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The Qilian Shan, located in the northern Tibetan Plateau of NW China, has an excellent record of early to
middle Paleozoic subduction–accretion that resulted from convergence between the Alax and Qaidam
blocks, but there is no consensus about its detailed tectonic history. This paper summarizes its tectonic
divisions and discusses its tectonic evolution from the Cambrian to Devonian. The belt has the following
tectonic divisions: In the far north the southern passive margin of the Alax block is juxtaposed against an
early Cambrian to Ordovician, Marianan-type intra-oceanic arc (North Qilian). The North Qilian arc is sep-
arated from a Japanese-type arc (Central Qilian) to the south by a high-pressure metamorphic belt com-
posed mostly of ophiolitic slices and oceanic crusts. The Central Qilian is bounded to the south by a wide
mélange zone (South Qilian), consisting of ophiolitic slices and continental margin sequences. Farther to
the south lies the Oulongbuluk microcontinent that is separated from the Qaidam block and farther south
by an ultrahigh-pressure metamorphic belt. Tectonostratigraphic analysis, together with geochemical,
geochronological, and geophysical data, indicates a complex evolution by subduction–accretion pro-
cesses from the Cambrian to the Devonian before final amalgamation and docking to the northern Alax
block. This model solves the long-lasting discussion on the polarity of subduction in Paleozoic time; this
multiple subduction–accretion history sheds light on the continuity of Paleozoic sutures along the Qilian
Shan and the nature of the Altyn Tagh fault, and thus contributes to an improved understanding of the
tectonic architecture of Central Asia.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The northern Tibetan Plateau occupies an important position as
the northernmost orogenic collage of the Tethyan domain. In con-
trast to the style of Altaids to the north characterized by long-lived
accretionary processes (S�engör et al., 1993; Jahn, 2001; Litvinovsky
et al., 2002; Jahn et al., 2004; Xiao et al., 2003b, 2004a,b, 2006, in
press, 2008a,b; Wu et al., 2007), the architecture of these Tethyan
orogenic collages was long regarded as resulting from collisions
between various continental terranes derived from the northern
margin of Gondwana (Chang et al., 1986; S�engör, 1987; Dewey
et al., 1988; Matte et al., 1996; Dilek and Moores, 1999; Tapponnier
et al., 2001; Spurlin et al., 2005; Yin et al., 2008). However, the Qil-
ian Shan in the northern Tibetan Plateau (Fig. 1) has a long history
of crustal growth, accretion and collision from early to mid-Paleo-
zoic, more comparable to that of accretionary orogenic belts to the
west and north such as the Kunlun and Altaids (S�engör and
ll rights reserved.
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Okurogullari, 1991; S�engör and Natal’in, 1996a,b; Mattern et al.,
1996; Xiao et al., 1998, 2002a,b, 2003a, 2005; Pan et al., 2006;
Aitchison et al., 2001; Arnaud et al., 2003). Therefore, the Qilian
Shan provides the link between the dominantly collisional terranes
to the south and the dominantly accretionary belts to the north
and west.

The Qilian Shan (Figs. 1 and 2) is a classical mountain belt that
formed by subduction- and collision-related processes that led to
formation of island arcs, accretionary prisms, ophiolites, sea-
mounts, and high-pressure and ultrahigh-pressure metamorphic
rocks (Xiao et al., 1974, 1978; Wang and Liu, 1976; Li, 1979; Xu
et al., 1994; Wu et al., 1993; Gehrels et al., 2003a,b; Smith et al.,
1997; Smith, 2006; Smith and Yang, 2006; Song, 1997, 2006,
2007). However, much disagreement exists regarding the temporal
and spatial framework of the Qilian Shan and about details of its
tectonic history such as subduction polarity, younging direction
of arcs and crustal growth, and collisional thrust polarity (Zhang
and Xu, 1995; Feng, 1997; Song, 1997; Gehrels et al., 2003a,b;
Wang et al., 2005). In particular, there is confusion about the loca-
tion, nature, and ages of the sutures within the belt, and therefore
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Fig. 1. Schematic tectonic map of the northern Tibetan Plateau and adjacent regions showing the position of the Qilian Shan (modified after Sobel and Arnaud, 1999; Arnaud
et al., 2003; Xiao et al., 2003a, 2005; Cowgill et al., 2003; Gehrels et al., 2003a,b); Figs. 2 and 11 are marked.

Fig. 2. Schematic tectonic division of the Qilian Shan (modified after Feng, 1997; Xu et al., 2006). Numbers in black boxes indicate major faults: 1-Lenglongling fault; 2-Heihe
fault; 3-Nan Shan fault; 4-Tianjun fault. Figs. 3 and 6–9 are marked.
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about their continuity to the east and west (Zhou and Graham,
1996; Yang, 1997; Sobel and Arnaud, 1999; Yuan et al., 2002,
2003; Yue et al., 2004).

The aim of this paper is to review the geological history of the
Qilian Shan constrained by stratigraphic, geochemical, geochrono-
logical and geophysical data in order to understand its overall geo-
dynamic evolution. We use these data to build a new tectonic
model, and to discuss implications for the architecture and evolu-
tion of the northern Tibetan Plateau.

2. Tectonic background and regional geology

The Paleozoic Qilian Shan is divisible from north to south into
the Alax block (Alashan, part of the North China craton, unit A in
Fig. 2), North Qilian, Central Qilian and South Qilian (Fig. 3). Tec-
tonically, the Qilian Shan is a wide orogenic collage on the northern
margin of the Tibetan Plateau and adjacent areas including the
convergent Qaidam block to the south (unit B in Fig. 2). To the east
it merges with the East Kunlun orogenic belt that continues farther
east as the Qinling–Dabie orogenic belt. To the west it is bounded
by the Altyn Tagh fault, across which its continuation is uncertain:
it may extend as the Altyn-West Kunlun-Pamirs (Li, 1979; Schwab
et al., 2004; Wang and Liu, 1976), the Beishan-Tianshan (Zhou and
Graham, 1996), or the Altyn–Central Tarim (Yin and Nie, 1996)
(Fig. 1).

An important breakthrough in study of the Qilian Shan was the
discovery of ophiolites, blueschists and ophiolitic mélanges in the
North Qilian (Xiao et al., 1974, 1978; Wu et al., 1993; Wang and
Liu, 1976). Since the discovery of high-pressure and ultrahigh-
pressure metamorphic rocks along the northern Qaidam (Yang
et al., 2002, 2006; Wu et al., 2002; Zhang et al., 2006; Shi et al.,
2006; Yang and Powell, 2008), the northern Tibetan orogenic belts
have become the focus of extensive research. However, some basic
tectonic problems remain unsolved, in particular, the tectonic set-
tings of many tectonic units.

In this paper, we summarize the geology of the Qilian Shan by
describing, from north to south, the major tectonic units that are
defined as A, B, C, D, E and F in Fig. 2.



Fig. 3. Tectonic map of the Sunan-Qilian area showing imbricated accretionary sequences (modified after Zuo and Wu, 1997; Zuo et al., 2000; Song, 1996, 1997). See Fig. 2 for
location. Figs. 4 and 5 are marked.
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2.1. Southern Alax thrust belt (A)

The Alax block is considered to be the westernmost part of the
North China craton. There is no evidence of Archean rocks, but Lu
et al. (2002a,b) described early Proterozoic amphibolite-facies
metamorphic rocks whose protoliths are clastic sediments, carbon-
ates and minor mafic volcanic rocks. Prominent is the 812 ± 26 Ma
Jinchuan ultramafic intrusion (Li et al., 2005), which hosts the third
largest Ni–Cu deposit in the world. Lehmann et al. (2007) showed
that the plume-derived intrusion was emplaced between gneisses
and marbles in the southern Alax thrust belt on the southern mar-
gin of the North China craton. This thrust belt forms the northern-
most tectonic component related to the Qilian Shan.

2.2. North Qilian arc-accretionary system (B)

Unit B (North Qilian) is characterized by arc volcanic rocks and
high-pressure metamorphic rocks, and is the most extensively
studied part of the orogen. Structural and petrochemical data re-
veal the following subunits from N to S: (1) an Ordovician to
mid-Devonian Baiquanmen forearc accretionary complex that in-
cludes ophiolites and blueschists; (2) an Ordovician Dacha-Bianm-
agou arc with an intra-arc basin; (3) Ordovician to Silurian
Qingshuigou accretionary complexes that include ophiolites, sea-
mount fragments, turbidites, eclogites and blueschists; (4) the
Yushugou ophiolite; and (5) several late Ordovician to Silurian-
Early Devonian forearc basins that overlie accretionary complexes.

Petrochemical studies of volcanic rocks in the North Qilian indi-
cate the presence of three main volcanic units: a mid-ocean ridge
(MORB), oceanic island (alkaline OIB), and a calc-alkaline to tholei-
itic island arc (Lai et al., 1997). In the northern and southern parts
of the North Qilian, the Yushigou and Jiugequan ophiolites contain
MOR basalts. Ocean island basalts mainly in the Laohushan area
were interpreted by Zhang et al. (1995) and Lai et al. (1997) as
components of a seamount. The Laohushan ophiolite contains pil-
low basalts, ophiolitic gabbros and serpentinized dunites, imbri-
cated in a major thrust stack with red and green cherts, mafic
mudstones and sandstones that represent a ridge-to-trench suc-
cession of ocean plate stratigraphy, which was finally emplaced
into the accretionary wedge. Typical components of an accretion-
ary wedge include thick turbidite (Fig. 4a), pillowed basalt, and
chert (Fig. 4b, and c). Red radiolarian chert is common in the North
Qilian (Fig. 4c). Island arc volcanic rocks are widely distributed in
the North Qilian, and boninites are present in the North Qilian
arc (Zhang and Xu, 1995; Zhang et al., 1996, 1997b, 1998). Backarc
or arc-related basins were chemically defined (Xia et al., 2003).
Basalts at Dacha Daban in the North Qilian contain well-preserved
pillows (Fig. 4d), although some are strongly deformed. These is-
land arc volcanic rocks generally become progressively younger
from north to south (Zhang and Xu, 1995; Zhang et al., 1996,
1997b, 1998).

Most prominent are high-pressure metamorphic rocks mainly
in subunit 3. Structural studies indicate that their general structure
is dominated by south-verging thrusts (Xu et al., 1994, 1997, 2000,
2006) and that they underwent multiple periods of deformation
(Zhang and Xu, 1995; Zhang et al., 1996, 1997a, 1998). 40Ar/39Ar
ages on high-pressure metamorphism of the accretionary prisms
range from 480 Ma to 410 Ma (Zhang and Xu, 1995; Zhang et al.,
1996, 1997b, 1998). 40Ar/39Ar Plateau ages in the range of
454 ± 9–447 ± 4 Ma were obtained on phengites of the North Qilian



Fig. 4. (A) Steeply dipping greenish turbidite, north of Sunan. Scientists for scale. Looking east. (B) Pillow basalt, north of Jiugequan. Hammer is 37 cm. Looking east. (C) Red
radiolarian chert, east of Baijingshi. Hammer is 37 cm. Looking west. (D) Well-preserved pillows in boninitic basalt at Dachadaban. Scientist for scale. Looking west. See Fig. 3
for location (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).
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Shan (Liu, 2000; Liu et al., 2006). A blueschist from the Jiugequan
area has a younger 40Ar/39Ar age of ca. 360 Ma (Zuo and Wu,
1997; Zuo et al., 2000), but more precise ages of this high-pressure
metamorphism are needed.

The southward younging of the accretionary prisms and arc vol-
canic rocks indicates that subunit 3 has a northward subduction
polarity and that the subducting slab retreated southward (Xu
et al., 1994, 1997, 2000, 2006). The spatial distribution of the arcs,
accretionary complexes and forearc basins suggests, however, dif-
ferent subduction systems.

At Dacha Daban, an unconformity separates ophiolites below
and Devonian forearc sediments above (Fig. 5). Recent sedimentary
research on Silurian to Devonian forearc sediments in this belt
Fig. 5. Photo showing an unconformity between imbricated ophiolite sequences
below and Devonian forearc sediments above at Dachadaban. The imbricated
ophiolite sequences here are mainly represented by pillow basalt (with a boninitic
geochemical signature), which is overthrust by gabbro (in the foreground) on
moderately south-dipping thrusts. Looking north. See Fig. 3 for location.
indicates that subduction–accretion processes lasted until the
Devonian (Yan et al., 2007).

We conclude that unit B in the North Qilian contains intra-oce-
anic and subduction-generated rocks, as well as accretionary
prisms and exhumed high-pressure rocks. More structural and
field-based evidence is required to unravel the history of the obvi-
ously complex multiple subduction and accretion events.

2.3. Central Qilian arc-accretionary system (C)

High-grade metamorphic rocks in the Central Qilian are mainly
mica schist ± garnet ± kyanite, biotite gneiss, quartzite, marble and
minor graphite mica schist (Lu et al., 2002b). These rocks have
been thought to be Proterozoic in age, because mylonitic granitic
rocks have a single U–Pb zircon age of 917 ± 12 Ma (Guo and Li,
1999; Guo et al., 2000). The high-grade rocks are unconformably
overlain by unmetamorphosed to low-grade metamorphic clastic
sediments, sericite schist, siltstone, slate and carbonate (Lu et al.,
2002b). A sedimentary cover of Cambrian to lower Silurian carbon-
ate and clastic rocks is unconformably overlain by upper Devonian
conglomerates (Lu et al., 2002b).

However, Wang and Liu (1976) reported metamorphic ages of
420–442 Ma from imbricated granitic gneiss and garnet–biotite
gneiss, although no details of these age data were given. Also radi-
olarian fossils and conodonts of Silurian age occur in cherts within
a low-grade mélange (Yan et al., unpublished data); this might im-
ply that the imbrication process was later than Silurian (Wang and
Liu, 1976). At present, it seems more likely that most of the rocks in
the Central Qilian formed and accreted in the early-mid Paleozoic.

The high-grade metamorphic rocks are mainly characterized by
imbricate thrusts and duplexes, but they have not been described
in detail. Low-grade rocks contain coherent strata and incoherent
mélanges in which metabasalts contain well-preserved pillows
(Fig. 6) and block-in-matrix and imbricate structures (Fig. 7).
Asymmetrical structures in mylonites indicate southward thrust-
ing (Fig. 8) and dextral strike-slip (Fig. 9). These strike-slip faults
have 40Ar/39Ar and single U–Pb evaporation ages of 410–394 Ma



Fig. 6. Deformed pillows in metabasalts in the Central Qilian block, north of Xining.
Some pillows have chilled margins. The main pillows are 30–60 cm long. The cliff is
roughly 4 m high. Looking east. See Fig. 2 for location.

Fig. 7. Block-in-matrix structure in an accretionary mélange in the Central Qilian
block. Dashed lines outline blocks of sandstone in a matrix of thin-bedded
sandstone. Hammer is 37 cm. Looking east. See Fig. 2 for location.

Fig. 8. Asymmetrical structure in a mylonite in the Central Qilian indicating
southward thrusting. Coin for scale. Looking east. See Fig. 2 for location.

Fig. 9. Asymmetrical structure in mylonite in the Central Qilian showing horizontal
dextral strike-slip motion. Coin for scale. Looking down on a horizontal outcrop. See
Fig. 2 for location.
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(Qi, 2003). These structural relations suggest that the accretionary
prism underwent complicated deformation including oblique
shear and thrusting probably during accretion, but detailed high-
resolution isotopic data, such as SHRIMP zircon ages, are needed
to constrain the timing. Along the main ridge of the Central Qilian
block several Alaska-type, zoned mafic complexes have geological
and geochemical features that indicate an origin related to subduc-
tion towards the south (Zhang et al., 1997c,d).

At Lajishan an elongated zone of ophiolitic mélange with chert
and ultramafic and mafic rocks crops out (Fig. 2). All these ophio-
litic sequences or mélanges are thought to be Ordovician in age
(Qiu et al., 1998; Zuo et al., 2000).

In summary, we suggest that the Central Qilian is a section of a
Japanese-type orogen that contains a possible late Proterozoic slab,
an early Paleozoic magmatic arc, and an accretionary prism.

2.4. South Qilian arc-accretionary system (D)

The South Qilian unit D is mainly composed of Cambrian to Or-
dovician marine sediments and oceanic crustal fragments (Pan
et al., 2002), and lava flows, pyroclastic rocks and abyssal and bath-
yal deposits (Xu et al., 2006). Well-developed middle Ordovician
arc volcanic rocks comprise spilite, pillow basalt, volcaniclastic
rocks and andesitic porphyry, which are imbricated with chert
and minor carbonate; these rocks are unconformably overlain by
upper Devonian conglomerates (Lu et al., 2002b; Zhao et al.,
2004). Silurian flysch sediments are tightly folded and cleaved,
and intruded by late Caledonian granites (Xu et al., 2006).

The South Qilian was defined by Pan et al. (2002) as an arc-
accretionary system.

2.5. Oulongbuluk block (E)

The Oulongbuluk block of unit E consists of high-grade meta-
morphic rocks interpreted as part of a continental fragment (Pan
et al., 2002). The oldest rocks are granitic gneisses containing en-
claves of amphibolite and migmatite (Lu et al., 2002b). Granitic
gneiss and amphibolite have single zircon evaporation ages of
2412 ± 14 Ma and 2366 ± 10 Ma, respectively (Lu et al., 2002a).
These rocks are considered to form the basement of the Oulongb-
uluk block.

In tectonic contact with these oldest rocks is a supracrustal se-
quence composed of quartzite, garnet–sillimanite-bearing quartz
schist, mica schist, amphibolite, and minor granulite, the protoliths
of which were mainly clastic and volcaniclastic rocks. A second se-
quence is composed of carbonaceous sericite schist, calc-schist,
carbonaceous marble and phyllite, all tectonicially intercalated



328 W. Xiao et al. / Journal of Asian Earth Sciences 35 (2009) 323–333
with marble; isotopic ages have not been measured for these rocks
(Lu et al., 2002b). However, they are overlain unconformably by a
cover sequence, the basal rocks of which are basalts that have a
single zircon evaporation age of 738 ± 28 Ma, indicating that the
underlying supracrustal basement might be as young as middle
Neoproterozoic in age (Lu et al., 2002b). The Oulongbuluk block
has a well-developed Neoproterozoic to Ordovician sedimentary
cover that is unconformably overlain by upper Devonian conglom-
erates (Lu et al., 2002b).

2.6. North Qaidam UHP belt (F)

Unit F of the North Qaidam collisional system is the southern-
most part of the Qilian Shan; it occupies the collision zone between
the Qaidam and Oulongbuluk blocks (Gao et al., 1999; Yin et al.,
2001; Yang et al., 2001a, 2002; Manning et al., 2001; Wu et al.,
2002; Gehrels et al., 2003b). The oldest rocks of the Qaidam block
are high-grade gneisses, quartzites and marbles (Lu et al.,
2002a,b).

In the northern part of unit F, three main volcanic environments
are defined by petrochemical data: mid-ocean ridge (tholeiitic ser-
ies), oceanic island (seamount) (alkaline series), and island arc
(calc-alkaline and tholeiitic series) (Lai et al., 1996; Shi et al.,
2004, 2006). A U–Pb zircon age (LA-ICPMS) of 514.2 ± 8.5 Ma from
the island arc volcanic rocks (Shi et al., 2004, 2006) implies that
subduction started in the late Cambrian.

The plutonic part of the arc is represented by a suite of I-type
monzodiorite, quartz monzodiorite, granodiorite, and monzogra-
nite of calc- alkaline affinity (Wu et al., 2000, 2001, 2002). The
age of this arc is envisioned as late Cambrian to Ordovician (Xu
et al., 2006) or Silurian (Pan et al., 2002).

The southern part of unit F is characterized by garnet mica
schist ± quartz, muscovite quartzite, marble, garnet amphibolite,
and garnet peridotite, all of which have undergone ultrahigh-pres-
sure metamorphism (Lu et al., 2002a,b; Yang et al., 1998, 2001a,b,
2002; Mattinson et al., 2006; Yang and Powell, 2008). Eclogites oc-
cur as lenses in garnet–muscovite gneiss (Lu et al., 2002a,b) that
contains zircons with coesite inclusions, indicating that the rocks
have been subducted to a depth of more than 100 km (Xu et al.,
2006; Yang et al., 2001b). Yang and Powell (2008) found that the
original assemblages of the garnet peridotites in the northern Qai-
dam UHP belt were hydrothermally altered by seawater-derived
fluids. This is reasonable in the context of the tectonic evolution
of the orogenic belt, involving an oceanic basin in the early Palae-
ozoic (Yang and Powell, 2008).

The juxtaposition of the island arcs and the occurrence of the
ultrahigh-pressure metamorphic rocks have been interpreted to
be the result of northward deep subduction of the Qaidam block
beneath the northerly tectonic units either in the early Paleozoic
(Yang et al., 2000, 2001a, 2002) or early–middle Paleozoic (Song
et al., 2003a,b, 2006).

3. Geophysical data and other constraints

Units A, B, C, D, E, and F are mutually separated by suture zones
now mostly expressed as major faults (Xu et al., 1999, 2006);
stratigraphic and structural data that demonstrate the relation-
ships among them are shown in Fig. 10. The interpreted geophys-
ical section of these units across the Qilian Shan shown in Fig. 11
contains these data that confirm the relationships between the
Alax block and the lithosphere of the northern Tibetan Plateau
(Gao et al., 1999; Chen et al., 1999; Yin and Harrison, 2000; Tap-
ponnier et al., 2001).

In spite of the major strike-slip faults in East-Central China
(Tapponnier et al., 1990, 2001; Arnaud et al., 2003), the principal
far-field effect of the India–Asia collision in the Qilian Shan was
the formation of northward-verging thrusts (Dewey et al., 1988),
associated with the subduction of the Alax block beneath the Qilian
Range that gave rise to N–S shortening of some 300 km (Gao et al.,
1999; Chen et al., 1999; Yin and Harrison, 2000; Tapponnier et al.,
2001). Before this shortening (Fig. 11), the southern margin of the
Alax block would have extended much farther to the south. Never-
theless, the present distribution of tectonic units A, B, C, D, E and F
still represents the essential Paleozoic paleogeography that forms
the basis of our tectonic analysis below.

In addition to the above relations, we note the following impor-
tant information: (1) the totally different distribution of the North
China craton and the North and Central Qilian based on geological
and isotopic studies (Smith et al., 2000); (2) early to end-Devonian
metamorphic ages (400–360 Ma) of the blueschists of the accre-
tionary complex in North Qilian (Wu et al., 1993; Zuo and Wu,
1997; Zhang et al., 1997a); (3) a southwestward decrease across
the Qilian Shan of detrital zircon ages from ca. 490–480 Ma in
the northeast to ca. 440–430 Ma in the southwest, which matches
well a similar younging of U–Pb ages of granitoid plutons across
the belt and a concomitant northeastward increase of magmatic
ages from �440 to 406 Ma (Cowgill et al., 2003; Gehrels et al.,
2003a); (4) the northern Qaidam UHP rocks experienced peak
metamorphism at 440–423 Ma, during which continental collision
between Qaidam and Oulongbuluk blocks and deep subduction of
the northern Qaidam continental crust might have taken place
(Yang et al., 2001a, 2002, 2006; Song et al., 2004, 2006); and (5)
northern Qaidam UHP rocks were exhumed at 423–400 Ma (Yang
et al., 2001a, 2002, 2006; Song et al., 2004, 2006).

4. Tectonic evolution

Taking into account all the above data, we interpret the Paleo-
zoic tectonic evolution of the Qilian Shan as follows. In the late
Cambrian to early Silurian (Figs.10 and 12A) the Yushugou oceanic
lithosphere was doubly subducted: northwards beneath a Maria-
nan-type intra-oceanic subduction system (North Qilian), and
southwards beneath a Japan-type intra-oceanic subduction system
(Central Qilian). At the same time, the ocean north of the Qaidam
block was subducted northwards beneath the Oulongbuluk block
that was connected with the Central Qilian by the South Qilian
ocean. In the early to mid-Silurian (Fig. 12B), the North Qilian in-
tra-oceanic subduction system collided with the Central Qilian,
which had amalgamated with the Oulongbuluk block to form a
composite arc associated with double subduction of oceanic litho-
sphere. The Qaidam block collided with the central composite arc
and was deeply subducted beneath the central composite arc, giv-
ing rise to formation of UHP metamorphic rocks (Fig. 12B). In the
late Silurian to Devonian (Fig. 12C), the UHP metamorphic rocks
were exhumed into the North Qaidam block, while subduction of
the ocean to the south of the North China craton continued
with northward migration of magmatism. In the late Devonian
(Fig. 12D), the entire Qilian orogenic collage was accreted to the
North China craton, terminating the intervening ocean. During this
orogenic process, large-scale syn- and post-accretionary strike-slip
faulting occurred along the Qilian Shan suture zones (Xu et al.,
1994, 2006).

5. Discussion

5.1. Significance for subduction polarities

The above tectonic model solves the long-standing controversy
regarding Paleozoic subduction polarity and formation of the
northern Tibetan Plateau. Nearly all previous investigations were
only concerned with single or two-way of subduction events. For
example, in the North Qilian block northward subduction of the



Fig. 10. Time-correlated stratigraphic columns for the 6 tectonic units (A, B, C, D, E, and F as in Fig. 2) of the Qilian Shan, indicating directions of subduction, key events and
references. Cam-Cambrian, Gr-Group, Pt-Proterozoic, Ar-Archean.
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Fig. 11. Reinterpretation of the geophysical section of the Qilian Shan showing the deep relationships between the 6 tectonic units (A, B, C, D, E, and F as in Fig. 2) of the Qilian
Shan (modified after Chen et al., 1999; Gao et al., 1999).
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North Qilian oceanic plate (between the North and Central Qilian)
took place beneath the North Qilian arc (Xu et al., 1994, 1997,
2000, 2006), verified by the southward migration of arc volcanism
and the southward younging of the accretionary prism (Zhang and
Xu, 1995; Zhang et al., 1996, 1997b, 1998). However, the Alax
block (North China craton) and its cover sequence were under-
thrust southward beneath the coherent Qilian arc at a low angle
(Yin and Harrison, 2000). A mélange, at least a few kilometers thick
(Yin and Harrison, 2000) underlies the contact zone between the
Paleozoic arc and the subducted shelf sequence and its forearc
basins (Yan et al., 2007). Concerning the relationship between
the North Qilian oceanic plate and the Central Qilian, southward
subduction took place beneath the Central Qilian arc as verified
by presence of the Alaska-type complexes (Zhang et al., 1997c,d).

For the whole Qilian Shan, Yang et al. (2002, 2006) and Song
et al. (2006) used petrological, chemical and geochronological data
to propose various models, but in which there was only a single
northward subduction event between the Alax and the Qaidam
blocks, with the North Qilian high-pressure metamorphic belt rep-
resenting the oceanic subduction stage and the Qaidam ultrahigh-
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pressure metamorphic belt the continental deep subduction stage,
a typical Himalayan-type collisional orogen (Song et al., 2006).
However, as this tectonic review demonstrates (see Figs. 10 and
12), several important tectonic units between the northern Qaidam
ultrahigh-pressure metamorphic belt and the North Qilian arc are
missing, for instance the Central Qilian arc, the South Qilian ocean
basin and the Oulongbuluk block, and the ophiolites between them.

Accordingly, to us the data indicate that the Qilian Shan was
created by many subduction events with different polarities. A
multiple subduction system scenario reconciles the problematic
subduction polarity, not well accounted for by previous models.
Our model thus can solve the long-lived discussion regarding the
Paleozoic polarity of subduction.

5.2. Significance for tectonic architecture

Our model also shed lights on the controversy about the wes-
tern extension of the Qilian Shan along the northern Tibetan Pla-
teau (Zhou and Graham, 1996; Yang, 1997). Zhou and Graham
(1996) suggested that the Beishan–East Tianshan belt is a possible
extension of the Qilian belt, but Yin and Nie (1996) proposed the
Central Tarim as the possible western extension. However, the Qil-
ian belt instead could also be connected with the Altyn (Gehrels
et al., 2003a,b) and further westward with the West Kunlun (Sobel
and Arnaud, 1999; Sobel et al., 2001; Cowgill et al., 2003). From re-
cent tectonic studies in the West and East Kunlun (Sobel and Ar-
naud, 1999; Sobel et al., 2001; Cowgill et al., 2003, Xiao et al.,
1998, 2002a,b 2003a, 2005), we conclude that, due to the position
of the Qaidam block, the Qilian Shan is the most complicated in the
northern Tibetan Plateau.
Plate reconstructions show that the Tarim and North China
microcontinents were located near Gondwana in the early to mid-
dle Paleozoic (Fortey and Cocks, 2003). The Tarim block finally col-
lided with the Southern Altaids to the north in the late Permian to
early Triassic (Xiao et al., 2004a,b, 2006, in press, 2008a,b), while
the North China craton, to which the Qaidam block had already
been accreted by the late Paleozoic, was amalgamated to southern
Siberia in the early Triassic to the Jurassic (S�engör et al., 1993;
S�engör and Natal’in, 1996a,b). Therefore it would be reasonable
to define the Tarim block separately from the Qaidam block, at
least before the early Mesozoic when the North China craton amal-
gamated with the Southern Altaids. This leads us to the conclusion
that the Qilian belt formed an independent orogenic collage in the
Paleozoic that was later connected with the West Kunlun by trans-
form or accretionary tectonics, and which now lies somewhere
along the Altyn Tagh fault zone. Thus, understanding of the multi-
ple subduction and accretion processes in the Qilian Shan, together
with recent advances in knowledge of the Altyn Tagh fault (Yang,
1997; Yue and Liou, 1999; Yue et al., 2001, 2003, 2004) contributes
considerably to the tectonic architecture of Central Asia.

Orogenic belts have been mainly classified into two end-mem-
bers: accretionary and collisional (Windley, 1993, 1995) though
other versions exist (S�engör and Okurogullari, 1991; S�engör and
Natal’in, 1996a,b). In the case of the northern Tibetan Plateau,
accretionary and collisional tectonics co-existed simultaneously,
that is, coeval accretionary and collisional processes contributed
significantly to its growth and continental architecture. Further-
more, accretionary orogens have a long history and make a sub-
stantial contribution to crustal growth (Windley, 1995; Tagami
and Hasebe, 1999; Holbrook et al., 1999; Polat et al., 2005). There-
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fore, the role of accretionary processes in the continental growth of
the Tibetan Plateau should be re-evaluated and constrained by
more field mapping and isotopic studies (Kapp et al., 2000; Kapp
et al., 2003a,b; Yin and Harrison, 2000; Yuan et al., 2002, 2003).

Multiple subduction systems have broad implications for a bet-
ter understanding of orogens throughout the world. In the case of
the northern Tibetan Plateau, we emphasize that the Qilian Shan
was created by many subduction events with different polarities.
The double and multiple subduction systems envisaged in this
model are comparable to those of the Inner Mongolian part of
the southern Altaids (Xiao et al., 2004a,b), the Bismarck-Solomon
region (Petterson et al., 1999; Hall and Spakman, 2002; Hall,
2002; Mann and Taira, 2004; Phinney et al., 2004), the Molucca
Sea between East Sulawesi and Halmahera arcs in Indonesian (Bad-
er et al., 1999) including parts of the Philippines (Bader et al., 1999;
Hall and Spakman, 2002; Hall, 2002; Yumul et al., 2003; Pubellier
et al., 2004), and the early Eocene arc–continent collision recon-
structed from the Kamchatka Orogenic Belt, NE Russia (Konstanti-
novskaia, 2000, 2001).
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