Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

¹⁰Be in desert sands, falling dust and loess in China

C.D. Shen^{a,e,*}, J. Beer^b, P.W. Kubik^c, W.D. Sun^a, T.S. Liu^d, K.X. Liu^e

^a Key Lab of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China

^b Swiss Federal Institute of Environmental Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland

^c Paul Scherrer Institute, c/o ETH-Hönggerberg, CH-8093 Zürich, Switzerland

^d Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, PR China

^e State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, PR China

ARTICLE INFO

Article history: Available online 8 October 2009

Keywords: ¹⁰Be Desert sands Falling dust Loess

ABSTRACT

Cosmogenic ¹⁰Be is produced in the atmosphere, and deposits onto the surface of the earth mainly through wet precipitation and dust. Based on the analysis of ¹⁰Be in Chinese loess, we believe that ¹⁰Be in loess is composed of two components: locally precipitated atmospheric ¹⁰Be, and windblown ¹⁰Be adsorbed on the surface of silt grains. On the Loess Plateau, ¹⁰Be concentrations in loess and paleosol range from (1.4 to 2.8) × 10⁸ atoms/g and (2.7 to 4.5) × 10⁸ atoms/g, respectively. To investigate the sources of ¹⁰Be in loess, we measured ¹⁰Be in sand grains from deserts in western China and falling dust from the deposition regions. The results show that the ¹⁰Be concentrations in sand and dust are (1.1–5.1) × 10⁷ atoms/g and (1.3–2.8) × 10⁸ atoms/g, respectively. Loess and paleosol on the Loess Plateau both contain inherited ¹⁰Be adsorbed on silt grains from dust; most of the windblown deposited loess materials do not directly come from the Gobi and other sand deserts, but mainly from the loess–desert transitional zones, which are characterized by silt and dust holding areas.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

 ^{10}Be is formed mainly through spallation reactions of cosmic ray particles with oxygen and nitrogen in the atmosphere and surface rocks, which are called atmospheric and in situ cosmogenic ^{10}Be , respectively. The in situ produced cosmogenic ^{10}Be concentration in loess materials is very low, accounting for only ${\sim}1\%$ of the total ^{10}Be , therefore most of the ^{10}Be in eolian loess sequences originates from atmospheric production.

Thick eolian loess accumulated in the semi-arid northern China forms the well-known Chinese Loess Plateau, covering ~400 thousand square kilometres (Fig. 1). The distribution of loess is controlled to a large extent by two major mountain chains, the Kunlun–Qinling Mountains and Aertai–Alashan–Great Xinganling Mountains, from west-northwest to east-southeast between 34 and 45° N [1].

The distribution of loess is also closely related to the East Asian monsoon system. Loess is formed through the deposition of dust transported by the winter monsoon from the north, whereas paleosols, interlayered with loess, are mainly linked to summer monsoon from the south. The rainfall on the Loess Plateau is mainly controlled by the vapour transported by summer monsoon [2]. Therefore ¹⁰Be in the loess sequence consists of two major components, both of which are of atmospheric origin: direct sedimentation of ¹⁰Be through rainfalls and ¹⁰Be attached to the surface of re-settled dusts after one or multiple transportation.

2. ¹⁰Be concentrations in desert sands

Eolian sand grains in deserts in arid north China are mainly fine sand (0.25–0.1 mm in diameter), which account for about 70 wt.% of the total mass of eolian sand. This is followed by ultrafine sand (0.1–0.05 mm) and medium sand (0.5–0.25 mm) of about 25 wt.% of the total mass, and less than 5 wt.% of silt (<0.05 mm), as well as minor coarse sand (1.00–0.5 mm). Ultra-coarse sand is very rare [3]. Among all the deserts in northwest China, sand grains from Taklimakan desert is the finest, whereas those from Badai Jaran desert is the coarsest [4]. The ¹⁰Be concentration of sands from Chinese deserts ranges from (1.1 to 5.1) × 10⁷ atoms/g, and is negatively correlated with the median of grain size (Md) (Table 1). In addition, ¹⁰Be concentration of sands from different deserts negatively co-varies with the annual precipitation, i.e. high ¹⁰Be concentration usually found in regions with low annual precipitation.

In addition to grain sizes and precipitation, mineralogy of the sand is also essential for ¹⁰Be adsorption. For example, quartz sand should have much less ¹⁰Be than sand dominated by feldspars.

^{*} Corresponding author. Address: Key Lab of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China. Tel.: +86 20 85290062; fax: +86 20 85290130.

E-mail address: cdshen@gig.ac.cn (C.D. Shen).

⁰¹⁶⁸⁻⁵⁸³X/ $\$ - see front matter @ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.nimb.2009.10.095

Fig. 1. Sketched map showing the distribution of mountains, sand deserts, and loess, and the sampling sites in China. Deserts are marked in numbers: 1. Taklimakan Desert; 2. Qaidam Desert; 3. Kumtag Desert; 4. Badai Jaran Desert; 5. Ulan Buh Desert; 6. Qubqi Desert; 7. Tengger Desert; 8. Mu Us Desert. Sampling sites of falling dusts on the Loess Plateau and Eastern China are marked as filled circles (A. Penglai; B. Jinan; C. Dingbia; D. Huanxian; E. Xifeng; F. Longxi?G. Beijing; H. Ningbao).

Table 1	T	abl	e	1
---------	---	-----	---	---

¹⁰Be concentrations in Chinese desert sands.

Desert	Location	Area (km ²)	<i>M</i> _d (mm)	Rain fall (mm/yr)	¹⁰ Be (10 ⁷ atoms/g)
Taklimakan	Xinjiang	337600	0.093	30	5.14 ± 0.26
Mu Us	Inner Mongolia	32100	0.145	300	3.43 ± 0.17
Qubqi	Inner Mongolia	16100	0.153	240	2.78 ± 0.14
Badai Jaran	Gansu	49200	0.208	70	1.11 ± 0.06
Ulan Buh	Ningxia	9970	0.190	150	1.88 ± 0.10
Tengger	Ningxia	42700	0.165	110	4.38 ± 0.22
Qaidam	Qinghai	34900	0.160	40	4.92 ± 0.25

Given that quartz is more resistant to weathering than most other rock forming minerals, the negative correlation between grain size and ¹⁰Be concentration may partly due to less quartz in finer sands.

¹⁰Be concentrations in desert sands can also be influenced by surface runoff especially along desert margins. Mud crust in desert formed by evaporation of rain water can reflect the influence of surface runoff. We determined four desert mud crust samples (Table 2). The ¹⁰Be concentrations in mud crust are systematically

 Table 2

 ¹⁰Be concentrations of Mud Crust in Chinese deserts.

higher than desert sands (Table 1). This is likely due to the smaller grain size of mud crust and/or higher rainfall washes.

3. ¹⁰Be concentrations in falling dust

The original source of eolian sands in Asia is located in deserts and semi-arid regions to the east of the deserts in northwest China (central east part of Inner Mongolia and west part of the northeast-

Desert	Sample ID	Latitude	Longitude	Elevation (m)	Sample Type	¹⁰ Be (10 ⁷ atoms/g)
Qaidam	QD-009	37°20′45.5″N	97°09′13.5″E	2892	Mud crust	14.9 ± 0.9
Tengger	TG-018	39°00'22.4"N	103°34′01.7″E	1304	Mud crust	20.6 ± 0.5
Badai Jaran	BJ-024	39°17′55.2″N	101°52′24.6″E	1611	Mud crust	31.1 ± 1.0
Taklimakan	TK-074	41°64′43.3″N	83°29′01.5″E	1001	Mud crust	7.41 ± 0.3
Taklimakan	TK-103	36°48′12.3″N	82°16′08.3″E	1720	Mud crust	7.25 ± 0.3

Table	3
-------	---

¹⁰Be concentrations in falling dust.

Location	Time	Carbonate (%)	10 Be (10 ⁸ atoms g ⁻¹)	Reference
Jinan	April 1984	N.M.	2.60 ± 0.10	Shen et al. [11]
Longxi	August 1983	14.1	1.56 ± 0.09	Gu et al. [5]
Longxi	August 1983	12.8	1.41 ± 0.08	Gu et al. [5]
Longxi	August 1983	10.1	2.53 ± 0.14	Gu et al. [5]
Penglai	May 1983	5.6	2.78 ± 0.15	Gu et al. [5]
Penglai	May 1983	6.3	2.70 ± 0.14	Gu et al. [5]
Xifeng	April 1999	N.M.	2.57 ± 0.06	Shen et al. [this work]
Xifeng	August 1999	N.M.	2.00 ± 0.05	Shen et al. [this work]
Dingbia	Winter1999	N.M.	1.25 ± 0.06	Shen et al. [this work]
Huanxian	April 1999	N.M.	2.06 ± 0.07	Shen et al. [this work]
Huanxian	Aug.1999	N.M.	1.81 ± 0.06	Shen et al. [this work]
Beijing	April 2006	1.21	2.05 ± 0.06	Shen et al. [this work]
Ningbo	April 2007	N.D.	14.83 ± 0.70	Shen et al. [this work]

N.M., not measured; N.D., not detected.

ľa	b	le	4	

¹⁰Be concentrations of S₁ palaeosol and L₂ loess particles of different sizes.

Grain size (µm)	>50	40	20	10	3	0.9	0.3	0.09	0.03	0.01
S ₁ -Fractional mass (%)	6.0	30	12.4	17.7	11.8	11.2	5.0	4.34	2.28	0.86
$S_1 - {}^{10}Be (10^8 \text{ atoms/g})$	0.70	0.95	1.40	2.80	5.80	7.40	8.10	9.46	8.60	7.90
$S_1 - F^{-10}Be^a (10^8 \text{ atoms/g})$	0.04	0.29	0.17	0.50	0.68	0.83	0.41	0.41	0.20	0.07
L ₂ -Fractional mass (%)	6.5	42.6	15.6	12.6	7.5	10.5	2.0	3.3	1.4	0.17
$L_2-^{10}Be (10^8 \text{ atoms/g})$	1.25	0.95	1.40	2.05	3.30	3.95	3.49	3.53	4.59	1.97
L_2 -F- ¹⁰ Be ^b (10 ⁸ atoms/g)	0.08	0.41	0.22	0.26	0.25	0.42	0.07	0.12	0.06	0.003

The ¹⁰Be concentrations in bulk samples are: $S_1^{-10}Be = 4.03 (10^8 \text{ atoms/g})$; $L_2^{-10}Be = 2.81 (10^8 \text{ atoms/g})$. Each sample was measured at least twice, resulting in an accuracy of $3-5\% (1\sigma)$.

 S_1 -¹⁰Be and L_2 -¹⁰Be cited from reference [7].

^a S_1 -F-¹⁰Be = (S1-¹⁰Be) × (S₁-fractional mass).

^b L_2 -F-¹⁰Be = (L2-¹⁰Be) × (L_2 -fractional mass).

ern China). The winter monsoon controlled by Siberia–Mongolia high-pressure system raises and transports surface dusts, causing sand-storms in the downwind regions in winter and spring, which is the main source of loess deposit.

We determined ¹⁰Be concentration in falling dust collected from East China and the Loess Plateau at different times. The ¹⁰Be concentration in falling dust ranges from (1.2 to 2.8) \times 10⁸ atoms/g, is about an order of magnitude higher than that in the desert sands. Interestingly, the average ¹⁰Be concentration increases from 1.90×10^8 atoms/g in the Loess Plateau in the west to 2.7×10^8 atoms/g in Iinan and Penglai in the east [5] or even to 14.83×10^8 atoms/g in Ningbo in the south-east [6]. This can be plausibly interpreted by the fractionation of grain size during the transportation of eolian particles by wind. The grain sizes of eolian dust decreases during its transportation from the west to the east [7], while the ¹⁰Be concentration increases with decreasing grain sizes (Table 3), because ¹⁰Be is mainly adsorbed on the surface of ultra-fine particles. Limited data also show seasonal variations in ¹⁰Be concentration in falling dust with higher ¹⁰Be concentrations in the spring compared with those in summer (Table 3). This seasonal variation in ¹⁰Be concentration might be due to seasonal variations in monsoon.

4. ¹⁰Be concentrations in loess

The loess and red clay sequence of the Chinese Loess Plateau preserves a successive record of eolian deposition since the late Miocene to the Present [1,8]. The ¹⁰Be in several loess sequences has been previously studied [7,9–13]. The ¹⁰Be concentration in loess ranges from (1.4 to 2.8) × 10⁸ atoms/g, while in paleosols, it is usually about 2–3 times higher than in loess, ranging from (2.7 to 4.5) × 10⁸ atoms/g [7,11].

The fractional mass (wt.%) and ¹⁰Be concentrations for particles of different grain size from the S₁ paleosol and L₂ loess in the Luochuan loess sequence on the Chinese Loess Plateau are shown in Table 4. In general, the ¹⁰Be concentrations are higher in fine grains than in coarse grains. The highest ¹⁰Be concentrations were determined in the 900-30 nm fractions (Table 4). Fine silt $(40-3 \,\mu m)$ is the dominant component in S_1 paleosol and L_2 loess, accounts for ${\sim}72$ and ${\sim}78$ wt.% of the total mass of the eolian sediments, respectively, and thus is the main contributor of ¹⁰Be to the paleosol and loess. Given that the eolian sand in deserts is predominately fine sand (0.25–0.1 mm) and that their ¹⁰Be concentrations are about an order of magnitude lower than falling dust, the silt component in the Luochuan paleosol-loess sequence is not likely to be directly originated from the deserts. This is supported by the physical features of loess [1].

The transportation of eolian dust is controlled by the intensity of wind and the distance between the source and deposition regions [14]. The loess plateau is located within 500–1000 km away from the deserts, whereas the loess particles is transported through suspending transit, which is a kind of short distance dust transit and thus cannot be transported directly from the source deserts to the loess plateau [14,15].

It is estimated that ~50% and ~70% of the ¹⁰Be in S₁ paleosol and L₂ loess, respectively, was imported through re-settled surface dusts, assuming the ¹⁰Be concentrations in imported materials are the same as the average ¹⁰Be concentrations in falling dust.

5. Conclusions

The ¹⁰Be concentrations in sands (>50 µm) from major deserts in China, falling dust in deposition regions and loess-paleosol

sequences were determined to identify the source of ¹⁰Be in loess on the Chinese Loess Plateau. The results show that:

- 1. The ¹⁰Be concentrations range from $(1.4 \text{ to } 2.8) \times 10^8 \text{ atoms/g}$ for loess, $(2.7 \text{ to } 4.5) \times 10^8 \text{ atoms/g}$ for paleosol, $(1.1 \text{ to } 5.1) \times 10^7 \text{ atoms/g}$ for sands from deserts and $(1.2 \text{ to } 2.8) \times 10^8 \text{ atoms/g}$ for falling dust.
- 2. Both loess and paleosol on the Chinese Loess Plateau inherited 10 Be from the falling dust, with \sim 50% and \sim 70% of the 10 Be in S₁ paleosol and L₂ loess, respectively, was collected from regions upwind.
- 3. The ¹⁰Be data for desert sands, falling dust, and loess-paleosol suggest that the dust materials in loess and paleosol do not stem directly from deserts, but from the dust source regions, which is the loess-desert transitional zone located between the deserts and the loess belt.

Acknowledgements

We thank the AMS group of ETH for their contributions during ¹⁰Be measurements. The ¹⁰Be measurements were performed at the AMS-facility of Zurich, jointly operated by the Swiss Federal Institute of Technology, Zürich and the Paul Scherrer Institute, Villigen, Switzerland. This work was supported jointly by grants from Chinese NKBRSF (G1999043401), CAS Knowledge Innovation Project (KZCX2-SW-118, KZCX2-108), NSFC (40231015) and also from

the Swiss NSF, ETH Zürich, the Paul Scherrer Institute. We sincerely thank Professor Yubin Sun for providing mud crust samples, and two anonymous referees for constructive review comments.

References

- [1] T.S. Liu, Loess and the Environment, China Ocean Press, Beijing, 1985.
- [2] X.J. Sun, P.X. Wang, Palaeogeography Palaeoclimatology Palaeoecology 222
- (2005) 181.[3] Z. Wu, Research on Inland Sand Deserts and Coastal Dunes in China, Science Press, Beijing, 1997. p. 59.
- [4] T. Wang, Desert and Desertification in China, Hebei Science and Technology Publishing House, Shijiazhuang, 2003. p. 155.
- [5] Z.Y. Gu, D. Lal, T.S. Liu, J. Southon, M.W. Caffee, Z.T. Guo, M.Y. Chen, Earth and Planetary Science Letters 144 (1996) 273.
- [6] C.D. Shen, P. Ding, N. Wang, J.M. Han, S. Zhang, K.X. Liu, X.F. Ding, D.P. Fu, Quaternary Sciences 27 (2007) 919.
- [7] C.D. Shen, J. Beer, P.W. Kubik, M. Suter, M. Borkovec, T.S. Liu, Nucl. Instr. Meth. B 223–224 (2004) 613.
- [8] T.S. Liu, Z.L. Ding, Annual Review of Earth and Planetary Sciences 26 (1998) 111.
- [9] N. Shi et al., Quaternary Geochronology 13 (1994) 127.
- [10] J. Beer, C.D. Shen, F. Heller, P.W. Kubik, M. Suter, T.S. Liu, Geophysical Research Letters 20 (1993) 57.
- [11] C.D. Shen, J. Beer, T.S. Liu, H. Oescheger, G. Bonani, M. Suter, W. Wolfli, Earth and Planetary Science Letters 109 (1992) 169.
- [12] C.D. Shen, W.X. Yi, Z. Zhou, T.S. Liu, J. Beer, H. Oescheger, G. Bonani, M. Suter, W. Wolfli, Science in China Series B – Chemistry 35 (1992) 329.
- [13] C.D. Shen, J. Beer, F. Heller, P.W. Kubik, M. Suter, T.S. Liu, Nucl. Instr. Meth. B 172 (2000) 551.
- [14] Z.L. Ding, J.M. Sun, N.W. Rutter, D. Rokosh, T.S. Tiu, Quaternary Research 52 (1999) 56.
- [15] J.M. Sun, Earth and Planetary Science Letters 203 (2002) 845.