 160 × 10⁻⁶~ 212 × 10⁻⁶之间变化,平均为 181 × 10⁻⁶, 其稀土元素分布 模式均为富 LREE 的右倾曲线(图 6), (La/ Yb)_N= 4.71~ 13.09,平均 9.77。样品轻稀土元素含量类似 而中 重稀土元素含量差别较大,可能暗示了岩浆源 区的不均一性。微量元素蛛网图(图 7)显示,措勤地 区火山岩均富集大离子亲石元素Rb、Ba、Th、U,明

图 4 则弄群火山岩的 TAS 分类

Fig. 4 TAS classification of volcanic rocks of Zenong Group が辺辺4-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 5 则弄群 K₂O-SiO₂ 图

图 6 则弄群火山岩的 REE 分布模式(标准化数据 据 Sun and McDonough, 1989)

Fig. 6 Chondrite normalized REE patterns for volcanic rocks of Zenong Group (after Sun and McDonough, 1989)

显亏损高场强元素 Nb、Ta等,并具有显著的 Sr 负异 常,与成熟岛弧环境形成的火山岩具有相似的曲线 分布型式。Th 含量较高,为 8.9×10⁻⁶~16.7× 10^{-6} 。大离子亲石元素的丰度较低(Nb=6.8× 10^{-6} ~12.0×10⁻⁶,均值为 8.2×10⁻⁶;Ta=0.52× 10^{-6} ~0.84×10⁻⁶,均值为 0.63×10⁻⁶),与壳源熔 体类似。

3.3 Sr-Nd 同位素

措勤地区则弄群火山岩样品 Sr Nd 同位素组成 测试结果列于表 1。笔者在研究区所采 2 件样品的 LA-ICP MS 锆石 U-Pb 年龄值在 110 Ma 左右(作者 待刊数据),所以这里采用 110 Ma对研究区则弄群 火山岩的Sr Nd同位素进行校正。措勤地区则弄群

图 7 则弄群火山岩微量元素蛛网图(标准化数据 据 Sun 和 McDonough, 1989;大陆上地壳据 Rudnick 和 Gao, 2003)

火山岩的(87 Sr/ 86 Sr); 和 ε Nd(t)的值变化范围较 大,分别为 0. 707 89~ 0. 710 17 和 – 3. 4~ – 9. 3。 显示高 Sr 低 Nd 的特点。在 ε Nd(t) – (87 Sr/ 86 Sr); 图解上(图 8),所有样品均投于第四象限,而且都分 布在上地壳与雅鲁藏布江 M ORB 型亏损地幔混合 线附近,指示源区有较多的上地壳的物质,并有少量 的幔源物质参与。

 图 8 则弄群火山岩 ε Nd(t) - (⁸⁷Sr/⁸⁶Sr); 图解(雅鲁藏布 江 MORB 引自 Mahoney 等, 1998; 下地壳⁸⁷Sr/⁸⁶Sr= 0.7100,¹⁴³Nd/¹⁴⁴N d= 0.5115 据 Miller 等, 1999)
 Fig. 8 ε Nd(t) - (⁸⁷Sr/⁸⁶Sr); diagram of volcanic rocks of Zenong Group (Yarlung Zangbo River MORB from Mahoney et al., 1998, lower crust ⁸⁷Sr/⁸⁶Sr= 0.7100 and ¹⁴³Nd/

 144 Nd= 0.511 5 after Miller *et al.*, 1999)

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 1 措勤地区则弄群火山岩的主量元素(*w_B*/%)、微量元素、稀土元素(*w_B*/10⁻⁶)和 S+Nd 同位素分析结果 Table 1 Whole rock analyses of major (*w_B*/%), trace, rare earth elements (*w_B*/10⁻⁶) and S+Nd isotopic analyses of volcanic rocks of Zenong Group in Cogen area

岩石类型		 流纹岩		8			安山岩	英安岩
 样品号	ZL01-1	ZL02-1	ZL03-1	ZL 04-1	ZL05-1	ZL06-1	ZL07-1	ZL08-1
SiO ₂	74.28	71.43	72.78	69.73	68.99	64.54	61.91	69.38
T iO ₂	0.19	0.39	0.32	0.42	0.42	0.64	0.67	0.43
Al_2O_3	11.99	13.43	13.08	13.63	13.62	15.69	16.71	13.31
Fe ₂ O ₃	1.05	1.69	1. 32	1.57	1.33	1.98	2.23	1.95
FeU M=O	0.78	1.54	1. 51	1.91	2.08	2.00	1.01	1.50
M nO M gO	0.04	0.07	0.07	0.07	0.08	0.10	0.08	0.08
CaO	0.80	1.31	1 44	1.65	1.60	2.42	2.10	1.32
Na ₂ O	2.92	4.01	3. 56	3. 92	3. 61	3. 82	3.44	3.96
K ₂ O	3.68	2.99	3. 30	2.60	3.13	2.98	4.40	2.76
P_2O_5	0.05	0.10	0.09	0.09	0.09	0.16	0.15	0.09
灼失量	3.04	2.29	2.24	2.88	3.27	3.43	4.12	3.46
	99.42	99.81	100.11	99.53	99.34	99.55	99.32	99.84
Se	4.20	7.17	5. 68	8.02	7.68	13.40	13.20	8.66
V	15.4	34.6	25.4	35.8	34.2	45.6	45.3	55.7
Cr	11.00	13.80	11.20	12.40	12.30	9.80	4.80	14.10
Co	2.24	4.59	6.41	5.34	4.98	5.63	5.73	5.30
N 1	1.42	1.89	1. 54	1.65	1.45	1.55	1.08	1.63
Ga	12.5	12.9	12. 7	13.1	12.6	16. 1	16.0	14.0
Rb	109.0	87.0	93.0	71.0	97.0	85.0	122.0	94.0
Sr	70.0	110.0	118.0	109.0	101.0	194. 0	107.0	117.0
Ŷ	21.20	21.20	20.20	21.40	20.70	35.20	39.20	26.70
Zr	138	167	148	173	162	341	409	205
Nb	7.50	7.00	6.90	7.10	6.80	10.30	12.00	7.70
Cd	0.16	0.30	0.09	0.09	0.08	0.08	0.08	0.07
Cs	5.50	4.40	5. 50	6.00	6.00	8.30	10.60	6.10
Ba	852	644	833	694	601	444	470	623
La	38.3	38.3	42. 7	36.1	33.0	30.5	28.4	43.4
Le D	66. 0 6 75	62.3	68.3 7.56	62.3	59.9	59.9 7.07	60.0	/8.8
PT N J	0.73	0.88	7. 50	0.51	0.20	7.07	0.80	8.37
IN d Sm	22.1	23.0	20.0	23.2	21.9	27.7	20.5	30. 3 5. 51
Sili	5. 52	5.91	5. 95	4.03	5.77	J. 02	J. 08	5.51
Eu	0.78	1.04	1.00	0.97	0.97	1.05	1. 54	1. 34
Ga Th	5.58	4.01	5. 75	5.82	5.47	5.71	J. 82	4.98
10	0.55	0.02	0.50	0.39	0.50	0.94 5.70	1.03	0.79
Dy Lo	5. 59 0. 72	5.03	5. 50	5.04	5.45 0.76	5.79 1.22	0.00	4.75
по Е.	0.72	0.77	0.75	0.79	0.70	1.23	1.39	0.97
Er T	2.27	2.34	2.51	2.34	2. 34	5.00	4. 31	2.98
1 m Vb	0.35	0.35	0.33	0.36	0.35	0.55	0.63	0.42
I D	2.49	2. 38	2.34	2.40	2. 52	5.78	4.33	2.82
Lu Hf	0.39	0.35	0. 54	0.30	0.33	0.30 8.55	0.03	0.42 5.44
Ta	4.71	4.70	-1. 57	4. 51	4.57	0.71	0.84	0.60
Ta Ph	0.70	0. 34 8. 02	0.58	0. 34 5. 03	0.32	5.45	0.84	0.00 8.58
Tb	16.7	11 3	13 7	10.8	10.9	8.9	11 0	12 1
III II	2 60	1 80	2.00	1.70	1.60	2.00	2 10	2.00
٥ ٨ F 11	2.00	0.80	2.00	1.70	0.82	2.00	2.10	2.00
(La/Yb) y	11 03	11 54	13 00	10.79	10.20	5 79	4.71	11 04
$(La/Tb)_{\rm N}$	7 36	7 27	8 11	7 21	7 17	4 40	3.85	7 76
A/CNK	1 17	1 10	1 09	1 11	1 11	1 13	1 17	1 11
⁸⁷ Sr/ ⁸⁶ Sr	0.716.25	0, 712.86	0.712.56	0.713.13	0.713 59	0.71154	0.713.05	0.712.90
εSr	24.70	19.84	19.42	20. 23	20.88	17.95	20.11	19.90
⁸⁷ Rb/ ⁸⁶ Sr	4. 495 49	2. 273 49	2. 281 06	1.89118	2.77664	1.26525	3. 296 44	2.32032
$(^{87}\! m Sr/^{86} m Sr)_{i}$	0.70923	0.70931	0.709 00	0.71017	0.709 25	0.70956	0.70789	0.70927
¹⁴³ Nd/ ¹⁴⁴ Nd	0.51216	0. 512 37	0. 512 31	0. 512 23	0.51223	0.51241	0.51212	0.51217
¹⁴⁷ Sm / ¹⁴³ Nd	0.09694	0. 100 84	0.09616	0. 105 72	0. 104 77	0. 123 48	0. 130 45	0.11068
$^{1+0}N d/ ^{1+0}N d_{(i)}$	0.512.09	0.51230	0.51224	0.51215	0.51215	0.51232	0.51202	0.512.09
$\varepsilon \operatorname{Nd}(t)$	- 8.0	- 3.9	- 5. I 1 1	- 6. 7	- 6. /	- 3.4	- 9.3	- 8.0
·DM (Ga)	1. 5	1.1	1.1	1. 3	1. 5	1.0	1. /	1. J

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

4 讨论

4.1 岩石成因

一般认为. 长英质火山岩主要有两种可能的成 因: 一是幔源基性岩浆经历广泛结晶分异和同化混 染作用的产物(Bacon and Druitt, 1988; Ingle et al., 2002);二是来自幔源基性岩浆的热量促使地壳物质 脱水发生重熔的产物(Roberts and Clemens, 1993; Tepper et al., 1993; Guffanti et al., 1996), 其特征 是 Al、Th、LR EE 富集, ε Nd(t) 值为大的负值。措勤 地区则弄群的火山岩具有较高 Th 丰度,为 8.9× 10⁻⁶~13.7×10⁻⁶(平均11.9×10⁻⁶), 暗示它们很 可能与中上地壳物质(Th 分别为 6.5× 10^{-6} ,10.5× 10⁻⁶, Rudnick and Gao, 2003) 有关。从以下证据本 文倾向性的认为研究区 110 Ma 左右的则弄群长英 质火山岩很可能是来自幔源基性岩浆的热量促使地 壳物质脱水发生重熔的产物: ①区域上,长英质火 山熔岩在则弄群火山岩中规模很大,并几乎遍布全 区⁰⁰⁰⁰⁰,除此之外,这样大规模的炽热岩浆和火 山灰流在相对较短的时间内喷发,很难用基性岩浆 的分异残余来解释,同样在La/Sm-La图解(图9)

中可以看出研究区则弄群火山岩可能是同一岩浆源 区不同部分熔融的产物。②长英质火山熔岩明显 富集 Th 和 LREE, 并具有与上部陆壳非常相似的蛛 网图曲线;③在 $\varepsilon N d(t) - ({}^{87}Sr)$;图解上,所有 样品均投于第四象限,而且都分布在上地壳与雅鲁 藏布江 M ORB 型亏损地幔混合线附近,指示源区有 较多的上地壳的物质,并有少量的幔源物质参与。 另外,基本同期的冈底斯带中北部花岗岩类具有大 的负 $\varepsilon N d(t)$ 值(-5.3~-17.3)(莫宣学等,2005), 也支持中冈底斯带长英质火山岩浆活动与地壳重熔 有关。

4.2 构造环境

冈底斯带中北部在早白垩世出现的大规模火山 喷发作用、构成一条东西长达1000 km、厚达 1000 m 的火山岩带。这种强烈的火山活动暗示该 地区在早白垩世可能是位于活动大陆边缘,现有的 区域地质调查资料和最新的研究成果表明为则弄群 火山岩产于钙碱性岛弧火山岩区(1:25万狮泉河 幅⁶、革吉幅⁶、措勤县幅⁶、邦多区幅⁶、申扎县幅⁶) (朱弟成等, 2006, 2008b)。在微量元素构造环境判 别图解 Rb-(Y+ Nb) 图解(图 10) 和 Rb/30-Hf-3Ta 图解(图 11)中,中冈底斯则弄群长英质火山岩样品 均位于火山弧区, 暗示了弧火山岩的亲缘性。值得 指出的是,区域地质调查(1:25万狮泉河幅⁹、革吉 幅⁶、措勤县幅⁰、邦多区幅⁹、申扎县幅⁶)表明,冈 底斯带中北部晚早白垩世火山岩浆活动主要发生于 滨浅海、浅海、陆相、河流三角洲等海陆交互相环境 (含大量爆发相火山碎屑岩),在措勤地区则弄群上 部凝灰岩中还发现了乔木硅化木(1:25万措勤县 幅),这些都是岛弧带的重要地质特征。结合上述地 球化学判别图解得到的信息,有理由相信则弄群火 山岩浆活动发生于岛弧环境。最新的研究表明,从 北冈底斯带到中冈底斯带岩浆岩锆石 Hf 同位素存 在向南的负梯度变化,表明班公湖,怒江洋向南俯冲 (Zhu et al., 2009), 朱弟成等(2009a, 2009b)将 110 Ma解释成在冈底斯带与羌塘同碰撞背景下.班 公湖 怒江洋岩石圈板片的断离引起的,问题的焦点

● 刘登忠,陶晓风,马润则,等. 2003. 中华人民共和国 I: 25 万区域地质调查报告措勤县幅.

- ❷ 许荣科,茨 邛,庞振甲,等. 2004. 中华人民共和国 I: 25 万区域地质调查报告狮泉河幅.
- 汪友明, 尹显科, 徐 韬, 等. 2003. 中华人民共和国 1: 25 万区域地质调查报告革吉幅.
- ④ 谢国刚, 邹爱建, 袁建芽, 等. 2003. 中华人民共和国 I: 25 万区域地质调查报告邦多区幅.

● 王天武,程立人,李 才,等. 2003. 中华人民共和国 1: 25 万区域地质调查报告申扎县幅.

© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 10 则弄群火山岩 Rb(Y+Nb) Fig. 10 Rb versus (Y+Nb) diagram of volcanic rocks of Zenong Group

图 11 则弄群火山岩 Rb/30 Hf-3Ta 图解 Fig. 11 Rb/30 Hf-3Ta diagram of volcanic rocks of Zenong Group

集中在班公湖 怒江洋的关闭时间上, 这有待于对班 公湖 怒江缝合带蛇绿岩形成年龄的积累, 据已有的 资料表明班公湖 怒江缝合带中存在 110 M a 洋岛 (王忠恒等, 2005; 朱弟成等, 2006), 这表明早白垩 世班公湖 怒江洋仍然存在, 上述岩石成因研究表 明, 则弄群火山岩是来自幔源基性岩浆的热量促使 地壳物质脱水发生重熔的产物, 因此把则弄群火山 岩形成大地构造背景解释成受班公湖 怒江洋向南 俯冲有关是合理的。

5 结论

(1) 措勤地区 110 Ma 左右的则弄群火山岩为 一套以中酸性岩为主的岩石组合, 属中 高钾钙碱性 系列, 轻稀土元素相对富集, 具 Eu 负异常; 富集大离 子亲石元素 Rb、Ba、Th、U, 亏损高场强元素 Nb、Ta 等, 并具 Sr 负异常; 同时具有高的变化范围大的初 始 Sr 同位素和 Nd 同位素组成。

(2) 措勤地区 110 Ma左右的则弄群长英质火 山岩很可能是幔源基性岩浆的热量促使地壳物质脱 水发生重熔的产物,并可能还受到了幔源物质加入 的影响。

(3) 措勤地区则弄群火山岩形成的大地构造背 景很可能与班公湖 怒江特提斯洋南向的俯冲作用 有关。

致谢 在成文过程中,得到了中国地质调查局 成都地质调查中心尹福光研究员、耿全如研究员、廖 忠礼研究员的指导和大力支持,在此深表谢意。特 别感谢评审老师的建设性评审意见。

References

- Bacon C R and Druitt T H. 1988. Compositional evolution of the zoned calcalkaline magma chamber of mount Mazama, crater Lake, Oregon[J]. Contribution to Mineralogy and Petrology, 98: 224~256.
- Chang Chengfa and Zheng Xilan. 1973. Discussion on the formation of western-eastern ranges in Himalayas and Qinghai-Xizang Plateau and characteristics of geological structure in Everest region[J]. Science in China(Series D), 2: 190~ 201(in Chinese).
- Chen F K, Hegner E and Todt W. 2000. Zircon ages, Nd isotopic and chemical composition of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc[J]. Earth Science, 88: 791~ 802.
- Chen F K, Sibel W, Satir M, *et al.* 2002. Geochronology of the Kæradere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone[J]. Earth Science, 91: 469~481.
- Coulon C, MaluskiH, Bollinger C, et al. 1986. M esozoic and Cenozoic volcanic rocks from central and southem Tibet: ³⁹Ar/⁴⁰Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 79: 281~ 302.

Harris N B W, Inger S and Xu R. 1990. Cretaceous plutonism in central Tibet: An example of post-collision magmatism? [J]. Journal of vol-

志

canology and Geothermal Research, 44: 21~ 32.

- He Zhonghua, Yang Deming, Zheng Changqing, et al. 2005. Geochemistry of the Indosinian granitoids in the M amba area, Gangdise belt, Tibet and its tectonic significance[J]. Geological Bulletin of China, 24(4): 354~359(in Chinese with English abstract).
- He Zhonghua, Yang Deming, Zheng Changqing, et al. 2006. Isotopic dating of the Mamba granitoid in the Gangdese tectonic belt and its constraint on the subduction time of the Neo-Tethys[J]. Geological Review, 52(1): 100~ 106(in Chinese with English abstract).
- Ingle S, Weis D and Frey F A. 2002. In dian Continental Crust Recovered from Elan Bank, Kerguelen Plateau(ODP Leg 183, Site 1 137) [J]. Journal of Petrology, 43: 1 241~1 257.
- Kang Zhiqiang, Xu Jifeng, Dong Yanhui, et al. 2008. Cretaceous volcanic rocks of Zenong Group in north-middle Lhasa block: products of southward subducting of the Slainajap ocean? [J]. Acta Petrologica Sinica, 24(2): 303~ 314(in Chinese with English abstract).
- Li Cai, Wang Tianwu, Li Huimin, et al. 2003. Discovery of Indosinian megaporphyritic granodiorite in the Gangdese area: evidence for the existence of Paleo-Gangdese[J]. Geological Bulletin of China, 22 (5): 364~ 366(in Chinese with English abstract).
- Mahon ey J, Frei R, Tejadal M, et al. 1998. Tracing the Indian ocean mantle domain through time: isotopic results from old west Indian, east Tethyan, and south Pacific seafbor[J]. J. Petrol., 39(7): 1 285~ 1 306.
- Miller C, Schuster R, Klotzli U, et al. 1999. Post-collisional potassic and ultrapotassic magmatism in SWT ibet; geochemical and St-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology, 40 (9): 1 399~ 1 424.
- Mo Xuanxue, Zhao Zhidan, Deng Jinfu, et al. 2004. M esozoie-Cenezoic igneous rocks in Tibetan Plateau as lithoprobe to the lithospher [A]. Chen Yuntai, Teng Jiwen, Kan Rongju, et al. Progress in Seismology and Physics of the Earth Interior in China[C]. Beijing: Seismologic Press, 449~ 461(in Chinese).
- Mo Xuanxue, Dong Guochen, Zhao Zhidan, et al. 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution [J]. Geological Journal of China Universities, 11(3): 281~ 290(in Chinese with English abstract).
- Pan Guitang, Ding Jun and Wang Liquan. 2004. Geobgical Map of Qinghai-Xizang Plateau and its Adjacent Regions[M]. Chengdu: Chengdu Cartographic Publishing House: 1~ 133(in Chinese).
- Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521~ 533(in Chinese with English abstract).
- Pearce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud[J]. Royal Society of London Philosophical Transactions, Series A, 327: 169~ 201.
- Roberts M P and Clemens J D. 1993. Origin of high-potassium, calcalkaline, I-type granitoids[J]. Geology, 21: 825~ 828.

implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research, $101:3001 \sim 3013$.

- Rudnick R L and Gao S. 2003. The Composition of the Continental Crust[A]. Rudnick R L. The Crust Vol. 3, Treatise on Geochemistry [C]. Elsevier, Oxford, 1~ 64.
- Song Quanyou and Chen Qinghua. 1999. Lithogeochemical characteristics of the volcanic tocks in the Early Cretaceous of Zenong Group in Cuoqin basin of Qinghai Xizang area[J]. Journal of the University of Petroleum, China, 23(5): 17~ 19(in Chinese).
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [A]. Saunders A D and Norry M J. Magmatism in the Ocean Basins [C]. J. Geol. Soc. London, Spec. Publ., 42: 313~345.
- Tepper J H, Nelson B K, Bergantz G W, et al. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: Generation of cale alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contribution to Mineralogy and Petrology, 113: 333~ 351.
- Wang Zhongheng, Wang Yongsheng, Xie Yuanhe, et al. 2005. The Tarenben oceanie island basalts in the middle part of the Bangong-Nujiang suture zone, Xizang and their geological implications [J]. Sedimentary Geology and Tethyan Geology, 25(1~2): 153~162 (in Chinese with English abstract).
- Xu R H, Sch⁴rer U and All gre C J. 1985. Magmatism and metamorphism in the L hasa block (T bet): A geochronological study [J]. Journal of Geobgy, 93: 41~ 57.
- Zhai Qingguo, Li Cai, Li Huimin, et al. 2005. U-Pb zircon age of leucogranite in the central Gangdese, Tibet, and its geological significance[J]. Geological Bulletin of China, 24(3): 349~ 353(in Chinese with English abstract).
- Zhou Yunsheng, Zhang Qi and Mei Houjun. 1981. Magmatic activities and metamorphisms in Tibet[M]. Beijing: Science Press, 1~ 146 (in Chinese with English abstract).
- Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. 2006. Late Jurassic Early Cretaceous geodynamic setting in middle northern Gangdese: new insights from volcanic rocks[J]. Acta Petrologica Sinica, 22 (3): 534~ 546(in Chinese with English abstract).
- Zhu Dicheng, Pan Guitang, Wang Liquan, et al. 2008a. Spatial and Temporal variations of the Mesozonic Volcanic Rocks in the Gangdese Belt, Tibet and discussion on geodynamic setting-related issues involved in their generation[J]. Geological Bulletin of China, 27(9): 1535~1550(in Chinese with English abstract).
- Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, et al. 2008b. Zircon U-Pb geochronology of Zenong Group volcanic rocks in Coqen area of the Gangdese, Tibet and tectonic significance[J]. Acta Petrologica Sinica(in Chinese with English abstract).
- Zhu Dicheng, Mo Xuanxue, Niu Yaoling, *et al.* 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical

375

Guffanti M. Clynne M. A. and Muffler L. J. P., 1996. Thermal and mass © 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- Zhu Dicheng, Mo Xuanxue, Wang Liquan, et al. 2009a. Petrogenesis of highly fractionated Ftype granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and S+Nd-Hf isotopes[J]. Sci. China. Ser. D, 39 (7): 833~ 848(in Chinese with English abstract).
- Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, et al. 2009b. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethy an evolution: New perspective[J]. Earth Science Frontiers, 16(2): 1 ~ 20(in Chinese with English abstract).

附中文参考文献

- 常承法,郑锡澜. 1973. 中国西藏南部珠穆朗玛地区地质构造特征及 其青藏高原东西向诸山系形成的探讨[J]. 中国科学(D辑), 2: 190~201.
- 和钟铧,杨德明,郑常青,等. 2005. 西藏冈底斯带门巴地区印支期花 岗岩地球化学特征及其构造意义[J].地质通报,24(4):354~ 359.
- 和钟铧,杨德明,郑常青,等. 2006. 冈底斯带门巴花岗岩同位素测年 及其对新特提斯洋俯冲时代的约束[J]. 地质评论, 52(1): 100 ~ 106.
- 康志强,许继峰,董彦辉,等. 2008. 拉萨地块中北部白垩纪则弄群火 山岩: Slainajap 洋南向俯冲的产物? [J]. 岩石学报, 24(2): 303 ~ 314.
- 李 才, 王天武, 李惠民, 等. 2003. 冈底斯地区发现印支期巨斑花岗 闪长岩: 古冈底斯造山的存在证据[J]. 地质通报, 22(5): 364~ 366.
- 莫宣学,赵志丹,邓晋福,等. 2004. 青藏高原中新生代火成岩的深部 探针意义:若干新成果与新认识[A]. 陈运泰,滕吉文,阚荣举, 等. 中国大陆地震学与地球内部物理学研究进展[C]. 北京:地

震出版社, 449~ 461.

- 莫宣学,董国臣,赵志丹,等. 2005. 西藏冈底斯带花岗岩的时空分布 特征及地壳生长演化信息[J]. 高校地质学报,11(3):281~ 290.
- 潘桂棠,丁 俊,王立全. 2004. 青藏高原及邻区地质图说明书[M]. 成都地图出版社: 1~133.
- 潘桂棠,莫宣学,侯增谦,等. 2006. 冈底斯造山带的时空结构及演化 [J]. 岩石学报,22(3): 521~533.
- 宋全友,陈清华.1999. 青藏措勤盆地下白垩统则弄群火山岩岩石地 球化学特征[J]. 石油大学学报(自然科学版),23(5):17~19.
- 王忠恒, 王永胜, 谢元和, 等. 2005. 西藏 班公湖-怒江缝 合带中段塔 仁本洋岛型玄武岩的发现及地质意义[J]. 沉积与特提斯地质, 25(1~2): 153~162.
- 翟庆国,李 才,李惠民,等. 2005. 西藏冈底斯中部淡色花岗岩锆石
 U-Pb年龄及其地质意义[J]. 地质通报, 24(3): 349~353.
- 周云生,张 旗,梅厚均. 1981. 西藏岩浆活动和变质作用[M]. 北 京:科学出版社, 1~146.
- 朱弟成,潘桂棠,莫宣学,等. 2006. 冈底斯中北部晚侏罗世-早白垩 世地球动力学环境:火山岩约束[J].岩石学报,22(3):534~ 546.
- 朱弟成,潘桂棠,王立全,等. 2008a. 西藏冈底斯带中生代岩浆岩的 时空分布和相关问题的讨论[J]. 地质通报,27(9):1 535~ 1 550.
- 朱弟成,莫宣学,赵志丹,等. 2008b. 西藏冈底斯带措勤地区则弄群 火山岩锆石 U-Pb 年代学格架及构造意义[J]. 岩石学报, 24 (2): 1~12.
- 朱弟成,莫宣学,王立全,等. 2009a. 西藏冈底斯东部察隅高分异Ⅰ型 花岗岩的成因: 锆石 U-Pb 年代学、地球化学和 S+Nd Hf 同位素 约束[J].中国科学 D 辑, 39(7): 833~ 848.
- 朱弟成,莫宣学,赵志丹,等. 2009b. 西藏南部二叠纪和早白垩世构造 岩浆作用与特提斯演化:新观点[J]. 地学前缘, 16(2): 1~20.