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ABSTRACT: Application of reliable thermobarometer on garnet-bearing mantle xenoliths and granu-

lite xenoliths entrained by Cenozoic basalts in eastern China reveals two main types of geotherm. The 

first type, as exampled by Hannuoba (汉诺坝), Mingxi (明溪) and probably Northeast China, is char-

acterized by constant slope of data in the P-T space. The second type, as exampled by the high geo-

therms of Nüshan (女山) and probably Xinchang (新昌), is characterized by variable slopes, with the 

samples with pressure <2 MPa defining a slow slope, whereas the samples with pressure >2 MPa define 

a virtually vertical slope. The different slopes in the second type of geotherm may correspond to differ-

ent heat transfer mechanisms, with conductive transfer for the shallow upper mantle and advective 

transfer for the deep mantle. This observed transition in thermal transfer mechanism is consistent with 

theoretical modeling. The two types of geotherm are not mutually exclusive, because the second type 

may characterize the thermal state of whole lithospheric section including both mechanical boundary 

layer (MBL) and thermal boundary layer (TBL), while the first type may only depict the MBL. The 

variable geotherms for different regions are indicative of a heterogeneous lithospheric structure in 

eastern China. (a) Eastern North China craton (NCC) is characterized by a second-type geotherm, cor-

responding to a thin lithosphere (~70 km). Comparison of the equilibrium temperatures of spinel peri-

dotites with this geotherm constrains the depth to Moho in eastern North China craton to be 30 km. In 

contrast, western NCC (Hannuoba: the first-type geotherm) possesses a relatively low thermal gradient, 

indicative of a thick lithosphere (>90–100 km) and a thick crust-mantle transition zone. The  
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dramatic change in crustal and mantle structure 

across the DTGL (Daxing’anling (大兴安岭)-      

Taihangshan (太行山) gravity lineament) is con-

sistent with recent seismic studies. (b) There is a 

decrease in thermal gradient and in lithospheric 

thickness from the coast (Xinchang: the sec-

ond-type geotherm) to the inland (Mingxi: the 

first-type geotherm) in South China (from ~80 

km to >90 km), which is collaborated with 

westward variation in basalt geochemistry. (c) 

The weak convex-upward pattern of the geo-

therm in Qilin (麒麟) and Leizhou (雷州) Pen-

insula is peculiar, probably reflecting a transi- 
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tional feature between conductive and advective heat transfer. It may result from impregnation of 

mantle plume on the base of the lithosphere. These new results not only provide a basic framework for 

the ongoing 4-D lithosphere mapping project in eastern China, but also yield important implications for 

deep processes that operated over the past. 

KEY WORDS: geotherm, thermobarometry, garnet-bearing peridotite and pyroxenite, granulite, 

xenolith, lithosphere, eastern China. 

 
INTRODUCTION 

Estimation of equilibrium temperatures and 
pressures of mantle-derived xenoliths is pivotal to un-
derstanding geothermal gradients in the lithosphere 
and mechanisms of magma generation as well as the 
depth to important geological transitions such as the 
crust-mantle and lithosphere-asthenosphere bounda-
ries. Xu Y G et al. (1995) have constructed a thermal 
gradient for the lithosphere mantle beneath eastern 
China using estimated equilibrium temperatures and 
pressures of both spinel and garnet peridotites. Al-
though this geotherm is indicative of extensional set-
ting that is consistent with other geological records of 
the same region, it also suffered the following short-
comings. (a) In their studies, equilibrium pressures for 
spinel-facies peridotites were obtained by application 
of the calibration of CaOl-Cpx barometer by Köhler and 
Brey (1990). However, the application of this method 
to natural rocks is hampered by the common 
Ca-disequilibria between olivine and clinopyroxene 
due to later thermal event (Werling and Altherr, 1997; 
Köhler and Brey, 1990) and to lesser extent by the 
difficulty in precise measurement of Ca content in oli-
vine with an electron microprobe. Moreover, there is a 
kink along the geotherm, separating the data collected 
for spinel and garnet peridotites. Given the different 
barometers used for spinel and garnet facies rocks, the 
reality of this kink remains unconstrained, because the 
consistency between different barometers has not been 
yet demonstrated. (b) Another potential problem asso-
ciated with the approach used by Xu Y G et al. (1995) 
is that they tried to define a uniform geotherm for the 
lithosphere underlying different tectonic unites and 
large number of localities running from Heilongjiang 
in Northeast China to Hainan Island in South China 
(Fig. 1). However, different localities may have dif-
ferent thermal gradients. This is highlighted by recent 
reconstruction of geotherms (Fig. 2) using xenolith 
data of Nüshan (Huang et al., 2004; Xu X S et al.,  

 

Figure 1. Simplified diagram showing major tec-
tonic units and xenolith location in eastern China. 
South China is subdivided to inland part and coast 
part (SE coastal gravity zone) by NNE 
Yuyao-Lishui (Zhejiang Province), Zhenghe-Dapu 
(Fujian Province) and Lianhuashan (Guangdong 
Province) (YLZDL) fault (Ma et al., 2002). Data 
sources for the ages of host rocks: Lixian (Yu et al., 
2005), Leizhou Peninsula, Mingxi, Xinchang, 
Xilong (Ho et al., 2003), Anyuan (Ye et al., 2001), 
Nüshan, Shanwang, Hebi, Hannuoba, Kuandian 
(Liu et al., 1992), Jiaohe (Wang, 1996), Qilin 
(Huang et al., unpublished data).  
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1998), Hannuoba (Chen et al., 2001; Shi et al., 2000), 
Shanwang (Zheng et al., 2006), Kuandian (Fang and 
Ma, 1998), Jiaohe (Yu, 2008), Chao’erhe (Fan et al., 
2008), Mingxi (Lin et al., 1999; Xu X S et al., 1998), 
Xinchang (Lin et al., 1995), Qilin (Xu Y G et al., 1999, 
1996) and Leizhou Peninsula (Lin et al., 2003; Yu et 
al., 2003). Nevertheless, it remains unclear whether 
the observed difference in Fig. 2 is due to different 
thermobarometers used (e.g., Xu X S et al., 1999; Xu 
Y G et al., 1999) and/or data quality, or truly reflect 
different thermal gradients for different localities.  

These problems are elaborated in this article by 
applying the same pairs of thermometer and barome-
ters on the data available for garnet-bearing peridotite, 
pyroxenite and granulite xenoliths from a number of 
localities in eastern China. This exercise is timely im-
portant because some new localities of garnet-bearing 
peridotite xenoliths (for which both reliable ther-
mometer and barometer are available) are discovered 
in eastern China and also because increasing number 
of garnet peridotites and granulites are collected in 
recent years. On the other hand, the importance of 
garnet pyroxenites in the investigation of lithospheric 
geotherm has increasingly been recognized (Chen et 
al., 1996; Xu X S et al., 1996; Amundsen et al., 1987; 
O’Reilly and Griffin, 1985; Griffin et al., 1984). 
Given their common coexistence with spinel peri-
dotites, garnet pyroxenites can yield information as to 
the thermal state for the lithospheric section occupied 
by spinel-facies peridotites, thus making it possible to 
overcome the aforementioned second problem associ-
ated with Xu Y G et al. (1995). The obtained data and 
inferred thermal state of the lithosphere will be evalu-
ated in terms of major tectonic unites in eastern China 
(NE China, South China and North China) and major 
geological feature (e.g., north-south gravity lineament). 
These data, in combination with recent geophysical 
data, will be used to assess the nature of the stratigra-
phy and architecture of the lower crust and upperman-
tle beneath eastern China. We hope that this effort 
may provide a basic framework for the 4-D litho-
sphere mapping, one of key contents of the ongoing 
Cratonic Destruction Project in eastern China. 
 
SAMPLE LOCALITIES AND DATA SCREEN 

Xenoliths used in this study were collected from 

over twenty localities of Cenozoic basalts and/or ma-
fic rocks/pipes in Northeast China, North China and 
South China (Fig. 2, Table 1). The locality in order 
from north to south include, Chao’erhe (Fan et al., 
2008), Hannuoba (Chen et al., 2001; Shi et al., 2000), 
Nüshan (Xu X S et al., 1998), Xinchang (Lin et al., 
1995; Xu Y G et al., 1995; Fan et al., 1989), Xilong 
(Yu et al., 2003), Mingxi (Lin et al., 1999a; Xu X S et 
al., 1998). The locality containing garnet pyroxenites 
include: Jiaohe (Yu, 2008), Kuandian (Fang and Ma, 
1998), Hannuoba (Chen et al., 2001; Shi et al., 2000), 
Shanwang (Zheng et al., 2006), Nüshan (Huang et al., 
2004; Xu X S et al., 1998), Qilin (Xu X S et al., 1996) 
and Leizhou (Huang et al., 2007; Lin et al., 2003; Yu 
et al., 2003). Granulite localities include Hannuoba 
(Chen et al., 2001; Huang et al., 2001), Nüshan 
(Huang et al., 2004) and Mingxi (Huang et al., unpub-
lished data). These xenolith localities mostly occur to 
east of the DTGL. Specifically, Jiaohe is located in 
NE China, Nüshan, Shanwang and Kuandian in North 
China, and Leizhou Peninsula, Mingxi, Xinchang, 
Qilin in South China. Only two localities (Hannuoba, 
Chao’erhe) are situated to west of the DTGL (Fig. 2). 

Mineral compositions are taken from literature 
(e.g., Fan et al., 2008; Huang et al., 2007, 2004, 2001; 
Zheng et al., 2006; Lin et al., 2003, 1999a, 1995; Yu et 
al., 2003; Chen et al., 2001; Fang and Ma, 1999; Xu X 
S et al., 1998, 1996; Xu Y G et al., 1998, 1993; Fan 
and Hooper, 1989). The data are screened before the 
calculation. Only electron microprobe (EPMA) data 
are used. The analyses with total less than 99% or 
greater than 101% are not used. Wet chemistry data 
collected in the eighties are not considered either. One 
of the most important pre-request for thermobarome- 
tric calculation is the thermal and compositional equi-
librium between co-existing minerals. Because ther-
mobarometry commonly involves Mg-Fe equilibrium 
between garnet and pyroxenes, we evaluate Mg-Fe 
partition between co-existing minerals for the purpose 
equilibrium assessment. There are excellent line cor-
relations between Mg# of orthopyroxene and clinopy-
roxene (Fig. 3a) and very well curve relations between 
Mg# of garnet and those of orthopyroxene/        
clinopyroxene (Figs. 3b–3c), which strongly suggest 
that compositional equilibrium between co-existing 
minerals of garnet-bearing pyroxenites and peridotites 
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Table 1  T-P estimates for granulites, garnet-bearing pyroxenite and lherzolite xenoliths from eastern China 

Sample Rock* T (℃) P (10-1 
MPa) Data sources Sample Rock* T (℃) P (10-1 

MPa) Data sources 

Qilin LZ-42 II 1 109 24.3 Yu et al. (2003) 

Q9307 I 904 11.7 Xu X S et al. (1996) LZ-37 II 1 034 18.2 Yu et al. (2003) 

Q9323 I 904 11.7 Xu X S et al. (1996) LZ-30 II 969 16 Yu et al. (2003) 

Q9324 I 904 11.7 Xu X S et al. (1996) LZ-34 II 1 042 18.9 Yu et al. (2003) 

Q8907 II 957 13.5 Xu X S et al. (1996) LZ-15 II 963 14.5 Yu et al. (2003) 

Q9352 I 941 12.2 Xu X S et al. (1996) gyx-35 II 1 017 18.3 Lin et al. (2003) 

Q9353 I 935 10.1 Xu X S et al. (1996) gyx-29 II 941 13.7 Lin et al. (2003) 

Q9355 I 914 12 Xu X S et al. (1996) gyx-29LB II 901 12.3 Huang et al. (2007) 

Q9327 I 939 11.9 Xu X S et al. (1996) gyx-29LA II 901 12.2 Huang et al. (2007) 

Q9351 I 941 13.9 Xu X S et al. (1996) gyx-29GA II 897 11.9 Huang et al. (2007) 

QL1 I 891 11.2 Xu X S et al. (1996) Xinchang 

QL8 I 860 10.1 Xu X S et al. (1996) ZN-20 IV 1 215 23.4 Fan and Hooper (1989) 

QL13 I 839 6.9 Xu X S et al. (1996) ZN-12 IV 1 171 21.2 Fan and Hooper (1989) 

QL21 I 847 9.3 Xu X S et al. (1996) ZN-8 IV 1 177 23.7 Fan and Hooper (1989) 

Mingxi XC-14 IV 1 153 18.8 Lin et al. (1995) 

DYK-1 III 1 156 21.9 Lin et al. (1999) XC-8 IV 1 190 22.2 Lin et al. (1995) 

DYK-2 III 1 100 21 Lin et al. (1999) XC-1 IV 1 189 22.7 Lin et al. (1995) 

DYK-3 III 1 170 22.4 Lin et al. (1999) Xilong 

DYK-6 III 1 108 20 Lin et al. (1999) XL-1-1 V 786 9.9 Yu et al. (2003) 

DYK-7 III 1 106 21.4 Lin et al. (1999) XL-1-2 V 801 10.2 Yu et al. (2003) 

DYK-8 IV 1 091 20.9 Lin et al. (1999) Anyuan 

DYK-16 IV 1 171 23 Lin et al. (1999) S-10(2) IV 1 182 23.9 Zheng et al. (2004) 

DYK-21 IV 1 144 21.4 Lin et al. (1999) Nüshan 

DYK-23 III 1 071 19.7 Lin et al. (1999) Nu9408-2 I 950 14.5 Xu X S et al. (1998) 

DYK-29 IV 1 097 20.6 Lin et al. (1999) Nu9408-1 I 924 13.4 Xu X S et al. (1998) 

DYK-30 III 1 065 19.5 Lin et al. (1999) NSGP1 I 926 13.5 Xu X S et al. (1998) 

DYK-36 IV 1 061 19.6 Lin et al. (1999) NS93-4V II 1 163 20.6 Xu X S et al. (1998) 

DYK-41 III 1 159 21.9 Lin et al. (1999) Nu9503 II 1 172 20.5 Xu X S et al. (1998) 

DYK-42 IV 1 126 21.7 Lin et al. (1999) Nu1993-2 II 1 148 19.9 Xu X S et al. (1998) 

DYK-43 IV 1 133 22 Lin et al. (1999) Nu1993 II 1 154 19.9 Xu X S et al. (1998) 

DYK-44 IV 1 087 19.9 Lin et al. (1999) NS9313 II 1 165 20.2 Xu X S et al. (1998) 

DYK-45 IV 1 158 22.1 Lin et al. (1999) Nu9621 III 1 129 17.9 Xu X S et al. (1998) 

MX07-1 V 713 6.6 Unpublished data Nu9604 III 1 127 18.3 Xu X S et al. (1998) 

MX09-2 V 663 6.4 Unpublished data NS9313-3 III 1 167 19.1 Xu X S et al. (1998) 

MX09-4 V 631 4.6 Unpublished data NS9313-2 III 1 153 18.7 Xu X S et al. (1998) 

MX09-6 V 715 6.3 Unpublished data Nu1989 III 1 122 19.4 Xu X S et al. (1998) 

Leizhou Peninsula Nu9413 III 1 147 19.1 Xu X S et al. (1998) 

XW-3NJ I 915 12.1 Yu et al. (2003) Nu9301-2 III 1 153 18.7 Xu X S et al. (1998) 

XW-3 I 994 15.3 Yu et al. (2003) Nu9414 III 1 116 21.1 Xu X S et al. (1998) 

LZ-51 II 1 072 19.4 Yu et al. (2003) Nu9410 III 1 163 21.9 Xu X S et al. (1998) 

LZ-47-2 I 1 007 15.1 Yu et al. (2003) Nu9407 IV 1 159 22.4 Xu X S et al. (1998) 

LZ-47-1 I 1 017 15.7 Yu et al. (2003) Nu9506 IV 1 161 19.2 Xu X S et al. (1998) 

LZ-46 I 961 15 Yu et al. (2003) Nu9504 IV 1 154 18.8 Xu X S et al. (1998) 

LZ-44-IV II 1 031 17.6 Yu et al. (2003) Nu9502 IV 1 174 19.5 Xu X S et al. (1998) 

LZ-44-III II 1 023 16.5 Yu et al. (2003) NS218 IV 898 13.1 Unpublished data 

LZ-44-II II 1 028 18.5 Yu et al. (2003) N-3 III 1 163 19.1 Jin and Pan (1998) 

LZ-44-I II 1 035 18.6 Yu et al. (2003) NS201 V 793 8.2 Huang et al. (2004) 
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Continued 

Sample Rock* T (℃) P (10-1 
MPa) Data sources Sample Rock* T (℃) P (10-1 

MPa) Data sources 

NS202c V 765 7.9 Huang et al. (2004) Kuandian 

NS202r V 790 8.2 Huang et al. (2004) 96Kd15 II 1 059 17 Fang and Ma (1999) 

NS203 V 749 6.1 Huang et al. (2004) 96Kd12 I 1 009 17.4 Fang and Ma (1999) 

NS204 V 719 7.4 Huang et al. (2004) 96Kd11 II 1 042 16.9 Fang and Ma (1999) 

NS205 V 786 6.9 Huang et al. (2004) 96Kd03 II 1 027 18.6 Fang and Ma (1999) 

NS206 V 792 8.5 Huang et al. (2004) 95Kd24 I 1 044 16.2 Fang and Ma (1999) 

NS207 V 745 6.8 Huang et al. (2004) 95Kd11 I 1 031 15.6 Fang and Ma (1999) 

NS210 V 656 5.2 Huang et al. (2004) 96Kd17 I 1 074 17.8 Fang and Ma (1999) 

NS212 V 731 6.9 Huang et al. (2004) 95Kd03 I 1 070 16.9 Fang and Ma (1999) 

NS213 V 758 5.9 Huang et al. (2004) Shanwang 

NS214 V 672 3.9 Huang et al. (2004) SW04-6 III 1 174 19.7 Zheng et al. (2006) 

Nu8901 V 708 4.2 Xu X S et al. (1998) SW04-2 III 1 090 16.3 Zheng et al. (2006) 

Nu8902 V 778 6.7 Xu X S et al. (1998) SW01-8 IV 1 182 24.2 Zheng et al. (2006) 

Nu8903 V 699 3.4 Xu X S et al. (1998) SW01-1 IV 1 164 22.8 Zheng et al. (2006) 

Nu9518 V 716 6.4 Xu X S et al. (1998) SW0193 III 1 007 17.2 Zheng et al. (2006) 

Nu9521 V 730 6.3 Xu X S et al. (1998) SW0169 III 1 100 19.9 Zheng et al. (2006) 

Nu9523 V 744 5.5 Xu X S et al. (1998) Jiaohe 

Hannuoba YQSX-13 II 1 006 16.5 Yu (2008) 

90DA11 II 1 114 23 Chen et al. (2001) YQS-19 I 825 10.2 Yu (2008) 

JSB II 1 065 19 Chen et al. (2001) YQS-18 I 904 13.9 Yu (2008) 

95SQ9 II 1 062 18.8 Chen et al. (2001) YQSX-4 II 948 15.6 Yu (2008) 

95JSB4 II 1 090 20 Chen et al. (2001) YQSX-12 II 901 13.4 Yu (2008) 

30J27 II 1 089 19.8 Chen et al. (2001) YQSX-7 I 1 024 16.1 Yu (2008) 

TGZ II 1 098 19.1 Chen et al. (2001) YQSX-2 I 1 030 17.5 Yu (2008) 

T253 II 1 127 20.4 Chen et al. (2001) BSK-12 I 989 16.6 Yu (2008) 

NT26 I 1 216 23.9 Chen et al. (2001) BSK-13 II 1 001 16.5 Yu (2008) 

30J26 II 1 088 20.1 Chen et al. (2001) Chao’erhe 

2XM2 I 1 082 19.7 Chen et al. (2001) 07WNP11 IV 1 311 28.9 Fan et al. (2008) 

Dmp-9 VI 783 7.79 Chen et al. (2001) 07WNP09 IV 1 326 26 Fan et al. (2008) 

Dmp-7 VI 771 9.07 Chen et al. (2001) 07WNP07 IV 1 227 27.6 Fan et al. (2008) 

Dmp-4 VI 798 7.7 Chen et al. (2001) 07WNP06 IV 1 155 23.2 Fan et al. (2008) 

DM3 V 805 8.8 Chen et al. (2001) 07WNP05 IV 1 337 30.3 Fan et al. (2008) 

95SQ1 V 832 10.4 Chen et al. (2001) 07WNP04 IV 1 143 24.3 Fan et al. (2008) 

95DA15 V 834 9.4 Chen et al. (2001) 07WNP02 IV 1 192 27.6 Fan et al. (2008) 

93DA8 V 816 9.3 Chen et al. (2001) 07DHL02 IV 1 198 26.7 Fan et al. (2008) 

90DA9 V 775 9.5 Chen et al. (2001) 07DHL01 IV 1 121 23.1 Fan et al. (2008) 

90DA4 V 828 9.4 Chen et al. (2001) Chaoerhe1 IV 1 192 27.5 Fan et al. (2008) 

D39 V 794 9.4 Unpublished data Lixian (Western Qinling) 

D36 V 609 7.2 Unpublished data XQL-1 IV 1 124 23.1 Yu et al. (2001) 

D34 V 729 9.5 Unpublished data XQL-2 IV 1 191 24.1 Yu et al. (2001) 

D22 V 739 8 Unpublished data XQL-3 II 1 263 33.6 Yu et al. (2001) 

Hebi XQL-4 II 1 217 30.4 Yu et al. (2001) 

Hebi-1 III 1 167 18.9 Fan et al. (2008) XQL-5 III 1 147 23.8 Su et al. (2007) 

* Rock types and T-P methods: (I) spinel-garnet pyroxenite, TBK2P/PNG; (II) garnet pyroxenite, TBK2P/PNG; (III) spinel-garnet 

lherzolite, TBK2P/PBKN; (IV) garnet lherzolite, TBK2P/PBKN; (V) garnet-bearing granulite, TBK2P/PNG; (VI) garnet-free granulite, 

TBK2P/PPM. 
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Figure 2. The existing geotherms constructed on the basis of equilibrium pressures and temperatures of 
xenoliths from eastern China. Data source: Xu Y G et al. (1999, 1995); Xu X S et al. (1998, 1996); Chen et al. 
(2001); Lin et al. (2003, 1998); Huang et al. (2004) and Yu et al. (2003). The comparative geotherms (shield, 
oceanic, Spitsbergen RIFT and southeastern Australia) are after O’Reilly and Griffin (1996). The 
transition between spinel- and garnet-lherzolites is from O’Neill (1981), and the spinel pyroxenite-garnet 
pyroxenite boundary is from Herzberg (1978).  
 
is attained for the xenoliths selected for this study. 
 
SELECTION OF GEOTHERMOBAROMETERS 
IN TERMS OF MULTIPLE CRITERIA 

A large number of thermometer and barometer 
are available in literature. Different thermobarometers 
are calibrated for different purposes and using differ-

ent criteria. It is therefore of ultimate importance to 
choose appropriate thermobarometer(s) for the pur-
pose of construction of thermal gradient for a given 
lithosphere. The criteria used in evaluating the reli-
ability of a given thermometer or barometer is reiter-
ated here (Xu Y G et al., 1999; Xu Y G, 1993): (1) A 
reliable thermobarometric calibration should perfectly 
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reproduce the experimentally reversed data in natural 
systems under high temperature and pressure (Brey 
and Köhler, 1990; Carswell and Gibb, 1987; Bertrand 
and Mercier, 1985); (2) estimated P-T values should 

 

 

Figure 3. Partitioning of Fe-Mg between co-existing 
garnet, clinopyroxene and orthopyroxene for peri-
dotite and pyroxenite xenoliths selected for this 
study. Data from Xu X S et al. (1998, 1996), Lin et 
al. (1999, 1995), Fang and Ma (1999), Yu et al. 
(2003), Fan et al. (2008, 1989), Jin and Pan (1998), 
Chen et al. (2001), Yu (2001), Zheng et al. (2006, 
2001), Huang et al. (2007, 2004), Su et al. (2007), 
Yu (2008). 

be consistent with known phase relationships (Fin-
nerty and Boyd, 1984; Griffin et al., 1984); and (3) 
applications of geothermobarometric data to compos-
ite xenoliths should yield similar estimates for differ-
ent parts of the composites. Another approach but 
more rarely used is to directly determine the stability 
limits of mineral assemblage by experiments on indi-
vidual xenoliths (Adam et al., 1992; Irving, 1974). 

The first criterion has been used by Bertrand and 
Mercier (1985) and Carswell and Gibb (1987) in the 
formulation of new geothermobarometers and the 
evaluation of existing ones. It has been shown that this 
may be the most reasonable approach in any thermo-
barometric evaluation (e.g., Brey and Köhler, 1990). 
From Figs. 4a and 4c it is apparent that the BM ther-
mometer (Bertrand and Mercier, 1985) nicely fits the 
experimental temperatures, whereas the Ellis and 
Green (1979) thermometer underestimates the ex-
perimental temperatures for temperatures >1 200 ℃ 
and overestimates for temperatures <1 200 ℃ (Fig. 
4c). When applied to the experimentally crystallized 
garnets and pyroxenes, the Ellis and Green (1979) 
calibration is found to systematically overestimate the 
temperature by about 150 ℃ for the pressure range 
of garnet pyroxenites (Green and Adam, 1991). A 
similar remark was also made by Ai (1994) who has 
accordingly revised the Fe-Mg exchange thermometer 
based on a comprehensive data set of both ultramafic 
and mafic compositions. The Sachtleben and Seck 
(1981) thermometer slightly underestimates the ex-
perimental temperatures for temperatures <1 100 ℃ 
but the discrepancy becomes important for tempera-
tures >1 100 ℃ (Fig. 4d). Accordingly, this empiri-
cal thermometer has been improved by Witt-    
Eickschen and Seck (1991).  

Figure 5 shows the results for barometers. Simi-
lar to the conclusion of Carswell and Gibb (1987), it is 
clear that the barometer of Wood (1974) underesti-
mates the experimental pressures. By contrast, the ba-
rometer of Nickel and Green (1985) reasonably re-
produces the experimental pressures.  

Three phase relationships have been used so far 
in thermobarometric evaluations: (1) graphite-    
diamond transition (Finnerty and Boyd, 1984); (2) 
spinel to garnet pyroxenite transition (Griffin et al., 
1984); and (3) spinel to garnet lherzolite transition  
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Figure 4. Comparison between the calculated temperatures from different thermometers and experimental 
temperatures (after Xu Y G et al., 1999). (a) Bertrand and Mercier (1985); (b) Brey and Köhler (1990), (c) 
Ellis and Green (1979); and (d) Sachtleben and Seck (1981). Filled diamond: data from Brey and Köhler 
(1990); open circle: data from Akella (1976), Mori and Green (1978). 
 
(O’Reilly and Griffin, 1985). We performed a test for 
two pairs of thermometers/barometers listed above to 
see (1) whether they are consistent with the graphite- 
diamond reaction using the available data on graphite- 
and diamond-bearing xenoliths (Zheng et al., 2006; 
Pearson et al., 1994; Jaques et al., 1990; Shee et al., 
1982; Pokhilenko et al., 1977; Dawson and Smith, 
1975; Nixon and Boyd, 1973), as well as multiphase 
inclusions in diamond (Tsai et al., 1979); (2) whether 
they are consistent with the spinel-garnet transitions 
using mineral chemistry data on garnet-bearing xeno-
liths (including pyroxenites and peridotites) from 
eastern China. It is clear from Figs. 4–5 that the 
BK2P/NG method (Brey and Köhler (1990)/Nickel 
and Green (1985)) yields results consistent with both 
the graphite-diamond transition of Kennedy and Ken-
nedy (1976) and the spinel-garnet transition, whereas 
the estimates of the EG/W method are only consistent 
with the spinel-garnet transition but not with the 
graphite-diamond reaction (Xu Y G et al., 1999). 
These results strongly suggest that the BK2P/NG (as 

well as the TBK2P/PBKN method (Brey and Köhler 
(1990)/Brey and Köhler (1990)) which yields compa-
rable results) is the first choice when estimating P-T 
of Mg-rich rocks. 

The third criterion is largely based on equilib-
rium composite xenoliths. The different parts of a 
composite are located at the same depths, therefore 
application of a geothermometer should yield similar 
temperature estimates for different parts of the xeno-
liths. However, this approach is frequently hampered 
because the lherzolite part in composites could be 
thermally affected by the magmatic intrusion repre-
sented by the pyroxenite vein (Xu X S et al., 1999). 

The methods mentioned above are only associ-
ated with garnet-bearing xenoliths. For the P-T esti-
mation for garnet-free granulites, McCarthy and 
Patiño Douce (1998)’s empirical geobarometer and 
Brey and Köhler (1990)’s two-pyroxene thermometer 
are used. The reasoning for this choice is provided by 
Huang et al. (2004). 
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Figure 5. (a) Comparison between the calculated 
pressures of Nickel and Green (1985)’s barometer 
and experimental pressures. Data source is the 
same as in Fig. 4; (b) comparison between P-T cal-
culated by BK2P/NG and the graphite-diamond 
transition. Data of graphite- and diamond-bearing 
peridotites and coexisting multiphase inclusions in 
diamond are after Zheng et al. (2006), Pearson et al. 
(1994), Jaques et al. (1990), Shee et al. (1982), Tsai 
et al. (1979), Pokhilenko et al. (1977), Dawson and 
Smith (1975), and Nixon and Boyd (1973). The 
graphite-diamond transition is taken from Ken-
nedy and Kennedy (1976). 
 
RESULTS 

A summary of estimated equilibrium tempera-
tures and pressures are presented in Table 1, and re-
sults are plotted in Fig. 6. The majority of calculation 
results are consistent with experimental phase rela-
tionship. Specifically, the equilibrium P-T places gar-
net pyroxenites within the stability field of garnet-  
facies pyroxenite (O’Neill, 1981), and garnet peri-
dotites within the stability field of garnet peridotite 
(Fig. 6). These demonstrate the robustness of the cal-
culation results. Below, the results are described in 

terms of different tectonic units in eastern China, 
namely North China craton, northeastern China and 
South China.  
 
North China Craton 

The typical xenolith locality in eastern North 
China craton (NCC) is Nüshan, where xenoliths in-
clude garnet and spinel peridotites, garnet pyroxenites 
and granulites covering a full range of the lithosphere 
(Huang et al., 2004; Xu X S et al., 1998). The esti-
mated P and T values for the Nüshan xenoliths range 
from 0.4 to 2.4 MPa and from 600 to 1 200 ℃, thus 
defining tightly a geotherm. Data for garnet pyrox-
enites from Kuandian and garnet peridotites from 
Shanwang are also plotted proximal to this geotherm 
(Fig. 6a), suggesting that the Nüshan geotherm repre-
sent that for the lithosphere under the eastern NCC. 
This geotherm corresponds to a high thermal gradient 
(~ 80 mW/m2). It is noted that the geotherm is com-
posed of two sections: the section with pressure less 
than 2 MPa is characterized by a slow slope, whereas 
the section with pressure greater than 2 MPa shows a 
roughly vertical pattern. Likely, the xenoliths from 
eastern NCC record two different mechanisms of heat 
transfer between lithosphere and asthenosphere (see 
DISCUSSION).  

Thermal state for the lithosphere under western 
NCC is constrained by the xenoliths from Hannuoba. 
P-T data are restricted to granulites and garnet pyrox-
enites and fall into two groups (<1.1 and >1.5 MPa). 
Equilibrium P and T between them are not observed. 
These data nevertheless define a geotherm corre-
sponding to ~70 mW/m2 (Fig. 6b). This thermal gra-
dient, slightly lower than that for eastern NCC, is 
characterized by a uniform slope, implying a single 
heat transfer mechanism for the lithosphere sampled 
by the Hannuoba xenoliths. 

 
Northeastern China 

Only two localities (Jiaohe and Chao’erhe) in 
northeastern China contain garnet-bearing xenoliths. 
In addition, the number of samples from these two lo-
calities is relatively small, making the geotherm for 
this region poorly constrained. The estimated P and T 
for garnet pyroxenites from Jiaohe vary from 0.8 to 
1.8 MPa and from 820 to 1 030 ℃, respectively. They 
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Figure 6. Equilibrium pressures and temperatures calculated for screened xenoliths from eastern China. (a) 
Eastern North China craton (NCC); (b) western NCC; (c) northeastern (NE) China; (d) South China. Data 
source: Chao’erhe (Fan et al., 2008), Hannuoba (Chen et al., 2001; Shi et al., 2000), Nüshan (Huang et al., 
2004; Xu X S et al., 1998), Xinchang (Lin et al., 1995; Xu Y G et al., 1995; Fan and Hooper, 1989), Mingxi 
(Lin et al., 1999; Huang et al., unpublished data), Jiaohe (Yu, 2008), Kuandian (Fang and Ma, 1999), 
Shanwang (Zheng et al., 2006), Qilin (Xu X S et al., 1996), Leizhou (Huang et al., 2007; Lin et al., 2003; Yu 
et al., 2003), Lixian (Su et al., 2007; Yu et al., 2001), Anyuan (Zheng et al., 2004), Hebi (Fan et al., 2008). 
The comparative geotherms (shield, oceanic, Spitsbergen rift and southeastern Australia) are after O’Reilly 
and Griffin (1996). The transition between spinel- and garnet-lherzolites is from O’Neill (1981), and the 
spinel pyroxenite-garnet pyroxenite boundary is from Herzberg (1978). 
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thus only provide thermal gradient for the uppermost 
upper mantle under the region to east of DTGL in NE 
China. The estimated P and T for garnet pyroxenites 
from Chao’erhe vary from 2.4 to 3 MPa and 1 120 to 
1 340 ℃, respectively. The estimated pressures are 
considerably higher than those obtained for garnet 
peridotites from the NCC, but are similar to those for 
Qinling peridotites (Yu et al., 2001). It is noted that 
the thermal gradient defined by the Jiaohe xenoliths 
resembles the Nüshan geotherm, and equilibrium P-T 
data for the Chao’erhe xenoliths are plotted along the 
extended trend of the Hannuoba geotherm. This indi-
cates the contrasting thermal gradient for the litho-
sphere across the DTGL. 
 
South China 

P-T data for the xenoliths from South China (Fig. 
6c) do not define a single slope. Notably, the data for 
the Qilin xenoliths define a slope which is different 
from that for the Mingxi xenoliths. It is possible that 
the Mingxi and Xinchang xenoliths form one gradient 
with a kink at about 2 MPa. However, the slower 
slope for the deep lithosphere compared to shallow 
section is inconsistent with the heat transfer between 
lithosphere and asthenosphere (McKenzie and Bickle, 
1988). Consequently, we believe that the Mingxi and 
Qilin xenoliths define two different thermal gradients. 
This is further supported by the Mingxi granulites 
whose equilibrium pressures and temperatures are dis-
tributed along the extended trend defined by Mingxi 
garnet peridotites (Fig. 6d). In spite of small number, 
the Xinchang samples seem to form a further different 
gradient. 

 
DISCUSSION 
Two Types of Geotherm for the Lithosphere be-
neath Eastern China 

The data presented in this study apparently reveal 
two types of geotherm for the lithosphere beneath 
eastern China (Fig. 7). The first type, as exampled by 
the geotherms of Hannuoba, Mingxi and probably NE 
China, is characterized by constant slope of data in the 
P-T space (Fig. 7a). Noticeably, thermal gradients for 
three different regions are very similar. The second 
type, as exampled by the geotherms of Nüshan and 
probably Xinchang, is characterized by variable slopes 

in the P-T space (Fig. 7b). Specifically, the samples 
with pressure <2 MPa define a slow slope, whereas 
the samples with pressure >2 MPa define a virtually 
vertical slope. The following considerations make us 
believe that the two types of thermal gradient are real, 
rather than an artifact of thermobarometric calcula-
tion.  

(a) The different slopes in the second type of 
geotherm may correspond to different heat transfer 
mechanisms, with conductive transfer for the shallow 
upper mantle and advective transfer for the deep man-
tle. This observed transition in thermal transfer 
mechanism is essentially similar to that predicted by 
theoretical modeling (McKenzie and Bickle, 1988), 
and the transition zone may correspond to the thermal 
boundary layer (TBL). We thus propose that the sam-
ples defining such a kind of geotherm must have been 
derived from all the range of the lithosphere and the 
samples with the highest P and T provide maximum 
estimates on the thickness of the lithosphere at the 
given region. Following this line of reasoning, the 
thickness of the lithosphere beneath eastern NCC is 
about 70 km, in good agreement with the recent seis-
mic results (Chen et al., 2009). 

(b) The higher thermal gradient for eastern NCC 
is consistent with higher equilibrium temperatures for 
spinel peridotites collected from this region, compared 
to those for other areas. For example, equilibrium 
temperatures for spinel peridotites from eastern NCC 
range from 800–1 200 ℃, with two peaks at 900 and 
1 050 ℃. There are a significant number of samples 
with temperature of 1 000–1 100 ℃ in eastern NCC. 
In the regions (western NCC, NE China) characterized 
by the first type of geotherm, the equilibrium tem-
peratures are relatively low, mostly concentrated be-
tween 800–1 000 ℃, despite a few >1 000 ℃ (Fig. 
8). If these spinel peridotites are equilibrated within 
the spinel facies stability, i.e., under same pressure 
range, it can be inferred that higher temperatures are 
indicative of a higher geotherm. 

(c) As will be discussed in the following sections, 
the higher thermal gradient is, the thinner lithosphere 
is. In the case of eastern NCC, the lithosphere is in-
ferred to be ~70 km thick. Given the experimental de-
termined spinel-garnet phase transition at 70–80 km 
(Robinson and Wood, 1998), lithospheric xenoliths 
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Figure 7. Two types of xenolith-derived geotherms in eastern China. 
 
sampled by asthenosphere-derived melts will be es-
sentially spinel-facies peridotites. The same reasoning 
leads to the suggestion that both spinel and garnet fa-
cies peridotites can be found in the regions with low 
thermal gradient, because the depth to the lithosphere- 
asthenosphere boundary in these areas is >90–100 km, 
well below the depth at which spinel-garnet phase 
transition occurs. This prediction is matched by ob-
servation that so far garnet peridotites are exclusively 
found in the areas with low thermal gradient (west of 
the DTGL, South China), whereas so far no garnet 
peridotite xenoliths are observed in eastern NCC (high 
thermal gradient). 

The two types of geotherm are not mutually ex-
clusive. The second type may represent a geotherm for 
whole lithospheric section including both mechanical 
boundary layer (MBL) and TBL, while the first type 
may only depict the MBL. In particular, the peculiar 
geotherm for Xinchang may only depict the TBL. The 
reason why different types of geotherm, or different 
sectors are sampled by xenoliths remains unclear. It 
may be related to entrainment mechanism of xenoliths 
by basalts, a phenomenon not well understood so far.  

It should be noted the peculiarity of the geotherm 
for Qilin and Leizhou, which crosses the first type of 
geotherm. It is also characterized by a weak convex-   
upward pattern, probably reflecting a transitional fea-
ture between conductive and advective heat transfer. 
Qilin and Leizhou are situated to the northern margin 
of South China Sea, an area intruded by upwelled 
seismically low velocity materials (Lei et al., 2009). It 
is therefore possible that the thermal perturbation as-
sociated with Qilin and Leizhou may reflect the effect 
of impregnation of mantle plume on the base of the 
lithosphere. 

 
Heterogeneous Lithospheric Structure in Eastern 
China 

Thermal gradient, in comparison with equilib-
rium temperature of spinel peridotites and seismic 
data, can be used to characterize the nature of the 
crust-mantle boundary (CMB) and the lithosphere- 
asthenosphere boundary (LAB) for a given region. 
The information as to these important boundaries is 
pivotal to understanding deep lithospheric processes 
and magma genesis.
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Figure 8. Histograms of equilibrium temperatures 
for spinel peridotites from different regions in 
eastern China. Northeast China: Wangqing (Xu Y 
G et al., 1998) and Huinan (Xu Y G et al., 2003). 
Western NCC: Hannuoba (Chen et al., 2001; Shi et 
al., 2000) and Datong (Chen et al., 1997). Eastern 
NCC: Nüshan (Xu X S et al., 1998; Qi et al., 1995), 
Kuandian (Fang and Ma, 1998), Shanwang (Zheng 
et al., 1998), Hebi (Zheng et al., 2001) and 
Pangshishan (Liu and Yan, 2007; Chen et al., 1994). 
Inland South China: Mingxi (Lin et al., 1999; Qi et 
al., 1995), Anyuan (Zheng et al., 2004). Coast of 
South China: Xinchang (Lin et al., 1995; Xu Y G et 
al., 1995; Fan and Hooper, 1989), Qilin (Xu X S et 
al., 1996; Qi et al., 1995) and Leizhou (Yu et al., 
2003). 
 
Depth to Moho 

The “seismic Moho” is defined as the base of the 

crust, across which the compressional wave velocity 
increases rapidly to ~8 km/s, whereas the crust-mantle 
boundary (CMB) is the transition between felsic-mafic 
crustal rocks and a dominantly ultramafic upper man-
tle (Griffin and O’Reilly, 1987). They are not always 
consistent, particularly in continental regions of high 
heat flow where the seismic Moho may lie deeper than 
the CMB (Griffin and O’Reilly, 1987). The depth to 
CMB can be estimated by comparing the lowest tem-
perature estimates of the spinel lherzolites and   
xenolith-based geotherm (O’Reilly and Griffin, 1985). 
If the relative proportion of mantle xenoliths at the 
earth surface can be taken as indicative of the lithol-
ogy of the upper mantle, then spinel peridotite is the 
dominant rock of the shallow mantle. It is thus rea-
sonable to infer that the shallowest depth from which 
spinel peridotites were sampled by the host basalts de-
fines the maximum thickness of the crust. If the depth 
to CMB is greater than the seismic Moho, a 
crust-mantle transition zone can be inferred (O’Reilly 
and Griffin, 1996), probably indicative of magmatic 
underplating which took place previously. To investi-
gate the depth to CMB, we compare histograms of 
equilibrium temperature with geotherm for the NCC, 
coast of South China and inland of South China, re-
spectively. 
 
North China   

In eastern NCC, the equilibrium temperatures for 
the granulite xenoliths are all below 800 ℃, whereas 
mantle-derived xenoliths are mostly equilibrated at 
temperatures higher than 820 ℃ (Figs. 6a, 7). 820 
℃ is therefore considered as the temperature at the 
base of the lower crust. By reference of the geotherm 
in this area, this suggests that the depth to the CMB is 
ca. 30 km, consistent with the depth to Moho as re-
vealed by seismic refraction data (Chen, 1988). In 
contrast, the depth to the CMB at Hannuoba (~28 km) 
is significantly shallower than the seismic Moho (~42 
km, Table 2), implying a thick (~14 km) crust-mantle 
transition zone. The different crust-mantle structures 
in the NCC may have resulted from different degrees 
of magma underplating in the western and eastern 
NCC (Xu Y G, 2007; Huang et al., 2004). Magmatic 
underplating must have been important in western 
NCC, because geochronologic studies (Wilde et al., 
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2003; Fan et al., 1998) reveal that magma underplat-
ing occurred during the Late Mesozoic, coeval with 
the initiation of widespread thermo-tectonic reactiva-
tion of the NCC (Xu Y G, 2001; Griffin et al., 1998). 
In contrast, underplating was minor in eastern NCC 
given the pre-dominant “Proterozoic age” of the 
granulite xenoliths and the coincidence of the “petro-
logic” and “seismic” Mohos (Huang et al., 2004). Al-
ternatively, the contrast in crust structures in the re-
gions separated by the DTGL may be related to crustal 
foundering processes (Gao et al., 2004; Xu Y G, 
2002). 
 
Inland of South China (Mingxi)   

Comparison of the lowest equilibrium tempera-
tures of spinel peridotites from Mingxi yields the 
depth to the CMB for these areas is ca. 32 km (Fig. 
6d). This estimate is close to the seismic Moho (Wang 
et al., 1993; Table 2). The consistency between the 
petrologic Moho and seismic Moho suggests an insig-
nificant crust-mantle transition zone in this area. 
However, care should be taken because the equilib-
rium distribution pattern is irregular (Fig. 6d). Notably, 
there lack samples with temperature of 850–1 000 ℃, 
suggesting biased sampling of the lithospheric mantle 
by host rocks.  
 
Coast of South China (Leizhou and Qilin) 

Comparison of the lowest equilibrium tempera-
tures of spinel peridotites from Leizhou and Qilin 
yields the depth to the CMB for these areas is ca. 31 
and 35 km, respectively (Fig. 6d). These estimates are 
greater than the seismic Moho (28, 31 km) (Yao et al., 
2006; Table 2). We don’t know whether this contra-
diction is related to the error associated with thermo-
barometry and seismic investigation or to the repre-
sentativeness of xenolith population. As noted above, 
the geotherm in this area is peculiar, probably reflect-

ing heating of the lithosphere by impregnating plume. 
Alternatively, the anomalously high geotherm at the 
crust-mantle boundary may be related to lateral heat 
transport from the underplating materials in South 
China basin, where the seismic velocity structure 
(VP=6.6–7.6 km/s) is suggestive of a thick 
crust-mantle transition zone.  

 
Depth to LAB 

According to McKenzie and Bickle (1988), the 
lithosphere includes TBL and overlying MBL. With 
the MBL, heat transport is via conduction, whereas in 
the TBL, both conduction and advection play role in 
heat transport. Compared to the MBL, the TBL is 
characterized by a steeper slope in the P-T space. The 
depth the transition between MBL and TBL provides 
an estimate to the lithospheric thickness. For the re-
gion where no MBL-TBL transition is observed, the 
greatest depth of garnet peridotites represents the 
minimum thickness of brittle lithosphere (O’Reilly 
and Griffin, 1996). Given the lack of evidence of a 
mantle plume for eastern China, potential temperature 
of the asthenosphere (TP=1 280 ) (McKenzie and ℃

Bickle, 1988) is taken to reflect the maximum tem-
perature at the base of the lithosphere. Projecting this 
temperature along a given geotherm yields a maxi-
mum estimation for the depth to the LAB. This is a 
reasonable assumption because the highest tempera-
tures for spinel- and garnet-peridotites (1 150 to 1 200 
℃, 1 200 to 1 280 ℃, respectively; Table 1; Fig. 8) 
approach TP (1 280 ℃).  

Using this approach, the depth to LAB in eastern 
NCC is ca. 70 km, in remarkably good agreement with 
recent seismic investigation results (Chen, 1988; Table 
2). In western NCC, the lithospheric thickness is 
greater than 90–100 km, again revealing the contrast-
ing lithospheric structure across the DTGL. The 
thickness of the lithosphere under North China is  

 
Table 2  Inferred CMB and LAB comparing with seismic Moho and LAB 

Locations 
Inferred CMB 

(km) 

Inferred LAB 

(km) 

Seismic 

Moho (km) 

Seismic LAB 

(km) 

Seismic data 

sources 

West NCC ~28 >90–100 ~42 90 Ma et al. (1991) 

Eastern NCC ~30 ~70 ~30 70–80 Chen (1988) 

Inland of South China ~31 >90 ~31 ~100 Wang et al. (1993)

Coast of South China ~31–35 ~80 ~28–31 75–80 Yao et al. (2006) 
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less well constrained, but is likely greater than that for 
eastern NCC (Table 2). Given the similarity of thermal 
gradient in western NCC and northeastern China, the 
lithosphere in NE China may be similar to that in 
Hannuoba.  

There is a variation in lithospheric thickness from 
coastline to inland in South China. Lithosphere in 
Xinchang is about ~80 km thick, whereas it becomes 
>90 km. This spatial variation is broadly consistent 
with geophysical data of Ma et al. (1991), also with 
increasing depth of magmatic generation as suggested 
by Chung et al. (1994). The depth to LAB in Leizhou 
and Qilin is less well constrained, due to possible 
plume imprint in this area. 
 
Deep Process Inferred from Variation in Thermal 
Gradient 

Despite the difference in detail for different geo-
logic parts, the Cenozoic lithosphere beneath eastern 
China is characterized by a high geothermal gradient 
(70–80 mW/m2), as inferred from the geothermo-
barometry of garnet-bearing peridotites and pyrox-
enites brought by alkali basalts to the surface (Fig. 6). 
The high thermal gradient is in accordance with ex-
tensional tectonics in eastern China during the Ceno-
zoic. This gradient is significantly higher than that for 
the lithosphere beneath North China in the Ordovician 
(Xu Y G, 2001). Such a contrast in thermal state for 
the same lithosphere at different times formed the ba-
sis of the current widely accepted concept that there 
was a dramatic change in lithospheric architecture 
during the Phanerozoic (Menzies et al., 1993; Fan and 
Menzies, 1992).  

The surface heat flow ranging from 70–80 
mW/m2 to which the xenolith-derived Cenozoic geo-
therm corresponds is higher than the present-day 
measured values in North China (~65 mW/m2; Wang 
and Wang, 1992). Such a difference may imply that 
the lithosphere under eastern China experienced cool-
ing from a hotter temperature regime (Menzies and Xu, 
1998), and thermal relaxation at surface is faster than 
in the lithospheric interior. Thermal relaxation is also 
recorded in basin analysis. Based on apatite fission 
track analyses and thermal modeling, Hu et al. (2000) 
showed that the heat flow in Bohai basin during the 
Eocene was as high as 90 mW/m2, corresponding to 

the rifting stage in this region. Since the Miocene, the 
basin experienced a period of thermal subsidence and 
relaxation, resulting in the low current heat flow (64 
mW/m2). 

Thermal gradient is variable in different areas in 
eastern China. The highest thermal gradient is ob-
served in eastern NCC, consistent with the thinnest 
lithosphere in this area. A similar high geotherm can 
be inferred for Xinchang, along the coast of South 
China. Western NCC, NE China and the interior of 
South China are characterized by a relatively “cool” 
geotherm, indicative of relatively thick lithospheres 
under these regions. The contrast in thermal gradient 
and inferred lithospheric thickness in both sides of the 
DTGL can be attributed to the diachronous litho-
spheric thinning, with that in the eastern NCC signifi-
cantly earlier than the Cenozoic thinning in the west-
ern NCC (Xu and Bodinier, 2004). This process 
eventually gave birth to the DTGL (Xu Y G, 2007). 

The thermal state in South China is complex. 
Nevertheless, there is a decrease in thermal gradient 
and in lithospheric thickness from the coast to the 
inland. Such a variation is collaborated with westward 
increase in basalt’s alkalinity, degree of silica under-
saturation and abundance of incompatible elements 
and decrease in Pb isotopic ratios of Cenozoic basalt 
from an NE-trending extension axis in the western 
Taiwan Strait (Chung et al., 1994). Such a spatial 
chemical and isotopic variation in the basalts can be 
explained by different degrees of decompression 
melting of convecting asthenosphere under the litho-
sphere with different thickness (Chung et al., 1994). In 
this model, the spatial variation in lithosphere in South 
China likely resulted from lithospheric extension, 
probably related to the opening of the South China 
Sea. The greatest lithosphere thinning occurred during 
the Miocene beneath the axial zone at Taiwan Strait.  

It appears that Cenozoic lithospheric extension 
only resulted in thinning of the lithosphere under the 
coastal regions of South China, leaving vast continen-
tal interior less affected. This is supported by re-
stricted distribution of Cenozoic magmatism along the 
coastline and by thick lithosphere (>150 km) revealed 
by geophysical investigation. Asthenosphere-     
derived intraplate-type basalts were erupted during 
Middle Jurassic–Cretaceous in Hunan and Jiangxi 
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provinces and some of them carried spinel facies per-
idotite xenoliths (Chen et al., 2009). This indicates a 
relatively thin lithosphere (<80 km) in the interior of 
the South China continent until the Cretaceous. 
Therefore, there was an event leading to the thicken-
ing of the lithosphere underneath this region since the 
Jurassic, although the nature of this event is unclear 
and deserves further investigation.  

 
CONCLUSIONS 

Application of reliable thermobarometer on  
garnet-bearing mantle xenoliths and granulite xeno-
liths entrained by Cenozoic basalts in eastern China 
leads to the following conclusions. 

(1) Two types of geotherm exist for the litho-
sphere beneath eastern China. The first type, as exam-
pled by Hannuoba, Mingxi and probably NE China, is 
characterized by constant slope of data in the P-T 
space. The second type, as exampled by the high geo-
therms of Nüshan and probably Xinchang, shows 
variable slopes, with conductive transfer for the shal-
low upper mantle and advective transfer for the deep 
mantle.  

(2) Eastern North China craton (NCC) shows a 
second-type geotherm, indicating a thin lithosphere 
(~70 km) and a thin crust (~30 km). In contrast, west-
ern NCC possesses a relatively low thermal gradient, 
indicative of a thick lithosphere (>90–100 km) and a 
thick crust-mantle transition zone. The dramatic 
change in crustal and mantle structure across the 
DTGL, also revealed by seismic studies, may have 
resulted from diachronous lithospheric thinning proc-
esses.  

(b) There is a decrease in thermal gradient and in 
lithospheric thickness from the coast to the inland in 
South China (from ~80 km to >90 km), which is col-
laborated with westward variation in basalt geochem-
istry. This likely resulted from lithospheric extension 
related to the opening of the South China Sea, with the 
greatest lithosphere thinning during the Miocene be-
neath the axial zone at Taiwan Strait.  

(c) The peculiar geotherm in Qilin and Leizhou 
peninsula is transitional between conductive and ad-
vective heat transfer. This characteristic may be re-
lated to impregnation of mantle plume on the base of 
the lithosphere, but further studies are needed. 
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