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ABSTRACT

New sensitive high-resolution ion micro-
probe (SHRIMP) U-Pb zircon ages, geo-
chemical data, and a synthesis of existing 
stratigraphic, geochronologic, and geochemi-
cal results from the Tarim block and the 
Central Asian orogenic belt in northwestern 
China suggest the presence of a Per mian 
(ca. 275 Ma) large igneous province (the 
Bachu  large igneous province). The large ig-
neous province consists predominantly of co-
eval mafi c rocks (basalts and mafi c-ultramafi c  
intrusions) having an aerial coverage of more 
than 600,000 km2, and its formation was ac-
companied by voluminous emplacement of 
A-type granites. This large igneous province, 
interpreted to be of mantle plume origin, is 
~15 m.y. older than the ca. 260 Ma Emeishan 
large igneous province in southwestern China 
and ~25 m.y. older than the 251 Ma Siberian 
Trap in Russia. Such a sudden fl air up of 
plume activity in the Permian may represent 
the early stage of the Pangean superplume 
event. The Permian plumes likely played a 
role in late Paleozoic rapid continental crustal 
growth in the Central Asian orogenic belt. 
In addition, there appear to be two types of 
mantle geochemical provinces (domains) in 
the region, a long-term enriched Tarim prov-
ince and a subduction-metasomatized and de-
pleted Central Asian orogenic belt province.

INTRODUCTION

The western part of the Central Asian oro-
genic belt in the Xinjiang Urgur Autonomous 
Region, northwestern China (Fig. 1), is believed 

to have been consolidated by the mid-Carbon-
iferous (Sengör et al., 1993; Zhou et al., 2004; 
Li, 2006; Zhao et al., 2007; Yuan et al., 2007). 
The Tarim block in southern Xinjiang is also be-
lieved by some to have been amalgamated with 
the Central Asian orogenic belt by that time 
(Xinjiang B.G.M.R., 1993; Shu et al., 2000; Li, 
2006), though Zhang et al. (2007) recently sug-
gested that orogenesis in the Xinjiang section 
of the Central Asian orogenic belt continued 
until the Triassic, based on geochronological 
data from eclogites in Western Tienshan. None-
theless, because (1) the ages of the ophiolites 
in southern Altay and Tienshan range from 
540 Ma to 325 Ma, and no ophiolite younger 
than 320 Ma has ever been documented, and 
(2) late Carboniferous to Permian granites are 
typically of postorogenic type (Han et al., 1999, 
2004, 2006; Jiang et al., 2001; Chen and Jahn, 
2004), it is likely that the Tarim block and the 
western part of the Central Asian orogenic belt 
were amalgamated by ca. 320 Ma.

The western Central Asian orogenic belt is re-
nowned for being an area of major continental 
crustal growth in the late Paleozoic, as shown by 
an enormous amount of Permian-Carboniferous  
juvenile magmatism in the region (e.g., Jahn 
et al., 2004). However, the cause(s) of such an 
episode of crustal growth is still poorly under-
stood. Magmatic products include Permian 
basalts , mafi c-ultramafi c intrusions, and A-type 
granites that are widespread in the Tarim block, 
the Tienshan Ranges, the Altay Mountains, and 
several basins north of Tienshan (the Santanghu, 
Tuha, and Junggar Basins; Fig. 1). Published 
tectonic settings for these coeval igneous rocks 
include melting due to postorogenic slab de-
lamination (a predominant view; e.g., Han et al., 
1999; Solomo vich and Trifonov, 2002; Jahn 
et al., 2004; Chen and Jahn, 2004; D.W. Zhou 

et al., 2006; X.H. Zhang et al., 2008), continental 
rifting magmatism due to the north-dipping sub-
duction of the Paleotethys oceanic crust (Yang 
et al., 1995, 2007), magmatism in an extensional-
transtensional tectonic regime (DeJong et al., 
2008), and mantle-plume–related processes 
(Zhou et al., 2004; Xia et al., 2004; Borisenko 
et al., 2006; C.L. Zhang et al., 2008; Pirajno et al., 
2008; Yarmolyuk and Kozlovsky, 2009).

In order to further test these competing mod-
els, we obtained new sensitive high-resolution 
ion microprobe (SHRIMP) U-Pb zircon geo-
chronological and geochemical data for mafi c 
and granitic intrusions south of Altay City, and 
conducted a comprehensive review of existing 
stratigraphic, geochronologic, and geochemical 
results from the Xinjiang region, covering a lat-
eral extent of ~1500 km. Based on these data, we 
argue that a Permian mantle plume in Tarim and 
the western Central Asian orogenic belt could 
account for the formation of the voluminous 
basalts, ultramafi c-mafi c intrusions, and A-type 
granites, and that this Permian plume event con-
tributed to the late Paleozoic continental growth 
in the western Central Asian orogenic belt.

PERMIAN INTRUSIVE ROCKS 
SOUTH OF ALTAY

Regional Geology and Petrography

We investigated intrusive rocks in the south-
ern part of the Altay orogenic belt at the west-
ern part of the Central Asian orogenic belt 
(Figs. 1 and 2A). The Altay orogenic belt is 
considered to have been consolidated with the 
Junggar block at ca. 380–360 Ma along the Erqisi  
(west)–Mayinebo  (east) suture zone (Yuan 
et al., 2007; Tang et al., 2007; Sun et al., 2008). 
This is supported by the formation of the late 
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 Carboniferous to Permian anorogenic granites 
and the continental facies of the Permian strata 
(Xinjiang B.G.M.R., 1999; Zhou et al., 2009). 
Our study focuses on four types of Permian in-
trusive rocks in the region south of Altay, i.e., 
the Hongguleneng ultramafi c complex, the 
Mayinebo gabbro, the Dasazi bimodal intrusive 
complex, and the Chaergan granites (annotated 
with a, b, c, and d in Figs. 1 and 2).

Hongguleneng Ultramafi c Intrusions
Previous studies have suggested that the Hong-

guleneng ultramafi c-mafi c rocks were members 
of a late Neoproterozoic to early Paleozoic ophio-
lite complex between the Altay orogenic belt and 
the Junggar block (Fig. 2A; Bai and Zhou, 1988, 
1989, 1991; Peng et al., 1991; Huang et al., 1999). 
A Sm-Nd isochron age of 626 ± 25 Ma was re-
ported by Huang et al. (1999). Main rock types 
of the complex include serpentinized dunite , 
lherzolite, pyroxenite, websterite, and gabbro. All 
the rocks are cumulates, containing variable oli-
vine, orthopyroxene, clinopyroxene, plagioclase, 
and spinel, and they constitute a layered intrusive 
complex (for detailed petrographic descriptions, 
see Bai and Zhou, 1989; Peng et al., 1991). The 
ultramafi c members are intensively serpen-
tinized, but relic olivine and pyroxene are well 
preserved in thin sections. On several outcrops, 

gabbroic pegmatite with megacrystal pyroxene 
and plagioclase can be seen. All these features 
suggest that the complex was crystallized from 
a basaltic magma.

Mayinebo Gabbroic Stocks and Dikes
The Mayinebo gabbroic stocks and dikes in-

trude mainly the ca. 289 Ma Mayinebo granites 
and the Sinian Kuwei Group (G. Zhou et al., 
2006; Fig. 2B). They are fi ne grained, and no 
accumulation textures are observed in thin sec-
tions. Main minerals are pyroxene (50%–70%, 
clinopyroxene + orthopyroxene), plagio clase 
(30%–50%), and minor olivine and Ti-Fe 
oxides . In the central part of one stock (with 
~0.1 km2 of exposure), there are gradual transi-
tions between fi ne-grained gabbro and coarse-
grained gabbro (or gabbroic pegmatite). A 
coarse-grained gabbroic sample, consisting of 
~50% plagioclase, ~45% clinopyroxene, and 
~5% quartz, was collected for geochronological 
analyses (Fig. 2B; sample 07AL03, correspond-
ing to the geochemical sample 07AL03–11).

Dasazi Gabbro-Granodiorite Bimodal 
Intrusive Complex

In the Dasazi gabbro-granodiorite (granite) 
complex (Fig. 2C), gabbro and granodiorite are 
found to be interweaving at the outcrop scale, 

and at several outcrops, gabbros are seen to 
have been gradually “dissolved” into the grano-
diorites. These features indicate that gabbro and 
granodiorite were emplaced at the same time, 
with possible mass exchanges between them. 
The gabbro is mainly composed of plagioclase 
(40%–50%), clinopyroxene (40%–50%), and 
minor hornblende (1%–10%), biotite (<2%), 
and quartz (<1%). Accessory minerals include 
Ti-Fe oxides, apatite, and zircon. The grano-
diorite is mainly composed of plagioclase 
(30%–45%), microcline (15%–25%), quartz 
(25%–35%), hornblende (5%–20%), biotite 
(1%–5%), and accessory minerals such as 
apatite and zircon. All the rock types are fresh, 
and no deformation or hydrothermal alteration 
has been observed in the fi eld. A 275 ± 12 Ma 
whole-rock Rb-Sr isochron age was obtained by 
the No. 2 Geological Party of Xinjiang Bureau of 
Geology and Mineral Resources (1998).

Chaergan Granite
The Chaergan granite is located northeast 

of the Mayinebo fault (Fig. 2D). It intrudes 
the Sinian Kuwei Group. Main rock types in-
clude granite, granodiorite, and potassic granite. 
Gabbro  enclaves with 0.5–2 m × 0.5–2 m dimen-
sions are seen mingling with the granite at sev-
eral outcrops. The granitic rocks are composed  
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Figure 1. Sketch map of geo-
logic tectonic units of the Tarim 
block and part of the Central 
Asian orogenic belt (CAOB) in 
Xinjiang, showing the distri-
bution of the Permian basalts, 
 ultramafic-mafic intrusions, 
mafi c dikes, and A-type gran-
ites, and their ages (the red, 
blue, and yellow stars represent 
the locations of the reported 
ages of the mafi c dikes and 
mafic-ultramafic intrusions, 
basalts, and granitic intrusions, 
respectively). Ages obtained in 
this study are marked with a, 
b, c, and d (data and U-Pb con-
cordia plots are presented in 
Table 1 and Figure 3). Inset 
in the lower-left corner shows 
the locations of the Central 
Asian orogenic belt and the 
major continental blocks in 
the study region.
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of plagio clase (25%–50%), microcline (25%–
50%), quartz (15%–30%), hornblende (1%–
10%), and biotite (1%–5%). Accessory minerals 
include zircon, apatite, and allanite. The gab-
bros that mingle with the granites share similar 
petrography with the Mayinebo gabbro.

Analytical Methods

One geochronological sample each was col-
lected from the Hongguleneng  ultramafi c-mafi c 
complex (07AL01, 46°47′17″N, 86°24′31″E), 
the Mayinebo gabbroic intrusion (07AL03, 
46°35′8″N, 90°11′57″E), the Dasazi bimodal 
intrusion (Dasazi gabbro-granite complex) 
(07AL06, 46°15′34″N, 90°48′45″E), and the 
Chaergan granitic pluton (06Q4, 46°31′10″N, 

88°21′35″E). Mineral separation was carried 
out fi rst using conventional magnetic and den-
sity techniques to concentrate the nonmag-
netic, heavy fractions. Zircon grains were then 
extracted by handpicking under a binocular 
microscope. Zircon ages were analyzed using 
the SHRIMP U-Pb method. Zircon grains were 
cast into an epoxy mount, which was then pol-
ished to section the crystals in half for analysis. 
Zircons were documented with transmitted and 
refl ected light photomicrographs and cathodo-
luminescence (CL) images to reveal their 
inner  structures. Before measurement, the 
mount was vacuum-coated with high-purity 
gold. U-Th-Pb analyses of samples 07AL01, 
07AL03, and 07AL06 were conducted using 
the SHRIMP II (A) ion microprobe at Curtin 

University of Technology under standard 
operating conditions (Williams, 1998), and 
sample 06Q4 was analyzed in the Beijing 
SHRIMP Centre, Chinese Academy of Geo-
logical Sciences. U-Th-Pb ratios were deter-
mined relative to the 91500 standard zircon, 
and the U and Th absolute abundances were 
determined relative to the SL13 standard zir-
con. Measured compositions were corrected 
for common Pb using nonradiogenic 204Pb, 
and an average crustal composition (Stacey 
and Kramers, 1975) appropriate to the age of 
the mineral was assumed. Software SQUID 
1.0 and ISOPLOT  (Ludwig, 1999, 2001) were 
used for data processing . The weighted mean 
ages are quoted at 95% confi dence level. U-Pb 
zircon data are presented in Table 1.

1 km
Clinopyroxene lherzolite

Dunite

Dioritic gabbro

Gabbroic dolerite

Lherozolite

Plagioclase-bearing lherzolite

Early Carboniferous basaltic-
andesitic volcanic rocks

Gabbro

A

90°15′E

46°20′N

46°30′N

90°30′E90 15¡EO

90°30′E

46°30′N

46 20¡NO

+
+

+
++

+

+

+
+

+

++

+
+

+

+
+
+ +

+ +
++ +

+

+

+
+

+

+
+

+ +

+
+

+
+ +

++

+

+

+

+

+

+ +

+

+

Fig.1B D

289 Ma
Chaergan
pluton

Gabbro

Hadansun
pluton

(06Q4)

2 km

M
on

go
li

a

Dasazi

C

90 43′°
46 13′°

90 57′°
46 13′°

90 43′°
46°20′

Carboniferous

Ordovinian

+
+

+= Granite

Gabbro

200 m

Zk

Zk

07AL03

B

granodiorite
/granite

fault

gabbro

+ +
D K1

500 m

Mongolia
Kazakhstan Russia

Altay

Qinghe

Fig.1A

Fig.1B,D
Fig.1C

Junggar Block

2 km

Mayinebo pluton

07AL01

07AL06

Mayinebo fault zone+ +
granodiorite
/granodiorite-granite

gabbro

Fault

Zk Sinian Kuwei Group

Zk

Altay Orogenic Belt

Erqisi-Mayinebo
suture zone

Quaternary

Quaternary

Quaternary

Figure 2. Simplifi ed geological map for (A) the Hongguleneng ultramafi c-mafi c complex (after Bai and Zhou, 1991), (B) the Mayinebo gabbro 
dikes and plutons, (C) the Dasazi bimodal intrusive complex, and (D) the Chaergan granitic pluton. The northeastern-striking faults in B and 
C are part of the Mayinebo faults zone. Inset in the upper left corner of A shows the locations of the studied rock bodies.



A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume?

 Geological Society of America Bulletin, November/December 2010 2023

TABLE 1. SENSITIVE HIGH-RESOLUTION ION MICROPROBE (SHRIMP) U-Pb DATA FOR ZIRCONS 
FROM THE MAFIC AND BIMODAL INTRUSIVE COMPLEX IN SOUTH OF ALTAY

Spot U
(ppm)

Th
(ppm) Th/U f206

#

(%)

206Pb*/238U
(±1σ)

207Pb*/235U
(±1σ)

207Pb*/206Pb*
(±1σ)

206Pb/238U age (Ma) (±1σ) 207Pb/206Pb age (Ma) (± 1σ)

07AL01 (Hongguleneng ultramafi c-mafi c complex)
1.1 160 84 0.54 0.18 0.0445 2.0 0.31 4.3 0.0513 3.8 280.5 5.6 258 86
2.1 103 61 0.61 0.48 0.0800 2.1 0.54 5.3 0.0492 4.9 496.2 10.1 162 113
3.1 717 602 0.87 0.00 0.0438 1.9 0.31 2.4 0.0515 1.5 276.3 5.1 262 34
4.1 114 57 0.52 0.00 0.0424 2.1 0.31 4.3 0.0526 3.7 267.6 5.5 313 85
5.1 162 104 0.66 0.16 0.0428 2.1 0.27 5.9 0.0451 5.5 270.3 5.6 –50 133
6.1 607 591 1.01 –0.07 0.0425 1.9 0.31 2.5 0.0535 1.7 268.3 5.0 350 38
7.1 927 927 1.03 0.16 0.0425 1.9 0.30 2.7 0.0509 1.9 268.3 5.0 238 44
8.1 234 158 0.70 –0.13 0.0436 2.0 0.31 3.4 0.0520 2.7 275.2 5.4 285 62
9.1 303 225 0.76 0.46 0.0440 2.0 0.31 4.5 0.0520 4.1 277.3 5.4 288 91

10.1 651 165 0.26 0.21 0.0438 1.9 0.31 2.7 0.0511 2.0 276.2 5.2 248 45
11.1 260 126 0.50 0.00 0.0430 2.2 0.32 4.4 0.0533 3.8 271.4 5.9 343 86
12.1 241 118 0.50 0.13 0.0432 2.0 0.31 3.6 0.0527 3.0 272.9 5.3 315 68
13.1 912 118 0.13 0.16 0.0438 1.9 0.31 2.4 0.0516 1.5 276.6 5.1 267 35
14.1 807 789 1.01 0.04 0.0430 1.9 0.31 2.7 0.0518 1.9 271.6 5.0 279 44
15.1 1261 137 0.11 0.21 0.0422 1.9 0.29 2.5 0.0505 1.6 266.4 4.9 222 37
16.1 504 275 0.56 0.29 0.0439 1.9 0.30 3.5 0.0498 2.9 277.1 5.2 190 67
17.1 145 75 0.54 –0.94 0.0446 2.1 0.37 6.8 0.0598 6.5 281.1 5.8 590 138
18.1 149 72 0.50 –0.31 0.0431 2.1 0.33 3.7 0.0549 3.1 272.1 5.5 407 70

07AL03 (Qingh mafi c intrusion or dikes)
1.1 495 292 0.61 –0.08 0.0449 1.9 0.34 2.8 0.0556 2.0 283.1 5.3 436 44
2.1 1319 11 0.01 0.06 0.0434 1.9 0.31 2.3 0.0510 1.3 274.0 5.1 241 30
3.1 226 71 0.33 0.22 0.0412 2.1 0.28 4.9 0.0494 4.4 260.5 5.3 168 103
4.1 412 405 1.02 –0.07 0.0498 1.9 0.35 2.8 0.0514 2.0 313.5 5.9 257 45
5.1 189 71 0.39 0.89 0.0428 2.1 0.28 8.1 0.0478 7.8 270.5 5.5 91 186
6.1 167 74 0.46 0.71 0.0429 2.2 0.28 6.2 0.0469 5.8 270.6 5.8 43 139
7.1 521 307 0.61 –0.01 0.0422 1.9 0.30 2.8 0.0523 2.0 266.2 5.1 298 45
8.1 481 392 0.84 0.36 0.0423 1.9 0.29 3.6 0.0502 3.1 266.9 5.0 204 72
9.1 363 278 0.79 0.39 0.0434 2.0 0.29 4.1 0.0483 3.6 274.0 5.2 116 85

10.1 444 377 0.88 0.47 0.0419 1.9 0.29 3.5 0.0501 2.9 264.8 5.0 201 67
11.1 409 305 0.77 0.09 0.0435 2.0 0.30 3.2 0.0505 2.6 274.5 5.3 218 59
12.1 419 253 0.62 0.39 0.0446 1.9 0.30 4.1 0.0487 3.6 281.0 5.3 132 85
13.1 431 248 0.59 –0.21 0.0437 1.9 0.32 2.7 0.0538 1.9 275.9 5.2 363 43
14.1 127 45 0.36 1.06 0.0428 2.1 0.26 7.1 0.0433 6.8 270.1 5.6 –151 168
15.1 427 280 0.68 0.35 0.0430 1.9 0.29 3.6 0.0495 3.1 271.3 5.1 170 72
16.1 1222 942 0.80 0.18 0.0435 1.9 0.31 2.5 0.0514 1.7 274.4 5.1 257 38
17.1 669 492 0.76 –0.16 0.0453 1.9 0.33 2.8 0.0525 2.1 285.4 5.3 309 47
18.1 263 158 0.62 0.24 0.0424 2.0 0.31 3.6 0.0522 3.1 267.5 5.2 295 70
19.1 1024 708 0.71 0.02 0.0444 1.9 0.32 2.4 0.0527 1.5 279.9 5.2 314 33
20.1 288 181 0.65 0.41 0.0425 2.0 0.29 4.3 0.0488 3.8 268.3 5.2 139 90

07AL06 (Gabbro from the Dasazi bimodal intrusive complex)
1.1 395 251 0.66 0.59 0.0445 1.9 0.29 4.3 0.0466 3.8 280.9 5.3 31 91
2.1 259 209 0.83 0.15 0.0418 2.0 0.30 3.3 0.0517 2.7 264.2 5.1 272 62
3.1 458 326 0.74 0.47 0.0431 1.9 0.29 4.3 0.0487 3.8 271.9 5.2 133 90
4.1 677 106 0.16 0.81 0.0432 1.9 0.30 5.4 0.0507 5.0 272.9 5.2 228 116
5.1 279 150 0.56 –0.06 0.0425 2.0 0.30 3.2 0.0519 2.5 268.3 5.2 279 57
6.1 219 15 0.07 0.39 0.0419 2.0 0.27 5.8 0.0465 5.5 264.7 5.2 26 131
7.1 295 128 0.45 1.09 0.0432 2.0 0.31 6.3 0.0523 5.9 272.4 5.3 298 135
8.1 898 65 0.08 0.08 0.0433 1.9 0.30 2.4 0.0504 1.4 273.0 5.1 214 33
9.1 266 134 0.52 0.91 0.0420 2.0 0.32 6.6 0.0549 6.3 265.0 5.2 409 141

10.1 360 186 0.53 0.77 0.0430 2.0 0.29 4.9 0.0488 4.5 271.4 5.2 138 106
11.1 142 16 0.11 0.91 0.0439 2.1 0.31 2.1 0.0520 9.9 277.0 5.8 286 226
12.1 272 30 0.11 0.38 0.0430 2.0 0.31 4.1 0.0518 3.6 271.4 5.2 275 82
13.1 213 132 0.64 0.54 0.0434 2.0 0.28 5.2 0.0470 4.8 273.7 5.4 48 116
14.1 217 132 0.63 0.78 0.0424 2.0 0.28 5.2 0.0472 4.8 267.5 5.2 61 115
15.1 142 52 0.38 0.52 0.0422 2.1 0.27 6.1 0.0459 5.8 266.3 5.4 –9 139
16.1 463 352 0.79 0.42 0.0420 1.9 0.28 4.0 0.0484 3.5 265.4 5.0 121 83
17.1 210 99 0.48 0.19 0.0407 2.0 0.29 3.7 0.0509 3.1 257.3 5.0 235 72

06Q4 (Chaergan granite)
1.1 286 80 0.29 1.19 0.04288 2.3 0.250 26 0.042 26 270.7 6.1 –211 642
2.1 344 98 0.30 17.24 0.04392 2.0 0.256 15 0.0422 15 277.1 5.3 –213 374
3.1 486 100 0.21 6.30 0.04462 1.8 0.324  6.1 0.0527  5.8 281.4 5.0 314 133
4.1 686 253 0.38 3.07 0.04299 1.8 0.321  5.3 0.0541  5.0 271.3 4.7 376 113
5.1 353 76 0.22 2.71 0.05277 1.9 0.416  6.0 0.0572  5.7 331.5 6.1 498 125
6.1 390 153 0.41 0.76 0.04348 2.0 0.272 13 0.0453 13 274.4 5.3 –38 305
7.1 317 110 0.36 0.80 0.0485 2.1 0.311 18 0.0464 17 305.6 6.2 20 420
8.1 630 151 0.25 1.15 0.04357 1.8 0.326  7.9 0.0542  7.6 274.9 4.9 379 172
9.1 253 198 0.81 2.14 0.0440 2.3 0.309 22 0.051 22 277.3 6.3 241 507

10.1 401 100 0.26 3.07 0.04480 1.9 0.323  7.2 0.0523  6.9 282.5 5.1 301 158
11.1 686 240 0.36 1.34 0.04417 1.8 0.304  6.7 0.0499  6.5 278.6 4.8 191 150
12.1 242 102 0.43 2.68 0.0454 2.3 0.303 21 0.048 21 286.4 6.4 118 492
13.1 657 141 0.22 1.07 0.04381 1.8 0.306  5.5 0.0507  5.2 276.4 4.9 228 120
*Pb is radiogenic lead.
#f206 is percentage of common 206Pb in total 206Pb.



Zhang et al.

2024 Geological Society of America Bulletin, November/December 2010

Contents of major-element oxides were ob-
tained using a Rigaku ZSX100e X-ray fl uores-
cence (XRF) spectrometer and fused glass beads 
at the Guangzhou Institute of Geochemistry of 
the Chinese Academy of Sciences, following 
analytical procedures similar to those of X.H. Li 
et al. (2006). Analytical precision was between 
1% and 5%. Trace elements were analyzed us-
ing a Finnigan ELEMENT inductively coupled 
plasma–mass spectrometer (ICP-MS) at Nan-
jing University, following a procedure similar to 
those described by X.H. Li et al. (2000). About 
50 mg sample powders from each sample were 
dissolved in high-pressure Tefl on bombs using 
HF + HNO

3
 mixture. An internal standard so-

lution containing single-element Rh was used 

for monitoring signal drift during ion count-
ing. U.S. Geological Survey standards BCR-1, 
W-2, and G-2 and Chinese National standards 
GSR-1 and GSR-3 were used for calibrating 
ele ment concentrations of the unknowns. In-run 
analytical precisions for most elements were 
generally better than 2%–5%. The analytical 
results of major and trace elements are listed 
in Table 2. Sr-Nd isotopes were determined 
using a Micromass Isoprobe multicollector 
ICP-MS (MC-ICP-MS) at Nanjing University 
following the procedure described by X.H. Li 
et al. (2006). Measured 87Sr/86Sr and 143Nd/144Nd 
ratios  were normalized to 86Sr/88Sr = 0.1194 and 
146Nd/144Nd = 0.7219, respectively. The reported 
87Sr/86Sr and 143Nd/144Nd ratios were adjusted to 

the NBS SRM 987 standard 87Sr/86Sr = 0.71025 
and the Shin Etsu JNdi-1 standard 143Nd/144Nd = 
0.512115, respectively. Sr-Nd isotope results are 
listed in Table 3.

Analytical Results

Geochronology
Hongguleneng Gabbro. Zircon grains from 

gabbro sample 07AL01 are typically euhedral 
with no visible inherited cores. Eighteen zir-
con grains were analyzed. Among them, 17 
spots have U values ranging from 114 ppm to 
1261 ppm, Th ranging from 57 ppm to 798 ppm, 
and Th/U ratios between 0.11 and 1.03. Their 
apparent 206Pb/238U ages range from 267 Ma to 

TABLE 2. MAJOR- AND TRACE-ELEMENT COMPOSITIONS OF THE ULTRAMAFIC INTRUSION, BIMODAL 
INTRUSIVE COMPLEX, AND MAFIC INTRUSIONS IN SOUTH BELT OF ALTAY

orbbagobeniyaMxelpmocgneneluggnoH
Sample: AL01 AL05 AL06 AL07 AL08 AL010 07AL3-1 07AL03-2 07AL03-3 07AL03-4
Rock type: GB GB OGB OGB GB OGB GB GB GB GB
Major elements (%)
SiO2 41.25 41.69 39.54 43.02 43.62 39.96 49.08 46.27 48.70 46.65 
Al2O3 20.30 17.86 12.16 9.48 15.84 11.44 18.36 16.95 17.56 16.56 
CaO 13.57 10.27 7.17 8.83 13.98 15.57 9.40 9.19 9.48 8.80 
Fe2O3 3.74 5.77 7.58 9.30 5.93 5.84 8.77 9.27 9.90 10.03 
K2 31.091.031.051.000.040.020.010.010.010.0O
MgO 13.18 17.83 25.01 23.96 14.99 19.76 10.05 14.09 9.65 13.85 

51.051.041.041.031.001.041.011.080.060.0OnM
Na2O 0.61 0.85 0.44 0.69 0.86 0.13 2.79 2.64 2.90 2.57 
P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.06 0.09 0.06 
TiO2 0.05 0.04 0.04 0.14 0.12 0.31 0.88 0.64 1.10 0.71 

90.022.050.013.068.607.452.482.864.532.7IOL
Total 100.02 99.85 100.33 99.83 100.18 100.01 100.03 99.42 99.95 99.59 

Trace elements (ppm)
38.3191.3276.6128.9186.6207.1289.5249.793.510.5cS

2.4614.0127.2412.2816.1328.592.6114.152.847.04V
6072035573534121395302122828541917rC

78.0645.7481.9559.6476.9331.5575.0899.5732.9528.04oC
8938029044327247543477201426584iN

5.843.041.549.431.285.096.7019.8219.560.04uC
0.198.768.653.657.734.637.742.360.140.56nZ
3.513.712.519.6172.496.925.612.629.891.9aG
71.488.572.416.553.029.044.158.037.012.2bR

95262337272351805971901844185rS
64.0162.4181.0136.2143.831.385.398.009.097.1Y
54.2426.5655.6318.6589.836.353.431.148.127.8rZ
25.140.355.156.231.041.031.001.013.033.0bN
69.236.171.204.119.121.370.122.173.228.2oM
41.051.021.061.041.090.080.070.060.070.0dC
11.171.150.150.137.025.082.091.002.034.1nS
06.038.014.099.020.011.070.021.061.081.0sC

Ba 1613 396 41.8 17.3 88.2 5.8 31.8 23.4 35.8 23.1 
83.316.563.342.565.072.013.091.071.008.0aL
71.784.1190.707.0194.117.037.083.093.085.1eC
89.035.189.024.162.021.031.050.050.022.0rP
31.572.719.459.685.166.047.052.082.039.0dN
25.169.144.139.107.072.003.070.001.022.0mS
66.009.066.068.014.012.071.070.021.012.0uE
08.184.218.113.221.134.084.021.081.024.0dG
82.083.082.043.002.070.080.020.020.050.0bT
50.287.299.115.275.106.096.061.071.073.0yD
64.016.044.055.083.031.061.040.040.080.0oH
82.117.142.105.150.193.064.011.011.002.0rE
91.062.071.022.061.060.070.020.020.030.0mT
01.125.160.143.109.053.004.011.011.071.0bY
71.042.061.012.041.050.060.020.020.030.0uL
71.147.160.165.114.041.081.050.050.062.0fH
71.042.062.082.050.050.050.030.080.080.0aT
20.010.020.010.020.020.010.010.010.020.0iB
35.058.085.029.050.050.070.090.060.061.0hT

20.050.0U 0.02 0.02 0.01 0.02 0.28 0.21 0.25 0.18 
(continued)
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281 Ma and form a coherent population within 
analytical errors (Table 1), yielding a weighted 
mean 206Pb/238U age of 273.3 ± 2.6 Ma (mean 
square of weighted deviates [MSWD] = 0.71; 
Fig. 3A). This age is signifi cantly younger than 
the previously reported ca. 626 Ma Sm-Nd iso-
chron age. One zircon (spot 2.1) has an apparent 
206Pb/238U age of 496 Ma, likely representing a 
xenocryst.

Mayinebo Gabbro. Zircon grains from 
sample 07AL03 are euhedral, are 100–150 µm 
in length, and have length/width ratios rang-
ing from 1/1 to 1/3. Among the 20 analyses, 19 
analyses form a coherent 206Pb/238U age popula-
tion within analytical errors, giving a weighted 
mean age of 272.5 ± 2.4 Ma (n = 19, MSWD = 

1.53; Fig. 3B). This age is regarded as the best 
estimation for the crystallization age of the gab-
bro. One zircon (spot 4.1) has an older 206Pb/238U 
age (313 Ma), likely representing a xenocryst.

Dasazi Bimodal Intrusive Complex. Zircon 
grains from gabbro sample 07AL06 are mostly 
euhedral, transparent, and colorless, are 100–
200 μm long, and have length-to-width ratios 
of 1–3. No inherited zircon core was observed 
under CL images. Seventeen analyses were 
conducted on 17 zircon grains (Table 1). One 
analysis (spot 17.1) showed slight radiogenic Pb 
loss and was rejected in the age calculation. The 
remaining 16 analyses are concordant within 
errors (Fig. 3C), yielding a weighted mean 
206Pb/238U age of 269.4 ± 2.5 Ma (MSWD = 

1.14). This age overlaps the unpublished whole-
rock Rb-Sr isochron age of 275 ± 12 Ma from 
the granodiorites (No. 2 Geological Party of 
Xinjiang B.G.M.R., 1998) and is interpreted as 
the crystallization age of the Dasazi bimodal 
complex.

Chaergan Granite. Zircon grains from 
sample 06Q4 are 150–250 μm long and have 
length-to-width ratios of 2–4. All the grains 
are euhedral , transparent, and colorless, with 
concentric zoning typical of magmatic origin 
under CL images. No core-rim structure was ob-
served. Thirteen analyses were conducted on 13 
zircon grains (Table 1). Among them, two anal-
yses (spots 5.1 and 7.1) have older 206Pb/238U 
ages (332 Ma and 306 Ma), and they are likely 

TABLE 2. MAJOR- AND TRACE-ELEMENT COMPOSITIONS OF THE ULTRAMAFIC INTRUSION, BIMODAL 
INTRUSIVE COMPLEX, AND MAFIC INTRUSIONS IN SOUTH BELT OF ALTAY (continued)

xelpmocizasaDorbbagobeniyaM
Sample: 07AL03-5 07AL03-6 07AL03-7 07AL03-8 07AL03-9 07AL03-10 07AL03-11 07AL04-1 07AL04-2 07AL04-3
Rock type: GB GB GB GB GB GB GB(coarse) GND GND GND
Major elements (%)
SiO2 48.02 49.14 48.42 46.80 49.30 47.66 54.40 67.19 63.89 62.72 
Al2O3 17.94 17.96 17.50 16.45 18.25 17.47 14.83 14.96 15.63 14.93 

01.381.305.216.743.938.995.835.906.959.8OaC
Fe2O3 8.94 8.96 9.78 10.08 8.71 8.99 7.71 5.42 6.36 7.57 
K2 68.233.368.234.022.041.031.091.041.061.0O
MgO 12.11 10.00 9.46 14.02 9.67 10.60 3.46 1.58 1.88 2.17 

21.011.090.061.031.041.041.051.041.031.0OnM
Na2O 2.81 2.90 2.93 2.53 2.98 2.38 6.40 3.22 3.96 3.63 
P2O5 0.07 0.08 0.14 0.06 0.08 0.07 0.95 0.29 0.32 0.38 
TiO2 0.76 0.83 1.12 0.69 0.87 0.78 2.13 0.91 1.08 1.26 

06.014.064.092.285.221.011.084.030.012.0IOL
Total 100.10 99.77 99.69 99.59 100.10 100.22 100.35 99.47 100.14 99.36 

Trace elements (ppm)
9.719.415.415.521.027.228.610.427.124.51cS

431111601832551581851322181051V
7.940.041.730.12663344086123724157rC
4.419.110.214.737.442.547.254.640.648.35oC
3.717.214.214.15842402404502632243iN
9.718.519.717220.728.631.840.149.433.14uC
2.495.871.178.258.650.154.966.566.754.77nZ
1.523.427.226.627.515.712.511.810.710.61aG

4410314219.2160.774.278.371.572.351.5bR
491112691572172443552823423303rS

0.141.248.535.596.012.214.019.613.214.01Y
4768753944759.732.358.730.570.053.44rZ

2.512.216.218.7109.122.225.120.380.240.2bN
65.187.174.170.212.168.168.184.174.109.1oM
05.084.084.054.011.021.021.041.031.021.0dC
28.296.238.275.287.040.121.172.129.039.0nS
29.440.472.407.074.195.075.069.031.076.0sC

7232646447.399.136.820.329.530.929.82aB
4.229.620.028.8387.363.462.323.674.402.4aL
6.347.859.834.1835.748.809.648.2101.926.8eC
33.604.732.511.1150.102.179.057.142.161.1rP

9.727.030.324.3530.531.618.414.870.626.5dN
64.758.651.607.4105.127.154.144.208.106.1mS
99.150.289.137.437.058.056.000.118.017.0uE
55.831.759.608.7148.111.218.180.391.209.1dG
83.151.141.146.282.023.082.054.033.092.0bT
35.937.853.81.9131.263.230.233.354.290.2yD
69.139.157.190.464.035.054.027.035.054.0oH
45.478.451.44.1192.184.132.100.215.162.1rE
15.085.094.086.191.022.091.092.022.081.0mT
67.291.356.21.0151.192.170.117.172.101.1bY
54.005.034.055.181.002.071.072.002.071.0uL

4.513.3132.114.3111.193.160.149.163.172.1fH
37.097.007.028.051.022.091.022.061.091.0aT
01.090.011.013.050.010.020.020.020.010.0iB
06.430.603.486.555.094.015.087.085.056.0hT

81.022.0U 0.23 0.17 0.14 0.17 2.01 1.51 1.59 1.70 
(continued)
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xenocrysts . The remaining 11 analyses are 
concordant within errors (Fig. 3D), yielding a 
weighted mean 206Pb/238U age of 277.2 ± 3.2 Ma 
(MSWD = 0.73). This age is interpreted as the 
crystallization age of the Chaergan granite.

Elemental Geochemistry
Hongguleneng Ultramafi c-Mafi c Complex. 

Six samples were collected from the relatively 
silicic members of the Hongguleneng complex. 
All samples have high loss-on-ignition val-
ues (LOI = 4.3%–8.3%), indicating signifi cant 
hydrothermal alteration. The elemental data 
(Table 2) exhibit large compositional ranges, 
i.e., SiO

2
 = 40%–44%, TiO

2
 = 0.04%–0.31%, 

Al
2
O

3
 = 9.5%–20.3%, CaO = 7.2%–15.6%, 

MgO = 15%–25%, Fe
2
O

3
T = 3.7%–9.3%, and 

Cr = 590–2820 ppm. On a Harker diagram, no 
signifi cant correlation between SiO

2
 and other 

oxides is observed (Fig. 4). Gabbroic members 
from this complex show a tholeiitic trend on the 
AFM diagram (Fig. 5), similar to that of almost 
all the coeval mafi c rocks in the Central Asian 
orogenic belt. As for the trace elements, they 
contain very low total rare earth element (REE) 
contents (total REE = 1.6–10.5 ppm) and have 
variable LaN/YbN (0.4–1.34) and signifi cant 
positive Eu anomalies (δEu = 1.4–2.9) (Table 3; 
Fig. 6A). Primitive mantle–normalized incom-
patible element spider diagrams (both chondrite 
and primitive mantle values are from Sun and 
McDonough, 1989) exhibit large variations in 

contents of incompatible trace elements, re-
fl ecting fractional crystallization and accumu-
lation (Fig. 6B).

Mayinebo Gabbro. The geochemistry of the 
Mayinebo gabbros indicates that they have rela-
tively consistent major- and trace-element com-
positions, except for the most evolved sample 
07AL03–11 (Table 2). On the Harker diagram, 
Al

2
O

3
, TiO

2
, and CaO increase, and Fe

2
O

3
 and 

MgO decrease as SiO
2
 increases (Fig. 4). Their 

major elements are characterized by a tholeiitic 
trend (Fig. 5), high MgO (9.5%–14.1%) and 
Al

2
O

3
 (16.5%–18.4%), and low TiO

2
 (0.6%–

1.1%) and total alkali contents (2.6%–3.1%, 
Na

2
O > K

2
O; Fig. 7A). The 10 mafi c samples 

have low total REE (25–45 ppm), coherent  

TABLE 2. MAJOR- AND TRACE-ELEMENT COMPOSITIONS OF THE ULTRAMAFIC INTRUSION, BIMODAL 
INTRUSIVE COMPLEX, AND MAFIC INTRUSIONS IN SOUTH BELT OF ALTAY (continued)

Dasazi complex
Sample: 07AL04-4 07AL04-5 07AL04-6 07AL06-3 07AL06-4 07AL06-5 07AL06-6 07AL06-7 07AL06-8 07AL04-7
Rock type: GND GND GND GB GB GB GB GB GB GND
Major elements (%)
SiO2 64.49 65.09 65.48 46.15 49.78 46.04 48.07 51.11 47.73 64.63 
Al2O3 14.97 15.32 15.09 13.36 14.36 13.04 14.61 14.09 13.08 15.33 

68.251.830.738.745.832.708.886.238.221.3OaC
Fe2O3 6.72 6.63 5.98 15.36 12.73 16.53 13.74 12.86 14.59 6.51 
K2 49.225.159.130.190.141.288.054.349.239.2O

00.259.429.337.575.507.422.677.189.149.1OgM
11.012.002.091.002.091.081.001.011.011.0OnM

Na2O 3.74 3.31 3.36 2.85 3.24 2.92 3.29 3.65 3.31 3.43 
P2O5 0.35 0.37 0.33 0.58 0.91 0.66 0.60 1.66 2.08 0.36 
TiO2 1.12 1.15 1.01 4.70 3.21 4.73 3.80 2.76 3.69 1.15 

35.056.057.008.084.041.193.045.005.045.0IOL
Total 100.05 100.23 99.80 99.47 99.61 99.78 99.69 99.97 99.96 99.86 

Trace elements (ppm)
5.7115.920.523.432.248.822.249.419.617.51cS

731584443594307383936411031021V
3.358.713.216.3019.413.168.083.932.146.54rC
1.411.634.628.549.749.237.947.115.317.21oC
2.1204.471.356.8547.3256.4364.3536.1144.2131.51iN
3.911.427.617.141.644.430.068.615.716.61uC
6.883314113.797014310.397.681.285.57nZ
1.424.526.625.323.422.521.223.328.427.32aG

Rb 129 140 136 21.2 63.0 23.4 24.7 57.5 37.5 140 
991703033253303223103891191691rS

0.447.868.673.043.640.857.140.639.553.73Y
256705465063493775353225626136rZ

2.510.127.425.416.712.222.513.216.416.31bN
01.410.364.324.287.217.347.190.295.119.1oM
65.034.094.043.083.094.023.035.094.005.0dC
81.356.364.466.233.311.497.237.225.347.2nS
28.498.194.353.211.171.204.191.497.434.4sC

Ba 332 405 527 145 244 163 161 248 205 366 
9.723.645.250.622.824.245.320.524.324.81aL
4.169.1111.6219.067.668.790.855.355.243.53eC
09.745.5167.6112.830.919.2138.706.652.698.4rP

4.330.077.278.535.935.556.439.728.729.12dN
53.87.5166.5190.892.98.1131.886.695.710.6mS
90.222.491.465.277.204.324.240.271.289.1uE
91.96.613.6127.858.94.2158.882.773.871.7dG
64.132.262.262.124.167.192.171.174.102.1bT

2.014.516.5177.898.944.2169.813.816.1106.8yD
01.252.353.329.171.276.298.117.106.217.1oH
51.508.841.943.599.524.753.579.336.630.4rE
06.012.103.187.058.090.177.064.078.094.0mT
77.250.746.765.420.554.654.456.227.486.2bY
34.090.151.137.097.010.107.024.007.044.0uL

4.518.019.1107.777.80.2166.78.113.411.41fH
18.053.176.110.171.183.100.156.009.086.0aT
11.070.011.050.060.090.040.001.021.001.0iB
84.657.484.618.230.312.506.242.523.509.3hT

69.158.1U 1.57 0.85 1.78 0.95 0.95 1.81 1.60 1.66 
(continued)
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TABLE 2. MAJOR- AND TRACE-ELEMENT COMPOSITIONS OF THE ULTRAMAFIC INTRUSION, BIMODAL 
INTRUSIVE COMPLEX, AND MAFIC INTRUSIONS IN SOUTH BELT OF ALTAY (continued)

Chaergan pluton
Sample: D2365 D2374 D2368 D2392 D2367 D2373 D2375 D2376 48yQ-1 48yQ-2
Rock type: GR GR GND PG GR GND GND GND GND GND
Major elements (%)
SiO2 68.84 71.07 65.71 73.47 67.69 65.33 65.78 64.66 65.53 65.21
Al2O3 13.68 13.55 14.79 13.91 13.27 14.54 14.86 14.32 14.56 14.6

66.256.212.311.34.385.24.128.239.154.2OaC
Fe2O3 4.12 3.15 5.62 1.66 5.59 5.4 5.37 6.47 6.34 6.36
K2 45.383.363.382.368.363.345.432.364.434.4O

16.195.150.217.134.110.255.039.19.050.1OgM
990.0611.041.01.021.021.060.011.080.090.0OnM

Na2O 3.57 3.45 3.73 3.19 3.12 3.93 3.69 3.56 3.88 3.67
P2O5 0.25 0.18 0.32 0.11 0.31 0.39 0.32 0.37 0.3 0.34
TiO2 0.71 0.47 0.82 0.16 0.71 0.99 0.9 1.07 0.972 0.976

5.025.055.027.075.075.026.045.074.085.0IOL
Total 99.77 99.71 99.62 99.67 99.33 99.96 99.84 99.76 99.84 99.56

Trace elements (ppm)
6.919.917.047.532.326.04–4.83616.41rC

Rb 154 187 114 171 129 127 134 126 156 119
3228811025914125815.58002031041rS

2.348.065.641.825.071.64531.941.8285Y
673373404283154213501153622623rZ

9.417.02518.213.02713.114.615.013.91bN
Ba 343 395 513 325 486 506 446 485 406 523

6.735.928.722.646.666.149.325.926.432.15aL
8.071.168.642.563019.9635.171.441.943.59eC
88.95.91.018.99.316.861.82.688.21rP

3.345.14832.442.367.7358.623.529.823.15dN
19.99.016.65.83.218.880.65.51.51.01mS
71.211.28.11.28.27.178.092.049.09.1uE
37.89.014.78.8314.859.565.51.11dG
65.169.14.15.14.24.141.12.169.09.1bT

6.016.415.55.019.419.217.69.92.53.01yD
60.298.26.17.16.25.192.15.113.2oH
65.548.81.48.57.88.511.43.62.38.7rE

8.032.164.039.053.178.026.01.164.069.0mT
16.486.75.3689.450.42.79.24.7bY

7.011.176.017.019.084.065.058.054.01uL
2.016.81.317.214.311.114.39.113.78.01fH
57.153.28.18.17.27.14.15.25.12.2aT

925.024.118.88.517.316.413.81.714.41hT
Note: LOI—loss on ignition; GB—gabbro; OGB—olivine (-bearing) gabbro; GND—granodiorite; GR—granite; PG—potassic granite.

TABLE 3. Sr-Nd ISOTOPE COMPOSITIONS OF THE STUDIED INTRUSIVE ROCKS

Sample Sm
(ppm)

Nd
(ppm)

147Sm/
144Nd

143Nd/144Nd ± 2σm εNd(t) Rb
(ppm)

Sr
(ppm)

87Rb/86Sr 87Sr/86Sr 2σm (87Sr/86Sr)i

Mayinebo gabbros
07AL3-3 1.96 7.27 0.1630 0.512798 2 4.3 5.88 326 0.051 0.704492 4 0.7043
07AL3-7 2.44 8.41 0.1754 0.512814 9 4.2 5.17 328 0.044 0.704421 6 0.7043
07AL3-8 1.45 4.81 0.1823 0.512772 5 3.1 3.87 255 0.043 0.704537 2 0.7044
07AL3-11 14.7 53.4 0.1664 0.512778 8 3.8 12.9 275 0.132 0.704892 3 0.7044

Dasazi bimodal intrusive complex
07AL4-2 6.85 30.7 0.1349 0.512607 4 1.5 130 211 1.743 0.713981 3 0.7073
07AL4-6 6.68 27.9 0.1446 0.512633 6 1.7 136 198 1.944 0.714669 3 0.7072
07AL4-7 8.35 33.4 0.1513 0.512640 6 1.6 140 199 1.992 0.715034 3 0.7074
07AL6-4 11.76 55.5 0.1282 0.512802 5 5.6 63 322 0.551 0.706060 4 0.7039
07AL6-6 8.09 35.8 0.1367 0.512807 2 5.4 24.7 352 0.197 0.704514 8 0.7038
07AL6-7 15.7 72.7 0.1303 0.512778 3 5.0 57.5 330 0.491 0.705648 3 0.7038

Hongguleneng complex
2K-1 8.15 24.9 0.1980 0.513063 2 8.3 NA NA NA NA NA NA
2K-2 0.01 0.04 0.1511 0.512831 5 5.7 NA NA NA NA NA NA
2K-4 0.20 0.88 0.1374 0.513041 4 8.2 NA NA NA NA NA NA
2K-5 0.25 0.76 0.1989 0.513090 5 8.8 NA NA NA NA NA NA
2K-6 0.13 0.44 0.1786 0.512990 4 7.7 NA NA NA NA NA NA
2K-8 0.22 0.72 0.1847 0.513010 4 7.5 NA NA NA NA NA NA

Chaergan granites
48yQ-1 10.9 41.5 0.1588 0.512825 2 5.0 NA NA NA NA NA NA
D2374 5.10 28.9 0.1067 0.512562 3 1.7 NA NA NA NA NA NA

Note: Original data are from Huang et al. (1999); εNd(t) was recalculated using the age obtained in this study. NA—not analyzed. 2σm is two-sigma mean error.
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LaN/YbN ratios (2.2–2.8), and positive Eu 
anomalies (δEu = 1.1–1.3) (Fig. 6C). On the 
primitive mantle–normalized spider diagram, 
the mafi c samples exhibit signifi cant enrich-
ment of Sr and Ba and depletion of Nb-Ta 
(Nb/La = 0.4–0.5; Fig. 6D). The most evolved 
sample (07AL03–11) contains relatively high 
SiO

2
, TiO

2
, P

2
O

5
, and most trace elements, 

but signifi cantly low MgO and Fe
2
O

3
 contents 

( Table 2). On the other hand, it shares similar 
REE and incompatible element distribution pat-
terns, except that it has consistently more ele-
vated values than the other samples, a slightly 
negative Eu anomaly, and signifi cant negative 
Sr and Ti anomalies (Fig. 6D).

Dasazi Bimodal Intrusive Complex. The 
two end members in the Dasazi bimodal intru-
sive complex show linear trends on the Harker 

diagrams (Fig. 4), e.g., as SiO
2
 (46%–67%) in-

creases, TiO
2
, CaO, Fe

2
O

3
, MgO, and P

2
O

5
 de-

crease and Al
2
O

3
, Zr, and Rb increase (Fig. 4), 

indicating mass exchange between them. The 
gabbroic member exhibits a tholeiitic trend 
(Fig. 5) and has very high TiO

2
 (2.8%–4.7%), 

Fe
2
O

3
 (12.7%–16.5%), P

2
O

5
 (0.6%–2.0%), 

high total alkali (3.7%–6.4%) (Fig. 7A), total 
REE (170–340 ppm), and Zr (350–650 ppm) 
contents but low MgO (3.9%–6.2%), K

2
O 

(0.9%–2.1%), and Rb (21–63 ppm) contents. 
Chondrite-normalized distribution patterns for 
gabbros show slight enrichment of light (L) 
REEs (LaN/YbN = 4–5) and moderately nega-
tive Eu anomalies (δEu = 0.8–0.9; Fig. 6E). 
On the primitive mantle–normalized spider 
diagram, they have signifi cantly negative Sr, 
Nb, and Ta anomalies relative to neighboring 

elements (Nb/La = 0.45–0.65; Fig. 6F). The 
granodiorites in the complex have consistent 
major- and trace-element compositions (SiO

2
 

= 63.9%–67.2%, TiO
2
 = 0.91%–1.26%, CaO 

= 2.5%–3.8%, Al
2
O

3
 = 14.9%–15.3%, Fe

2
O

3
 

= 5.4%–7.6%, MgO = 1.6%–2.2%, Na
2
O 

= 3.2%–4.0%, K
2
O = 2.9%–3.4%, P

2
O

5
 = 

0.29%–0.37%, Zr = 490–670 ppm, and Rb = 
124–144 ppm; Fig. 3). Their major elements in-
dicate peraluminous characteristics (A/CNK = 
0.98–1.15; Fig. 7B). On the SiO

2
 versus K

2
O + 

Na
2
O diagram, they are plotted in the granodio-

rite area (Fig. 7B). They have total REE rang-
ing from 121 to 172 ppm, are systematically 
enriched in LREE (LaN/YbN = 5–7), and have 
negative Eu anomalies, with δEu ranging from 
0.7 to 0.9 (Fig. 6E). On the primitive mantle–
normalized diagram, they show similar patterns 
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as the gabbros, except that they have signifi cant 
depletions in Ti (Fig. 5F).

Chaergan Granitic Pluton. The Chaergan 
granitic rocks have a large range of major-
element  compositions: SiO

2
 ranges from 64.7% 

to 73.5%, and TiO
2
, CaO, Fe

2
O

3
, MgO, P

2
O

5
, and 

Zr decrease and Rb increases as SiO
2
 increases 

(Fig. 4). Their major elements exhibit metalumi-
nous characteristics (A/CNK = 0.86–1.09), and 
they plot on the boundary between the alkaline 
and subalkaline fi elds (Fig. 7A). They have total 
REE ranging from 146 ppm to 265 ppm, enrich-
ment of LREE (LaN/YbN = 3–8), and negative 
Eu anomalies (δEu = 0.5–0.8) (Fig. 6G). On the 
primitive mantle–normalized spider diagram, 
they are enriched in most trace elements but show 
signifi cant troughs of Nb, P, and Ti (Fig. 6H).

Sr-Nd Isotopic Compositions
Sr-Nd isotopic ratios measured during this 

study, as well as several results reported by 
Huang et al. (1999) and recalculated εNd(t) val-
ues of the intrusive rocks, are listed in Table 3. 
The Hongguleneng complex has highly positive 
εNd(t) values (5.7–8.8) (Huang et al., 1999). The 
Mayinebo gabbros have positive εNd(t) values 
ranging from 3.1 to 4.3 and low (87Sr/86Sr)i val-
ues (0.7043–0.7044). The two end members of 

the Dasazi bimodal complex have very different 
Sr-Nd isotopic compositions, i.e., the gabbros 
have highly positive εNd(t) (5.0–5.6) and low 
(87Sr/86Sr)i (0.7038–0.7039), whereas the grano-
diorite has relatively lower, positive εNd(t) (1.5–
1.7) and higher (87Sr/86Sr)i (0.7072–0.7074). Two 
samples from the Chaergan pluton have different 
Nd isotopic compositions: a granodiorite sample 
has a positive εNd(t) value of 5.0, but a potassic 
granite sample has a lower positive εNd(t) value 
of 1.7. In the εNd(t) versus (87Sr/86Sr)i diagram, 
the mafi c samples analyzed in this study form 
evolution trends toward the Permian mafi c rocks 
in the Central Asian orogenic belt (Fig. 8).

Petrogenesis

Hongguleneng Complex
Because all the rocks from the Hongguleneng 

complex are cumulate products, and no chilled 
margin or coeval mafi c dikes have been found 
around the complex, it is diffi cult to decipher 
its primitive magma composition. However, 
most rocks have low LaN/YbN ratios (less than 
1.2) and highly positive εNd(t) values, and so 
its primitive magma was most likely derived 
from a time-integrated depleted mantle. On 
the other hand, most relatively silicic samples 
have low Nb/La ratios (0.2–0.5), indicating 
that a depleted mantle source could have been 
metasomatized by subducted materials shortly 
before magma generation, and/or the primitive 
magma could have been contaminated by con-
tinental crust. Considering their high positive 
εNd(t) values and a ca. 496 Ma zircon xenocryst 
documented by the SHRIMP analyses, meta-
somatism of the mantle source (major) and crustal 
contamination (minor) could both have contrib-
uted to their low Nb/La ratios. Chemical com-
positions of the rock-forming minerals suggest 
that the different members of the Hongguleneng 
complex are cumulate rocks crystallized from 
a basaltic magma (e.g., Bai and Zhou, 1991; 
Peng et al., 1991). Importantly, the Fo numbers 
of olivine from the complex range from 84 to 
91. Using the molar Mg-Fe distribution con-
stant (Kd = [Fe/Mg]Ol/[Fe/Mg]magma) of 0.3 ± 
0.03 (Roeder and Emsile, 1970), this suggests 
a likely high-MgO or picritic primitive magma. 
On the other hand, chemical compositions of the 
clinopyroxene from the complex defi ne a typical 
rifting trend, indicating that the Hongguleneng 
complex was formed in an intracontinental en-
vironment (Fig. 9) (Loucks, 1990).

Mayinebo Gabbros
All the samples are enriched in LREEs and 

large ion lithophile elements (LILEs) and de-
pleted in heavy (H) REEs and high fi eld strength 
elements (HFSEs), leading to low Nb/La ratios 

(~0.5). On the other hand, they have highly 
positive εNd(t) values and low (87Sr/86Sr)i ratios. 
Thus, the primary magma of the Mayinebo gab-
bros was likely derived from a metasomatized 
lithospheric mantle source. Figure 10 shows 
that Th/La of the Mayinebo gabbros correlates 
negatively with Nb/U and Nb/Th, but the cor-
relations of Th/La versus Nb/La and La/Sm are 
not signifi cant. The average compositions of 
the continental crust (Rudnick and Gao, 2003), 
primitive continental arc basalt (Kelemen et al., 
2004), and oceanic-island basalt (OIB; Sun 
and McDonough, 1989) are also shown for 
reference. The Mayinebo gabbros plot close to 
primitive continental arc basalts but away from 
OIB. Further considering their low Ti/Y ratios 
(Fig. 11), the data suggest that the Mayinebo 
gabbros were derived from a metasomatized 
subcontinental mantle source. However, we no-
tice that several samples have relatively higher 
Nb/La, Nb/U, Nb/Th, and La/Ba (>0.1) ratios 
than that of the primitive continental arc basalts. 
Further work is required to determine whether 
OIB-like magmas were involved in the petro-
genesis of the Mayinebo gabbros.

Dasazi Bimodal Intrusive Complex
Gabbros from this bimodal complex have 

very different chemical compositions from that 
of the Mayinebo gabbros, e.g., they contain 
much higher TiO

2
, Fe

2
O

3
, Zr, and Rb contents 

and Ti/Y ratios (300–670) (Figs. 5 and 11). The 
well-defi ned linear correlations between TiO

2
, 

Fe
2
O

3
, MgO, and Rb in both the gabbros and 

granodiorites (Fig. 4), in combination with fi eld 
observations, strongly argue for mass exchanges 
between the two end members. Thus, gabbroic 
samples with low Ti/Y ratios could be due to 
contamination by the silicic magma (Fig. 11). In 
Figure 10, the Dasazi gabbros lie between OIB 
and primitive continental arc basalts. Generally, 
pure partial melting of a metasomatized sub-
continental mantle could not produce high-Ti 
basalts, e.g., most basalts formed in arc environ-
ment are low-Ti series (Pearce and Cann, 1973). 
Thus, we suggest that the primitive magma of 
the Dasazi gabbros could have at least partially 
derived from the asthenospheric mantle. This 
conclusion is consistent with their positive 
εNd(t) values and low (87Sr/86Sr)i ratios (Table 3; 
Fig. 8). Contamination of silicic magma can 
explain the incompatible elemental ratios (e.g., 
lowered Nb/La and Nb/Th ratios) and Sr-Nd 
isotopic compositions. This is the fi rst time that 
high-Ti basaltic rock has been found in the west-
ern part of the Central Asian orogenic belt.

The Dasazi granodiorites have high TiO
2
, 

Fe
2
O

3
, MgO, Zr (500–670 ppm), and Na

2
O/K

2
O 

ratios (>1.0) but low Rb/Sr (<0.8). These fea-
tures, in combination with their petrography, 

Total FeO

Na O+K O2 2
MgO

Calc-alkaline trend

Tholeiite
trend

Ultramafic-mafic intrusions in Eastern Tienshan

Permian basalts in Tarim

Permian basalts in the Tuha, Santanghu, Junggar basins
Permian basalts in Western Tienshan

Mayinebo gabbros
Dasazi gabbros

Hongguleneng complex

Figure 5. AFM (Na2O + K2O–FeOT–MgO) 
diagram showing the Hongguleneng com-
plex, the Mayinebo gabbros, and the Dasazi 
gabbros exhibiting tholeiitic trends (FeOT 
= Fe2O3

T/1.111). Permian ultramafi c-mafi c 
rocks and basalts in Tarim and Central 
Asian orogenic belt are also plotted, with 
original data from D.W. Zhou et al. (2006), 
Zhou et al. (2004), Jiang et al. (2004a, 
2004b), and Zhao et al. (2007).
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suggest that the granodiorites share character-
istics of postorogenic to anorogenic granites, 
i.e., the Peralkaline and alkaline (PAG-type) 
granites (Barbarin, 1996, 1999). Some geo-
chemical characteristics of the granodiorites 
also resemble those of A-type granites, such as 
high Zr and 10,000 × Ga/Al ratios (2.8–3.0) and 
FeOT/MgO molar ratios (mostly >7) (Whalen 
et al., 1987). The aforementioned geochemis-
try precludes the granodiorites from being de-
rived from partial melting of pelitic sources or 
metagraywackes (Montel and Vielzeuf, 1997). 
The low K

2
O and low Rb/Sr ratios preclude sig-

nifi cant mica in their source. A lack of upwardly 
concave, chondrite-normalized REE patterns in-
dicates that amphibole was not a major residual 
phase during their formation (Borg and Clynne, 
1998), consistent with a hornblende dehydration 
melting reaction.

Hornblende is abundant in mafi c to intermedi-
ate igneous and metamorphic rocks, and recent 
experiments and case studies have revealed that 
signifi cant proportions (25%–47%) of melt can 
be generated from basaltic or tonalitic sources 
by dehydration melting (Petcovic and Grunder, 
2003; Sisson et al., 2005). Compared to partial 
melts derived from mica-rich pelite and gray-
wacke, those formed by dehydration melting 
of amphibolite generally have lower Al

2
O

3
 and 

K
2
O and higher CaO (Rapp and Watson, 1995; 
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Gerdes et al., 2002). All the analyzed samples 
from the Dasazi granodiorites have low molar 
Al

2
O

3
/(MgO + FeOT) ratios (<1.0), indicating 

that they were derived from partial melting of 
a mafi c precursor, which is consistent with their 
positive εNd(t) values (1.3–1.5).

Chaergan Granites
The Chaergan granites have a relatively large 

range of Rb/Sr (0.6–2.0), Al
2
O

3
/(MgO + FeOT) 

(0.8–3.4), and FeOT/MgO (5–10) ratios and 
Zr contents (230–450 ppm). Their K

2
O/Na

2
O 

ratios are a little higher than 1.0. On the ACF 
diagram, all the samples plot to the I-type gran-
ite fi eld (not presented). As for the Nd isotopic 
compositions, the granodiorite sample and po-
tassic granite sample have very different εNd(t) 
values. According to their chemical and Nd 
isotopic characteristics, we suggest that they 
were derived from partial melting of different 
sources, including the mafi c member and the 
metagraywacke member. However, on the Rb 
versus Nb + Y diagram (Pearce et al., 1984), 
they plot slightly more to the within-plate gran-
ite (WPG) fi eld (Fig. 12A).

Tectonic Implications

All the studied intrusive rocks appear to have 
formed at extensional, or noncompressional set-
tings based on the following evidence: (1) The 
chemical compositions of clinopyroxene from 

the Hongguleneng ultramafi c-mafi c complex 
show a typical rifting trend due to their high TiO

2
 

contents (Fig. 9). (2) The Mayinebo gabbros and 
the Dasazi gabbros have Ti/V ratios of 28–33 
and 47–57 (Fig. 12B), respectively, which are 
higher than that of basalts formed at arc settings 
(always <25) but similar to that of mid-ocean-

ridge basalt (MORB) and OIB (Shervais, 1982; 
Vermeesch, 2006). (3) The high TiO

2
 contents 

of the Dasazi gabbros strongly argue against 
the case for a continental arc; on the contrary, 
their high TiO

2
, Zr, and total alkali contents, 

together with the characteristics of their incom-
patible ele ments ratios, suggest that OIB-like 
magma had been involved in their primitive 
magma. (4) The granodiorites from the Dasazi 
complex share some characteristics of A-type 
granites (e.g., high Zr contents and 10,000 × 
Ga/Al ratios). (5) Granodiorites from both the 
Dasazi complex and the Chaergan granites have 
relatively high Rb and Nb + Y values, and they 
plot into the postorogenic or within-plate granite 
fi eld (Fig. 12A) (Pearce et al., 1984).

ISOTOPIC AGE CONSTRAINTS ON 
VOLUMINOUS PERMIAN BASALTS, 
ULTRAMAFIC-MAFIC INTRUSIONS, 
AND A-TYPE GRANITES IN 
NORTHWESTERN CHINA

To better understand the petrogenesis and 
tectonic signifi cance of the Permian magmatic 
rocks in northwestern China, we carried out a 
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regional data compilation. Figure 1 shows all 
Permian igneous rocks in the Tarim Basin, Tien-
shan, the Tuha Basin, the Santanghu Basin, the 
Junggar Basin, and the Altay ranges, marked with 
representative ages (see the full list of available 
ages in Table 4). Figure 13 shows the frequency 
distribution of known igneous ages from the 
region using ISOPLOT (Ludwig, 2001), high-
lighting peak activities at 275–270 Ma. Im-
portantly, this period of igneous activity was 
characterized by voluminous mafi c rocks rather 
than granites (Fig. 13; Table 4). A-type granites, 
including minor adakitic granites derived from 
mafi c lower crust (Zhao et al., 2007), were em-
placed at around the same time. In contrast, the 
older, 340–320 Ma magmatic peaks were domi-
nated by granitic intrusions.

The most striking feature of the 275–270 Ma 
magmatism is the widespread occurrence of vo-
luminous basalts in Tarim and surrounding re-
gions (Figs. 1 and 14; Xinjiang B.G.M.R., 1993; 

1999; Jiang et al., 2004a, 2004b; Jia et al., 2004; 
D.W. Zhou et al., 2006; Zhao et al., 2007), in ad-
dition to mafi c-ultramafi c intrusions and A-type 
granites. According to geophysical exploration 
and drill-hole data (Chen et al., 2006), the area 
covered by the Permian basalts (including minor 
related tuff and tuff-bearing rocks) preserved in 
the Tarim Basin, the Santanghu Basin, the Tuha 
Basin, and the Junggar Basin could reach up to 
500,000 km2 (Fig. 1). The thicknesses of the 
basaltic units vary between 100 and 1250 m 
(mostly >300 m; Fig. 14). Such a large volume 
of mafi c magma would be diffi cult to generate 
by melting of the lithospheric mantle alone, 
which has been stable in a nonconvective state 
for a prolonged geological period.

Permian thermal events have also been identi-
fi ed elsewhere within the Central Asian orogenic 
belt, for example, the Weiya granite in Eastern 
Tienshan, which has a 40Ar/39Ar muscovite age 
of 269 Ma, and a biotite age of 281 Ma (Shu 

et al., 2000). Along the southern margin of the 
Siberia craton, 40Ar/39Ar hornblende and biotite 
ages of 281–266 Ma (peak at ca. 275 Ma) are 
recorded (Buslov et al., 2004). Li et al. (1998) 
reported several liquid inclusion Rb-Sr isochron 
ages of ca. 275 Ma from quartz veins at the 
Xifengshan, Wangfeng, and Axi gold deposits. 
Recently, monazite chemical Th-U-total Pb iso-
chron method (CHIME) ages of 260–270 Ma 
were obtained from high-temperature metamor-
phosed gneisses in the southern Altay Mountains 
(Zheng et al., 2007). These data not only suggest 
the occurrence of an intensive mafi c igneous 
event, but also related hydrothermal activities.

DISCUSSIONS AND CONCLUSIONS

Bachu Large Igneous Province: Results 
of a ca. 275 Ma Plume Event in 
Northwestern China?

Syncollisional melt and postcollisional de-
lamination in the Central Asian orogenic belt 
could properly explain the late Carbonifer-
ous (340–290 Ma) granitic rocks there and the 
minor  mafi c rocks dated at ca. 290 Ma north of 
Tienshan (Zhou et al., 2004; 340–290 Ma mag-
matic peaks in Fig. 13). Similar syn- to post-
orogenic magmatism can be found in Mesozoic 
South China, where voluminous granites and 
minor mafi c rocks occur (Li and Li, 2007), and 
the Mesozoic-Cenozoic granites in the Tibetan 
Plateau (Mo et al., 2006). However, it is unlikely 
that the delamination of subducted slab (slab 
break-off) could have induced the large volume 
of ca. 275–270 Ma mafi c rocks in Tarim and the 
surrounding regions. Simple lithospheric exten-
sion or transtension also would have diffi culties 
in explaining such a large-scale and voluminous 
outpouring of basaltic lavas.

Based on data and observations discussed 
here, we suggest that the coeval (275–270 Ma), 
voluminous, variably sourced mafi c rocks in 
Tarim and surrounding regions, as well as the 
mafi c intrusions and voluminous A-type gran-
ites in Tienshan, Altay, and even as far as Baikal 
and Mongolia (Pisarevsky et al., 2006; Izokh 
et al., 2009), constitute a Permian large igneous 
province in NW China and surrounding regions, 
which we term the Bachu large igneous prov-
ince after C.L. Zhang et al. (2008). This large ig-
neous province was most likely the product of a 
ca. 275 Ma mantle plume (e.g., Xia et al., 2004; 
Zhou et al., 2004; Pirajno et al., 2008; C.L. 
Zhang et al., 2008). This plume model would 
account for the bimodal but dominantly mafi c 
nature of the 275–270 Ma magmatism, the syn-
chronicity of the event over such a large regional 
extent (see section “Isotopic age constraints on 
voluminous Permian basalts, ultramafi c-mafi c 
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intrusions and A-type granites in NW China”; 
Fig. 13), the large volume and regional extent of 
the basaltic eruptions (Figs. 1 and 14), the petro-
genetic characteristics of the mafi c-ultramafi c 
rocks, and the intraplate and anorogenic nature 
of the magmatism, some of which shows clear 
involvement of melts derived from the astheno-
spheric mantle (see sections “Petrogenesis” and 
“Tectonic implications”).

Borisenko et al. (2006) and Yarmolyuk and 
Kozlovsky (2009) argued that some Permian  
Cu-Ni-(PGE) sulfi de-bearing ultramafi c-mafi c 
intrusions in the Central Asian orogenic belt, 
e.g., the Kalatongke complex in southern 
Altaid , were crystallized from picritic primi-
tive magmas. Mass balance calculations also 
indicate that the layered intrusive complex in 
Huangshan area (Eastern Tienshan) was possi-
bly crystallized from a picritic primitive magma 

(MgO = 18%–24%; Zhou et al., 2004). As we 
mentioned already, though the rocks from the 
Hongguleneng complex are cumulates, the high 
Fo numbers of olivine suggest a possible picritic 
primitive magma of the complex. Importantly, 
as early as the 1970s, Vladimirov et al. (1979) 
had reported picritic porphyrites in the Zaisan  
area in eastern Kazakhstan. These integrated 
mineralogi cal, petrological, and geochemi-
cal data are all consistent with the presence 
of a Permian mantle plume with Tp > 1350 °C 
(McKenzie and Bickle, 1988). Nonetheless, 
such a plume model needs further verifi cation. 
For instance, a plume model would predict 
pre- to synmagmatic crustal doming and denu-
dation (e.g., Griffi ths and Campbell, 1991; Li 
et al., 1999; He et al., 2003). Chen et al. (1997, 
2006) indeed speculated about possible Early to 
mid-Permian crustal doming in Tarim based on 

lithostratigraphic analyses, but further work is 
required to examine the precise timing and re-
gional extent of such a doming event.

If the Bachu plume indeed existed, it would 
have occurred ~15 m.y. before the ca. 260 Ma 
Emeishan plume in southwestern China (e.g., 
Xu et al., 2001; He et al., 2007; Xu et al., 2008), 
and 25 m.y. before the 251 Ma Siberian Trap 
(plume) in Russia (e.g., Dobretsov, 2005). Such 
a sudden fl are-up of plume activities in the 
Permian may represent the early stages of the 
Pangea superplume event, which is attributed 
to circum-Pangea subduction and mantle ava-
lanches (Z.X. Li et al., 2004, 2008; Zhong et al., 
2007; Li and Zhong, 2009).

The Central Asian orogenic belt was one 
of the most important sites of juvenile crustal 
growth during the Phanerozoic (e.g., Jahn et al., 
2004). Permian mafi c-ultramafi c intrusions and 

TABLE 4. AGE DATA OF THE PERMIAN IGNEOUS ROCKS IN TARIM AND SURROUNDING REGIONS

Tectonic unit Locations Rock type Method Age (Ma) Reference
Tarim
Basin

Bachu BLIC Pyroxene-bearing 
syenite

LA-ICP-MS (zircon) 275 ± 2 C.L. Zhang et al. (2008)

TC-3 DH Basalt Ar-Ar (WR) 273.5 ± 2.4 Jia et al. (1997)
TC-3 DH Basalt K-Ar (WR) 278 ± 2.3 Chen et al. (1997)
Bachu Syenite dikes SHRIMP (zircon) 277 ±4 Yang et al. (2007)
Bachu Mafi c dikes Sm-Nd (WR) 284 ± 15 Jiang et al. (2004a)

Western 
Tienshan

Heishantou Basalt Ar-Ar (WR) 264 ± 5 Zhao et al. (2007)
Kezike Basalt Ar-Ar (WR) 288 ± 6 Zhao et al. (2007)
Zhaosu Granite Ar-Ar (Bi?) 285 ± 6 Zhao et al. (2003)
Sanchakou Adakitic rocks Rb-Sr (WR-M) 276 ± 4 Sun et al. (2002)
Sanchakou Adakitic rocks Rb-Sr (WR-M) 269 ± 17 Rui et al. (2004)
Variscan collision 

belt, Kyrgyzstan
A-type granite Rb-Sr (WR-M) 269 ± 21 Solomovich and Trifonov 

(2002)A-type granite Rb-Sr (WR-M) 269 ± 8
A-type granite Rb-Sr (WR-M) 273 ± 9

Yili granite Biotite granite Ar-Ar (Bi) 263.4 ± 0.6 DeJong et al. (2008)
Baleigong granite K-granite SHRIMP (zircon) 272 ± 2 Wang et al. (2007a)
Boluohuolu 

intrusive complex
Diorite LA-ICP-MS (zircon) 301 ± 7 Wang et al. (2007b)

7±492etinargetitoiB
5±082etinarg-K
6±662etinarg-K
6±272etinarg-K

Eastern
Tienshan 

Hongliuhe UMC Gabbro SHRIMP (zircon) 272 ± 3 Han et al. (2006)
Pobei UMC Gabbro TIMS (zircon) 274 ± 4 Jiang et al. (2006)
Pobei UMC Gabbro SHRIMP (zircon) 278 ± 2 Li et al. (2006)
Huangshan UMC Gabbro SHRIMP (zircon) 271 ± 3 Zhou et al. (2004)
Huangshan UMC Gabbro SHRIMP (zircon) 274 ± 3 Han et al. (2004)
Sanchakou Adakitic rocks SHRIMP (zircon) 278 ± 4 Li et al. (2004)
Dashishan Granite SHRIMP (zircon) 273 ± 3 Qi et al. (2006)
Xifengshan Biotite granite Rb-Sr (WR) 284 ± 13 Li et al. (1998)
Xifengshan GD Quartz vein Rb-Sr (LI) 272 ± 3 Li et al. (1998)
Wangfeng GD Quartz vein Rb-Sr (LI) 277 ± 8.8 Li et al. (1998)
Axi GD Quartz vein Rb-Sr (LI) 275 ± 5 Li et al. (1998)
Yuxi SD Granite Rb-Sr (WR) 266.7 ± 4 Li et al. (1998)
Yuxi SD Diorite Rb-Sr (WR) 261 ± 8 Li et al. (1998)
Bole Quartz porphyry Ar-Ar (Bi?) 260 ± 5 Zhao et al. (2003)
Zhaosu Granitic porphyry Ar-Ar (Bi) 285 ± 6 Zhao et al. (2003)
Shawan Basalt Ar-Ar (WR) 277 ± 6 Zhao et al. (2003)
Zhongyangchang Basalt Ar-Ar (WR) 272 ± 5 Zhao et al. (2003)
Zhongyangchang Basalt Ar-Ar (WR) 263 ± 5 Zhao et al. (2003)
Bayinggou Basalt K-Ar (WR) 268 ± 4 No. 1 GP (1987)
Kangguer GD Sericite schist Ar-Ar (sericite) 267.6 ± 3.2 Li et al. (1998)
Kangguer GD Quartz Rb-Sr (LI) 282 ± 5 Li et al. (1998)
Shiyingtan GD Granite Rb-Sr (WR) 266 ± 3 Li et al. (1998)
Shiyingtan GD Quartz vein Rb-Sr (WR) 276 ± 7 Li et al. (1998)
Huoshibulake A-type granite TIMS (Zircon) 262 ± 3 Yang et al. (2001)
Konggure Alkaline granites TIMS (zircon) 265 ± 1.2 Jiang et al. (2001)
Poyi-Poshi Ultramafi c-mafi c 

intrusion
SHRIMP 278 ± 2 Pirajno et al. (2008)

(continued)
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A-type granites in the Central Asian orogenic 
belt (e.g., Han et al., 1999) were important parts 
of this episode of crustal growth. If the plume 
model as proposed here is correct, it would sug-
gest that mantle plume activity made major con-
tributions to crustal growth in the Central Asian 
orogenic belt.

Two Distinct Mantle Domains in 
Northwestern China?

We notice that the elemental and isotopic 
compositions of the Permian-Carboniferous 
mafi c rocks are quite different between Tarim 
and those further to the north (Tienshan, the 
Tuha Basin, the Santanghu Basin, the Junggar 
Basin, and the Altay) (Fig. 8). The basalts 
in Tarim (samples from the Keping area and 
several drill holes in Tarim) are characterized 
by a tholeiitic trend (Jiang et al., 2004b; Yang 
et al., 1995; Fig. 6), low Mg # (25–38), high Ti 
(TiO

2
 = 2.7–5.3 wt%, Ti/Y = 300–650, mostly 

above 500) (high-Ti type; Fig. 11), Zr (280–

470 ppm), total REE (156–250 ppm) contents, 
enriched LREEs (LaN/YbN ⊕ 6.5), negative 
εNd(t) (–3.1 to –1.5), and high (87Sr/86Sr)i ratios  
(Fig. 8). On the other hand, they have high 
Nb/La (0.8–1.2, mostly above 1.0), Nb/U (>25), 
and Nb/Th (>3.5) ratios, excluding the pos-

sibility of the crustal contamination leading to 
the isotopic enrichment (Fig. 10). The variable 
negative Sr anomaly (δSr = SrN/[CeN

 × NdN]1/2 = 
0.3–0.7) in the basalt could refl ect high 
Eu3+/Eu2+ ratios in the magmas because of the 
absence of negative Eu anomalies (δEu ⊕ 1.0) 
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TABLE 4. AGE DATA OF THE PERMIAN IGNEOUS ROCKS IN TARIM AND SURROUNDING REGIONS (continued)

Tectonic unit Locations Rock type Method Age (Ma) Reference
Tuha
Basin

Zhaobishan Basalt Ar-Ar (WR) 273 ± 1 D.W. Zhou et al. (2006)
Zhaobishan Basalt Ar-Ar (WR) 276 ± 2 D.W. Zhou et al. (2006)
Cheguluquan Basalt Ar-Ar (WR) 270 ± 1 D.W. Zhou et al. (2006)
Kula Basalt Ar-Ar (WR) 269 ± 1 D.W. Zhou et al. (2006)
Kula Basalt Ar-Ar (WR) 276 ± 1 D.W. Zhou et al. (2006)
Dananhu Alkaline basalt Ar-Ar (WR) 270 ± 1 D.W. Zhou et al. (2006)
Y-1 DH Basalt Ar-Ar (WR) 278 ± 1 D.W. Zhou et al. (2006)
L-1 DH Basalt Ar-Ar (WR) 281 ± 1 D.W. Zhou et al. (2006)

Santanghu
Basin

Shacan-1 DH Basalt Ar-Ar (WR) 290 ± 1 D.W. Zhou et al. (2006)
M8-02 DH Basalt Ar-Ar (WR) 266 ± 0.54 D.W. Zhou et al. (2006)
Tc1-01 DH Basalt Ar-Ar (WR) 273 ± 0.35 D.W. Zhou et al. (2006)
Tc2-02 DH Basalt Ar-Ar (WR) 273 ± 0.46 D.W. Zhou et al. (2006)
T4-01 DH Basalt Ar-Ar (WR) 266 ± 0.56 D.W. Zhou et al. (2006)
Habahe county Granite Ar-Ar(hornblende) 267 ± 4 Yuan et al. (2007)

Junger
Basin

Jimunai Basalt Sm-Nd (WR) 281 ± 24 Zhou (personal commun.)
Western Junger K-granite SHRIMP (zircon) 276 ± 5 Han et al. (2006)
Western Junger Rhyolite SHRIMP (zircon) 271 ± 6.5 Liu et al. (2005)
Kelamayi
City

Mafi c dike K-Ar (WR) 265.5 ± 5.4 Li et al. (2004)
Mafi c dike K-Ar (WR) 265.5 ± 7.7
Mafi c dike K-Ar (WR) 271.5 ± 8.1
Mafi c dike K-Ar (WR) 270.2 ± 8.1
Mafi c dike K-Ar (WR) 267.1 ± 8

Eastern Juggar Dioririte Rb-Sr (WR-M) 274 ± 5 Chen et al. (2004)
Eastern Juggar A-type granite Rb-Sr (WR-M)e 281 ± 6 Chen et al. (2004)
Eastern Juggar A-type granite Rb-Sr (WR-M) 278 ± 6 Chen et al. (2004)

South of
Altay

Hongguleneng UMC SHRIMP (zircon) 273.2 ± 2.6 This study
Dasazi BMC Gabbro SHRIMP (zircon) 269.4 ± 2.5 This study
Mayinebo gabbros Gabbro SHRIMP (zircon) 272.5 ± 2.4 This study
Chaergan Granite SHRIMP (zircon) 277 ± 3.2 This study
Fuyun A-type granite SHRIMP (zircon) 273 ± 6 Han et al. (2006)
Fuyun A-type granite SHRIMP (zircon) 275 ± 4 Tong et al. (2006)
Chonghuer MMR Gneiss CHIME(monazite) 268 ± 10 Zheng et al. (2007)
Taerlang MMR Gneiss CHIME(monazite) 261 ± 20 Zheng et al. (2007)
Altay city A-type granite SHRIMP (zircon) 276 ± 9 Wang et al. (2005)
Altay city Silicic dikes SHRIMP (zircon) 277 ± 10 Gong et al. (2007)
Dasazi Granite

(mingled with the 
Dasazi gabbro)

Rb-Sr (WR) 274 ± 12 No. 2 Geological Party, 
BGMR (1998, 
unpublished)

Dzara-Ula 
(Mongolia)

Monzogabbro SHRIMP (zircon) 269.2±4.1 Izokh et al. (2009)

Southern 
Siberia

Baikal area Mafi c dike SHRIMP (zircon) 275 ± 4 Pisarevsky et al. (2006)

Note: GD—gold deposits; SD—silver deposits; LI—fl uid inclusion; Bi—biotite; WR—whole rock; DH—drill hole; UMC—
ultramafi c-mafi c intrusive complex; BMC—bimodal intrusive complex.
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(Frey et al., 1993; Xia et al., 2004). All of these 
characteristics strongly argue for partial melt-
ing of a long-term enriched lithospheric mantle 
source. Moreover, as the REE and HFSE ratios 
are closely related with temperature-pressure 
conditions, and the degree of partial melting re-
mained constant during crystal fractionation, the 
least contaminated basalt samples (samples with 
Nb/La > 1.0) in Tarim have relatively stable 
La/Sm (3–5), Sm/Yb (2–2.7), Ce/Y (1.1–1.6), 
and Zr/Nb (8–10) values, indicating that their 
primitive magma was derived from 5% to 15% 
partial melting within the spinel-garnet stability 
fi eld, corresponding to the depth of 60–80 km 
(McKenzie and Bickle, 1988). The Permian 
mafi c dikes and ultramafi c-mafi c-syenite com-
plex in Tarim, as we have suggested previously 
(C.L. Zhang et al., 2008), were crystallized from 
an OIB-like basaltic magma derived from par-
tial melting of an asthenospheric mantle source, 
according to their high alkali contents, positive 
εNd(t) (1.5–5.7), relatively low (87Sr/86Sr)i (Sr 
isotope compositions could have been altered 
during hydrothermal alteration process; Fig. 8), 
and high Ti/Y (high-Ti type; Fig. 11), Nb/La 
(1.0–1.2), Nb/U, and Nb/Th ratios (Fig. 10). 
Thus, we suggest that the asthenosphere-derived 
magma could have supplied the heat required to 
melt the lower lithospheric mantle (60–80 km).

The basalts and ultramafi c-mafi c intrusions 
(mafi c dikes included) in Tienshan and north of 
Tienshan (the Tuha, Santanghu, Junggar Basins) 
exhibit systematic tholeiitic trends (Fig. 6), hav-
ing low TiO

2
 (mostly less than 2.0 wt%) and 

Ti/Y ratios (less than 500, low-Ti type; Fig. 11), 
enriched LILEs and LREEs, low Nb/La (mostly 
less than 0.5), Nb/U, and Nb/Th ratios (Fig. 10), 
and variable initial Nd and Sr values (εNd[t] = 
0–9.3, [87Sr/86Sr]i = 0.702–0.7085). On the εNd(t) 
versus (87Sr/86Sr)i diagram (Fig. 8), all the sam-
ples plot between the depleted mantle (DM) and 
II-type enriched (EMII-type) EMII-type mantle 
sources. Thus, these mafi c rocks were most 
likely derived from a depleted mantle source 
metasomatized by subducting slabs (Zhou et al., 
2004). We noticed that the basalts from Eastern 
Tienshan have relatively higher Nb/La ratios 
(0.4–0.7) and εNd(t) values, slightly elevated 
ThN/NbN (greater than 1.0), and lower LaN/YbN 
ratios (1–8, mostly <3.0) than those of the other 
basalts in Western Tienshan and the three basins 
north of Tienshan (i.e., the Tuha, Santanghu, 
and Junggar Basins) (Zhao et al., 2006, 2007); 
these features suggest that they were derived 
from partial melting of a depleted continental 
lithospheric mantle that had only been slightly 
affected by metasomatism of subducting slabs 
(Saunders et al., 1992).

Geochemical and Sm-Nd isotopic data indi-
cate that large proportions of the late Paleozoic  
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granites in the Central Asian orogenic belt were 
A-type magmas with positive εNd values, indi-
cating a juvenile character and suggesting a 
direct or indirect role (more likely) for mantle 
magmatism in their formation (Han et al., 1999; 
Jahn et al., 2004; Chen and Jahn, 2004). Model-
ing calculations indicate that ~1%–5% basaltic 
magma from the mantle had been added into 
the silicic magma derived from partial melting 
of the juvenile mafi c crust. This is evidenced by 
the pervasive mafi c inclusions mingled in the 
A-type granites.

Based on the analyses herein, we can divide 
the Permian basalts and ultramafi c-mafi c intru-
sions on the basis of their geochemical charac-
teristics. They appear to have been derived from 
two separate mantle domains, i.e., the Tarim 
domain and the Central Asian orogenic belt do-
main (Fig. 1). The Tarim domain is a long-term 
enriched continental lithospheric mantle that 
had not been metasomatized by Phanerozoic 
subducted materials, while the Central Asian 
orogenic belt mantle is intensively depleted 
and variably enriched by the Phanerozoic sub-
duction slab–derived fl uid and/or subducted 
sediments.
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