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Abstract

Middle-Cambrian to Permian subduction-related records are widely distributed in Northern Xinjiang which can be grouped into the
Chinese Altay–East Junggar–Eastern Tien Shan, West Junggar, Yili, and Tarim domains. By integrating paleogeographic and geological
data, we suppose that the Chinese Altay–East Junggar–Eastern Tien Shan domain was more closely located to Siberia, while the West
Junggar and Yili domains occupied an intermediate position near the Kazakhstan block in the early Paleozoic Paleoasian Ocean. Dis-
tribution of Andean-type magmatic arcs, island arcs, accretionary wedges, ophiolitic slices, and/or microcontinents shows an archipelago
paleogeography forming a huge accretionary active margin sequences. The Tarim domain was on the opposite side of the early Paleozoic
Paleoasian Ocean remaining passive margin. These tectonic units drifted northwards and approached the southern active margin of the
Siberian craton in the late Paleozoic, leading to termination of the Paleoasian Ocean and formation of a complicated orogenic collage
between Siberian craton and the Tarim block between the end-Permian and Triassic. These multiple accretion processes significantly con-
tributed to the lateral growth of central Asia.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Altaids is one of the biggest accretionary orogens
that grew southward in general from Siberia (Fig. 1),
encompassing a huge areas of Kazakhstan, Russia, Mon-
golia, China and their surroundings (S�engör et al., 1993;
Mossakovsky et al., 1994; S�engör and Natal’in, 1996; Jahn
et al., 2000; Dobretsov, 2003; Dobretsov et al., 2004; Selt-
mann et al., 2003; Xiao et al., 2003; Yakubchuk, 2004).
However, there is a strong debate about the mechanism
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of the accretionary growth as to whether there was a
long-lived, single subduction system (S�engör et al., 1993;
S�engör and Natal’in, 1996), a collage of various terranes
with multiple subduction systems (Coleman, 1989, 1994;
Mossakovsky et al., 1994; Buslov et al., 2001, 2003; Wind-
ley et al., 2002; Badarch et al., 2002), or huge chains of
double arc-backarc pairs (Yakubchuk, 2002, 2004). The
final phase of the various geological entities or terranes
amalgamated is in controversial and the final closure time
of the Paleoasian Ocean is not clear (e.g., early to middle
Paleozoic, He et al., 1994; Han et al., 1997; or late Paleo-
zoic, Filippova et al., 2001; Li et al., 2003; Xiao et al.,
2004a,b, 2006b; Yakubchuk, 2004). Northern Xinjiang
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Fig. 1. Simplified tectonic map of the Central Asian Orogenic Belt. AM, Altai-Mongolia block; B, Barguzin; BS, Beishan; C, Chara suture; Ch, Charysh
suture; ChTS, Chinese Tien Shan; D, Dzhida; ES, East Sayan; GA, Gorny Altai; K, Keketuohai; Kok, Kokchetav; KT, Khantaishir; H, Halatongke; L,
Lake (Ozernaya); MG, Magnitogorsk; NC, North Caspian basin; P, Patom; RA, Rudny Altai; SG, South Gobi microcontinent; TM, Tuva Mongol
massif; TS, Tien Shan; WS, West Sayan. Modified after S�engör et al. (1993) and Windley et al. (2007). The Northern Xinjiang region is outlined.
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occupies in the southern part (Fig. 1) of the Altaids. Its
almost complete geological records and excellent exposure
of ophiolites, magmatic arcs, and accretionary wedges have
made it an ideal natural laboratory to address this puzzle,
in particular, to unravel the final subduction and accretion
processes through the Paleozoic (Coleman, 1989; Windley
et al., 1990; Allen et al., 1993; Yin and Nie, 1996; Jahn
et al., 2000; Jahn, 2001; Xiao et al., 2004a,b). Despite its
important significance, nevertheless, nearly all published
English syntheses on the Altaids were constructed without
qualified, updated data from Northern Xinjiang. On the
other hand, there is no agreement about the tectonics of
Northern Xinjiang. For instance, the final amalgamation
time was regarded either as early–middle Devonian (Wang
et al., 1990; Han et al., 1997), late Devonian–early Carbon-
iferous (Gao et al., 1995; Windley et al., 1990; Allen et al.,
1993), or Permian (Sun et al., 1991; Li et al., 2005; Xiao
et al., 2006a,b). The major debate centres on the time, nat-
ure and tectonic setting of the various tectonostratigraphic
units. Therefore, the systematic definition of the various
tectonic entities of Northern Xinjiang should be of a key
significance to better understanding of the final stage of tec-
tonics in central Asia.

As several Chinese national key projects and interna-
tional joint programs were launched on the metallogeny
and tectonics of Northern Xinjiang, huge quantities of data
have been accumulated. The most important breakthrough
is that many geological bodies, such as arcs, accretionary
prisms, and ophiolitic fragments, have been dated by
high-resolution SHRIMP zircon dating and/or paleonto-
logical method. Therefore new data on the various geolog-
ical entities should be summarized and their tectonic
settings needs be revised and reinterpreted. Also, many
results and progress reports were published in Chinese,
and there is an urgent need to synthesize the geology of
Northern Xinjiang in English. This paper presents a new
version of tectonic subdivision of Northern Xinjiang, and
based on those data and observations we provide a new
tectonic model and reconstruction for Northern Xinjiang
in the framework of the southern Altaids.

2. Methodology

Tectonic facies analysis (Hsü, 1994) provides a large-
scale view on relationships between orogens and plate tec-
tonics, while terrane methodology (Coney et al., 1980;
Nokleberg et al., 2000, 2005) emphasizes a detailed tectonic
philosophy for orogen anatomy. In accretionary orogens
like Cordilleran, Andean, and Mongolian mountain
ranges, the recognition of terranes is useful for understand-
ing the complicated amalgamation history (Nokleberg
et al., 2000, 2005; Badarch et al., 2002), if combined with
detailed structural, tectonic, and paleontological data
(Dewey et al., 1988; S�engör, 1990; Robertson, 1994; Guo,
2000, 2001). Therefore we will use paleontonological and
paleomagnetic data as important constraints to define
first-order tectonic domains, and in that framework we
define the second-order tectonic units using tectonic analy-
sis combined with detailed structural, petrologic, geochem-
ical, geochronological and stratigraphic data.
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3. Regional geology and previous tectonic views

Northern Xinjiang is a vast area occupied by a desert of
the Junggar Basin surrounded by mountain ranges (Figs. 2
and 3). The Chinese Altay is the northerly distributed,
NW-trending mountain range, and the Tien Shan is the
southerly distributed, approximately E–W-trending moun-
tain range with high peaks of several thousand meters. To
the north of the Chinese Altay are the mountain ranges of
Kazakhstan, Russia, and Mongolia. To the south of the
Tien Shan is the Tarim Basin. Those small mountain
ranges located to the east and west of the Junggar Basin
are called ‘‘East Junggar’’ and ‘‘West Junggar’’, respec-
tively. They both are in fault contact with the Chinese
Altay to the north along the Erqis fault, and with the Tien
Shan to the south along the Tien Shan ophiolitic mélanges
(see the ophiolitic fragments along the Tien Shan south of
the Junggar Basin in Figs. 2 and 3).

The structural lines in Northern Xinjiang are mainly
parallel to the mountain ranges, and the major tectonic ele-
ments are mainly NW- or E–W-trending, but those in West
Junggar are NE-trending. Tectonics of Northern Xinjiang
was studied by various groups of geologists in general
(Feng et al., 1989; Xiao and Tang, 1991; Xiao et al.,
1994; He et al., 1994; Pirajno et al., 1997; Liu, 2000,
2002). However, the distribution of oceanic and continen-
tal domains and the final suture zone between Siberia
and Tarim is controversial. One school of researchers
recognised the Siberian (Chinese Altay), Kazakhstan–
Junggar (Junggar Basin basement, East and West Jung-
gar), and the Tarim plates, separating by two major sutures
along the Erqis fault and Tien Shan Mountains (Li, 1980;
Li et al., 1982; He et al., 1994, 2001, 2004). The Erqis suture
that extends roughly along the Erqis fault actually is a
much complicated structural belt composed of many differ-
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Fig. 2. Tectonic map of Northern Xinjiang showing the major arcs and ophioli
the northern Junggar Basin are shown as starts within gray areas (Wang et al
ent shear zones (Shu et al., 2002; Laurent-Charvet et al.,
2003; Windley et al., 2002) (Fig. 3). Another school of
researchers regarded some other ophiolites in the Junggar,
such as the Armantai or Kelameili ophiolites as suture zone
separating the Siberia to the north and the Junggar or
Tarim plate to the south (Li, 1980; Li et al., 1982; Ma
et al., 1997).

Even in the Kazakhstan and Junggar areas there are
many ophiolites of different ages (Coleman, 1989; Feng
et al., 1989; Filippova et al., 2001; Buslov et al., 2001;
Bykadorov et al., 2003). Major sutures in the Tien Shan
are more complicated and composed of numerous ophiolit-
ic mélanges (Windley et al., 1990; Xiao et al., 2004a,b)
(Figs. 2 and 3). Obviously, there are far more sutures than
just the two major ones as previously thought. Some
researchers have applied the terranes methodology to ana-
lyzing the geology of Northern Xinjiang or its part areas
(e.g. Coleman, 1989; Allen et al., 1993; Feng et al., 1989;
Shu et al., 2002; Buckman and Aitchison, 2004).

Therefore there were many different kinds of oceanic
basins or even big oceans that were active in the geological
history of this part of central Asia. Nevertheless, it is not
clear where there the major ocean was, which once sepa-
rated the Siberian and Tarim blocks, and fragments of
which became the major suture after closure of these ocean
basins. Also it is not clear when the subduction-related
growth ended and the whole Northern Xinjiang area devel-
oped into a post-accretionary stage.

4. Middle Cambrian to Permian subduction-related records

4.1. Chinese Altay: Middle Cambrian to early Permian

The Chinese Altay consists of volcanic and plutonic
rocks with ophiolites, high-grade gneiss and schist. The
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Fig. 3. Tectonic map of Northern Xinjiang showing the major ophiolitic mélanges and their ages (after Xiao et al., 2004a,b).
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Chinese Altay was subdivided into several tectonic units or
terranes (He et al., 1994; Windley et al., 2002; Zhang et al.,
2003a; Xiao et al., 2004a). A detailed description on the
lithology and structures of the Chinese Altay–East Junggar
was presented in He et al. (1994), Windley et al. (2002), Li
et al. (2003) and Xiao et al. (2004a).

Although different terranes in this region have been dis-
tinguished (Windley et al., 2002), all these terranes define
an island arc/subduction zone with some southward youn-
ging (Rotarash et al., 1982). A rhyodacite dated at
505 ± 2 Ma was interpreted as the oldest arc volcanic rocks
(Windley et al., 2002). Based on terrane analysis and zircon
geochronology in the Chinese Altay region, Windley et al.
(2002) concluded that the early Paleozoic Chinese Altay
was a continental magmatic arc in the middle Cambrian
to Ordovician. Chen et al. (2005) dated dacitic–rhyolitic
rocks with a 405 ± 57 Ma Rb–Sr isochron age and an arc
geochemical signature in the southwestern part of the Chi-
nese Altay. Permian mafic granulite was found and its pro-
tolith is igneous genetic calc-alkalic basalt formed in an
island arc setting (Chen et al., 2006a,b). Zheng et al.
(2007a) have used CHIME (Chemical U–Th-total Pb iso-
chron method) ages of monazite to date the metamorphism
of the high-grade gneisses sampled from the central part of
the Chinese Altay. They obtained Devonian and Permian
ages which were interpreted as associated with orogeny in
the Chinese Altay (Zheng et al., 2007a). Some gneisses
along the southern part of the Chinese Altay, whose geo-
chemistry shows island arc affinity, also yield Early Perm-
ian SHRIMP zircon ages of 281 ± 3 Ma, which was
interpreted as a young phase of arc event (Hu et al., 2006).

Niu et al. (2006) presented petrographic and geochemi-
cal data on representative samples of the Devonian adak-
ite, boninite, low-TiO2 and high-TiO2 basalt and
associated rocks in the southern Altay areas. They pointed
out that in the Devonian the juxtaposition of volcanic
rocks of various origin even within a limited area, com-
posed of the adakite and the boninite that are associated
with high-TiO2 and low-TiO2 basalt and/or gabbro, respec-
tively, is most likely produced by complex accretionary
processes during the convergence in the Devonian–Carbon-
iferous (Niu et al., 1999, 2006). Yuan et al. (2007) and Sun
et al. (2006) have conducted LA-ICP-MS zircon U–Pb dat-
ing and whole rock analyses for major, trace element and
Nd–Sr isotope compositions of granitic intrusions in the
SW Chinese Altay. The results unravel that granitic intru-
sions were formed in an extensional forearc setting during
the Devonian, Late Carboniferous, and Permian (Yuan
et al., 2007). Recently Wang et al. (2006) undertook
SHRIMP zircon U–Pb dating of six Paleozoic synorogenic
plutons in the Chinese Altay Mountains, and found three
Paleozoic granitic plutonic events at ca. 460, 408, and
375 Ma, related to an active margin. Therefore the Chinese
Altay is mostly a Middle Cambrian to Early Permian mag-
matic arc or components of an active marginal sequence.

4.2. East Junggar: Middle Cambrian–Permian subduction-

related records

The East Junggar is composed of several tectonic units.
From the north to the south, the Dulate–Baytag arc and
Yamaquan arc, shown on Fig. 2, are separated from each
other by two ophiolitic belts (Armantai and Kelameili)
(Li et al., 2003; Xiao et al., 2004a). The northerly
Dulate–Baytag arc comprises boninite, Nb-enriched basalt,
adakite, andesitic basalt, chert, and gabbro (XBGMR,
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1993; Liu et al., 1993; He et al., 1994, 2001). Massive and
pillowed basalt, Nb-enriched basalt (Zhang et al.,
2003b,c, 2005; Yuan et al., 2007), boninite (Liu et al.,
1993; He et al., 1994, 2001; Qin, 2000; Qin et al., 1999,
2002), and Lower Devonian adakite (Xu et al., 2001;
Zhang et al., 2005), imbricated with Ordovician–Silurian
radiolarian chert, Silurian–Devonian turbidite, and Devo-
nian–Carboniferous arc volcanic rocks (Liang et al.,
1999; Liu and Zhang, 1993), suggest an arc-forearc setting.
A mature arc setting in the Carboniferous is indicated by
presence of felsic tuff, pyroxene-bearing basalt, andesite
and porphyry copper ore deposits. The Armantai ophiolite,
extending NW–SE and farther east to the China–Mongolia
border (Figs. 1 and 2), is composed of serpentinite, serpen-
tinized peridotite, cumulative pyroxenite and gabbro, troct-
olite, rodingite, dolerite, basalt and chert. Field
observations indicate that these components are mutually
juxtaposed, and emplaced with Devonian–Carboniferous
arc volcanic-sedimentary rocks. The oldest rocks are those
ophiolitic fragments that yield middle to late Cambrian
SHRIMP zircon ages (Jian et al., 2003; Ping et al., 2005;
Xiao et al., 2006a).

The Kelameili ophiolite crops out mainly along the Kel-
aimeili fault. It consists of serpentinized peridotite, serpent-
inite, gabbro, rodingite and basalt, overlain by chert (Ma
et al., 1997). The geochemistry of the ophiolite suggests a
supra-subduction zone origin in a forearc setting (Wang
et al., 2003). The chert yields Devonian and Carboniferous
radiolaria (He et al., 2001; Ma et al., 1997). A number of
isotopic dates on the ophiolite indicate an Early Paleozoic
age for the ocean floor (Hu et al., 2000; Jian et al., 2003;
Ping et al., 2005; Xiao et al., 2006a). These ophiolitic rocks
are structurally imbricated with strongly deformed Devo-
nian–Carboniferous arc volcanic rocks. Volcanic and asso-
ciated pyroclastic rocks, and turbidites, ranging from
Ordovician–Silurian to Devonian–lower Carboniferous in
age, of possible forearc basin origin were also imbricated
with ophiolites and volcano-clastic rocks (Xiao et al.,
2004a).

The Permian volcanic rocks in the area southeast of the
Armantai ophiolite have been interpreted as products of
subduction-related setting (Lin et al., 1997). Zhao et al.
(2006a) also reported major elements, trace elements and
isotopic data on the latest-Paleozoic volcanic rocks, which
include early-Carboniferous andesite, early-Permian
trachytoid and late-Permian basalt, sampled in the same
area and adjacent to the area of Lin et al. (1997). They
interpreted the enriched large ion lithophile elements
(LILE) relative to high field strength elements (HFSE).
They revealed strongly negative anomalies in Ta and Nb
relative to rare earth elements (REE), enriched light rare
earth elements (LREE) relative to heavy rare earth ele-
ments (HREE), a typical characteristics of subduction-
related magmas (Zhao et al., 2006a).

Therefore, the East Junggar hosts subduction-accre-
tionary terranes, produced mainly in middle Cambrian
to Permian time, including remnants of island arc, sub-
duction complexes, seamount and ophiolites (Xiao
et al., 2004a).

4.3. West Junggar: Middle Cambrian–late Carboniferous

intra-oceanic arc

The West Junggar region comprises various terranes of
island arc subduction origin (Coleman, 1989; Feng et al.,
1989; Windley et al., 1990; Xiao and Tang, 1991; Xiao
et al., 1994; Zhang et al., 1993; Buckman and Aitchison,
2001, 2004). The terranes of the West Junggar domain
are mostly allochthonous, which are partially due to the
severe Mesozoic–Cenozoic tectonic overprint (Allen et al.,
1989; Feng et al., 1989).

Another conspicuous character is that there are more
ophiolitic terranes than in the East Junggar domain (Allen
et al., 1989; Feng et al., 1989; Kwon et al., 1989; Zhang
et al., 1993; Liang et al., 1999). The oldest rocks in the West
Junggar are the ophiolitic fragments of 508 ± 60 Ma within
the Tangbale ophiolite (Kwon et al., 1989; Feng et al.,
1989). The youngest ophiolites are the newly found Kera-
may ophiolites in which gabbro samples yield SHRIMP
zircon ages of 332 ± 14 Ma (Xu et al., 2006b). Therefore
the whole ophiolitic and arc-related components have
many different ages varying from Ordovician to Carbonif-
erous, which are actually relicts of possible Ordovician–
Silurian arc-related basins that acted as basement or
substrata of Devonian–Carboniferous arc edifices or
arc-related basins (Allen et al., 1989; Wang et al., 2003;
Xiao et al., 2004a).

Based on regional geology, radiolarian fossils and isoto-
pic dating, all terranes in the West Junggar were thought to
amalgamate by the end of Carboniferous time (Allen et al.,
1989; Buckman and Aitchison, 2004). Geological, chemi-
cal, and isotopic studies on Carboniferous granites in the
West Junggar mountain ranges suggest that they are
derived from partial melting of material of oceanic crust
with no contribution from Precambrian basement (Cole-
man, 1989; Feng et al., 1989; Kwon et al., 1989; Carroll
et al., 1990; Chen and Jahn, 2002, 2004; Chen and Araka-
wa, 2005).

4.4. Junggar Basin basement: a collage of arcs, accretionary

complexes, and tapped oceanic crust

The Junggar Basin is located in the core of Northern
Xinjiang area and was previously considered as the eastern
part of the Kazakhstan–Junggar plate together with the
Turpan basins in the Eastern Tien Shan (Zhang et al.,
1984; He et al., 1994). There has been a controversial issue
concerning the basement of the Junggar Basin, which is
mostly covered by Mesozoic–Cenozoic sediments. Some
researchers have thought that the Junggar Basin is under-
lain by a Precambrian continental block (Zhang et al.,
1984; Wu, 1986; Li, 2006). Based on geological, geochemi-
cal, geochronological, and geophysical data, Hsü (1988,
1989), Carroll et al. (1990), Xiao and Tang (1991), Hu
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et al. (2000), and Chen and Jahn (2002, 2004) proposed
that the basement of the Junggar Basin may be mostly
composed of arcs and accretionary complexes or trapped
oceanic crust. Some key evidence for these two contrasting
opinions is mostly from the surrounding West and East
Junggar mountain ranges. Recently, Wang et al. (2002)
and Zheng et al. (2007b) have obtained borehole samples
from the north and middle part of the Junggar Basin. They
sampled the borehole at 493 m and 5341 m depth, and got
rhyolite and alkali basalt (for borehole positions see
Fig. 2). The U–Pb ages of these rocks yield 345 Ma and
395 Ma for the rhyolite and alkaline basalt, respectively
(Wang et al., 2002; Zheng et al.. 2007b). Geochemical anal-
ysis indicates that the basaltic rock is Nb-enriched, a possi-
ble intraoceanic island arc without continent basement
(Wang et al., 2002; Zheng et al.. 2007b).

Some of the authors (Yuan et al., 2007) have done some
geochemical and isotopic analyses on Early Devonian Nb-
enriched basalts in the area north of the Armantai ophiolite
in the East Junggar area. Together with previous studies on
the Nb-enriched basalt (Zhang et al., 2005) and granitoid
(Chen and Jahn, 2002, 2004), we conclude that the Early
Devonian Nb-enriched basalts, found in the Junggar Basin
borehole and East Junggar, belong to either one or pieces
of various intraoceanic arcs, thought of similar ages.
Recent geological and geophysical investigations along
boundary between the West Junggar and Junggar Basin
show that the surface ophiolitic complex has a deep root
both in the West Junggar and the adjacent basement of
the Junggar Basin (Xu et al., 2006b). Coleman (1989) sug-
gested that mafic basement materials might have accounted
for strong magnetic anomalies within the Junggar Basin
(Carroll et al., 1990). Combining all these data, we propose
that large part of the Junggar block is a collage of arcs,
accretionary complexes, and trapped oceanic crust in the
Paleozoic.

4.5. Tien Shan and Yili: Ordovician–Permian subduction-

related records

The Tien Shan can be basically subdivided into eastern
and western parts (Eastern and Western Tien Shan which
were used to described the parts east to and west to Uru-
mqi, respectively), including the Yili block, which is char-
acterised by a broad occurrence of pre-Cambrian
continental basement, and Paleozoic Kokshaal–Kumishi
and North Tien Shan accretionary complexes. The North-
ern and Southern Tien Shan are mainly composed of tec-
tonic mélanges (Windley et al., 1990; Gao et al., 1995,
1998; Xu et al., 2006b), while the Central Tien Shan is com-
plicated and mostly composed of high-grade metamorphic
rocks and a broad variety of deeper marine and shallower
marine deposits, ranging in age from Sinian to late Carbon-
iferous. The Yili block has Precambrian basement and
cover similar to those in Kazakhstan block; Paleo-Protero-
zoic basement rocks were found on which middle and late
Proterozoic clastic rocks and carbonates occur. Therefore
it was regarded as a continental slice or microcontinent
(XBGMR, 1993; Xiao and Tang, 1991; He et al., 1994,
2001, 2004; Chen et al., 1999; Xiao et al., 2004b).

The eastern part is more complicated than the western
part of the Tien Shan. In the eastern part of the Tien Shan,
South to the Kelameili fault, the Dananhu arc and the Xia-
opu-Bogda intra-arc basin crop out along the northern and
southern edges of the Turpan Basin of Cenozoic age (Xiao
et al., 2004b).

The oldest rocks are Lower Ordovician metamorphosed
clastics, volcaniclastics, tholeiites and andesites. The over-
lying Upper Ordovician is mainly composed of slightly
metamorphosed clastics, volcanics and minor marble.
These rocks belong to a series of Ordovician to Permian
island arc, created by south-dipping subduction of the
Kelameili oceanic floor because there were an arc edifice
located to the north and accretionary complex and ophio-
litic fragments to the south (Ma et al., 1997; Xiao et al.,
2004a,b, 2006b).

The Ordovician to Devonian–Carboniferous volcanic
and pyroclastics rocks make up the Dananhu arc. Devo-
nian–Carboniferous tholeiitic basalt and calc-alkaline
andesite were interpreted to be volcanic rocks of an island
arc (Yang et al., 1996, 2000). In fault contact with the Dana-
nhu arc to the north, large amount of marine lava and pyroc-
lastics rocks occur and form coherent strata in the southern
part, and mélanges and broken formations in the northern
part (Yang et al., 1996; Xiao et al., 2004b). The coherent
strata include several Lower to Mid-Carboniferous several
formations, which are composed of mainly volcano-sedi-
mentary rocks. Geochemistry of tholeiitic rocks in these for-
mations suggests an island arc origin (Yang et al., 1996).
Ophiolitic slices including serpentinite, pillowed basalt,
meta-gabbro, meta-basalt, meta-diabase, meta-plagiogra-
nite, quartz keratophyre, and chert have been structurally
juxtaposed against graywacke, phyllite, sericite schist, and
meta-tuff in the southern part of the Dananhu arc (Xiao
et al., 2004b). Yang et al. (1998) reported Devonian to Car-
boniferous radiolaria, and Li et al. (2003) discovered possi-
ble Late Silurian to Early Carboniferous radiolaria in
chert. They form an accretionary complex located to the
south of the arc system.

Along the southern part of the Dananhu arc ultramafic-
mafic complexes occur as zoned bodies whose geochemical
data suggest oceanic tholeiite and MORB affinity (Zhou
et al., 2001). They were interpreted as the Alaska-type zoned
ultramafic complexes (Xiao et al., 2004b). A U–Pb zircon age
of 280 Ma (Qin, 2000; Qin et al., 2002) and SHRIMP zircon
ages of 269.2 ± 3.2 Ma and 277.0 ± 1.6 Ma (Li et al., 2003)
confirm that the ultramafic–mafic complex mainly formed
in the Permian (Ji et al., 1999, 2000), which was simultaneous
with the eruption of early Permian basic lavas and the intru-
sion of granitic plutons in the area. The Early Permian age
and spatial association with arc-accretion complexes occur
in the southern part of the Dananhu arc suggest that these
rocks represent a final pulse of the arc in the eastern part of
the Tien Shan.
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There are considerable mineral deposits in this accre-
tionary complex (Qin, 2000; Qin et al., 2002; Rui et al.,
2002; Zhou et al., 2004; Han et al., 2006a,b; Zhang et al.,
2004, 2006). The N–S distribution of porphyry gold-cop-
per, orogenic-type gold, and epithermal gold is similar to
that in Alaska (Goldfarb, 1997), where NE-dipping sub-
duction of the Pacific ocean has produced a progressive
sequence from orogenic gold to porphyry gold-copper
deposits. Therefore the distribution of mineral deposits
also supports the interpretation that the subduction polar-
ity in the Chinese Eastern Tien Shan might have been
mainly to the north.

In the Tien Shan collage, there are some high-grade
metamorphic rocks occurring as knockers or slices in the
Yili and Xingxingxia area. In the Xingxingxia area there
are Paleozoic calc-alkaline-type basaltic andesite, volca-
noclastics, minor I-type granite and granodiorite, with Pre-
cambrian basement rocks in amphibolite facies. The
Precambrian basement of this arc consists of gneiss, quartz
schist, migmatite, and marble, with U–Pb and Sm–Nd ages
that range from 1400 to 1800 Ma (Chen et al., 1999; Hu
et al., 2000). However, Carboniferous fossils have been dis-
covered in the rocks, which were formerly considered as
Proterozoic rocks, which were regarded as remnants of vol-
canic arc because of their calc-alkaline geochemistry (Fang,
1994; Zhou et al., 2001). They are imbricated with
deformed volcanics, clastics, limestone, and ultramafic
rocks (Fang, 1994). Therefore the central part of the Tien
Shan could have been interpreted as an arc that lasted to
the Carboniferous.

Several fault-bounded mafic granulite blocks have been
identified along the Kokshaal–Kumishi accretionary com-
plex in the eastern part of the Tien Shan (Shu et al., 2002).
Zhou et al. (2004) reported the youngest metamorphic age
of Permian. Crossite-bearing schist blocks were found within
the volcanic rocks and graywacke and phengite schist blocks
also have been found along the eastern part of the Tien Shan
(Ma et al., 1997; Gao et al., 1995; Shu et al., 2002; Liu and
Qian, 2003). Liu and Qian (2003) reported 345 Ma for
phengite from these high-pressure rocks, although no details
presented. Late Devonian to Early Carboniferous ophiolites
are imbricated with volcanic and volcaniclastic rocks, and
Fig. 4. Field photo of the unconformity in between the Upper Permian turb
beddings of the Upper Permian. Looking SW. Aiweigou, about 106 km south
with blueschist and eclogite (Gao et al., 1998; Xiao and Tang,
1991; Xiao et al., 1994). The 40Ar–39Ar date of
350.89 ± 1.96 Ma for glaucophane from the Changawuzi
high-pressure metamorphic belt south of the Nalati mag-
matic arc in the western part of the Tien Shan near the Chi-
nese-Kyrgyzstan border provides a key age for the
northward subduction of the southern Tien Shan oceanic
crust (Xiao and Tang, 1991; Xiao et al., 1994). Liu and Qian
(2003) reported blueschist and eclogite with 40Ar–39Ar age of
360.7 ± 1.6 Ma. Zhang et al. (2005, 2007) summarized Perm-
ian and Early Triassic ages for the ultra-high-pressure meta-
morphic rocks along the southern Tien Shan. Carboniferous
adakitic and Nb-enriched rocks in the Tien Shan and Car-
boniferous–Permian adakitic rocks in Northern Xinjiang
(Wang et al., 2007; Zhao et al., 2006b), discovery of Early
Carboniferous and late Permian (?) radiolarian fossils (Liu,
2001; Li et al., 2005) and the Permian–Triassic ultrahigh-
pressure rocks (Zhang et al., 2007) in this ophiolitic mélang-
es, and the unconformity separating the Upper Permian
below from Middle to Upper Triassic above (Fig. 4) all indi-
cate that the final tectonic accretion might have taken place
between the latest Permian and the Triassic.

5. North Tarim

Bounded by the Southern Tien Shan mélange or the
Kokshaal–Kumishi accretionary complex in the north,
the Tarim block is located in the southernmost part of
the Northern Xinjiang. All the tectonic units to the north
are truncated by the Kokshaal–Kumishi accretionary com-
plex. The Tarim block has a variably deformed and meta-
morphosed basement of Archaean–Proterozoic to Early
Paleozoic sediments (XBGMR, 1993; Hu et al., 2000;
Bykadorov et al., 2003). The basement is characteristic
by Archaean high-grade tonalite–trondhjemite–granodio-
rite gneiss and amphibolite and Proterozoic granitic gneiss,
which have model ages (TDM) ranging from 3.2 to 2.2 Ga
(Hu et al., 2000). It has been interpreted mainly as a
cratonal block although some deferent ideas exist (Hsü,
1988, 1989). The late Paleozoic magmatism along the
northern part of the Tarim block was thought as reflection
of arc or subduction (Chen et al., 1999), but the ages of
idites and the Middle to Upper Triassic redbeds. Note the folded, steep
of Urumqi.
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these intrusions are not precisely constrained and their tec-
tonic setting is still controversial. Some of these intrusions
intruded either in part of the Kokshaal–Kumishi accretion-
ary complex or part of the rifted slices (Xiao et al., 2004b;
Li et al., 2003). The southern part of the Tarim block was
mainly active during the Paleozoic (Xiao et al., 2002a,b,
2005), while a north-facing passive margin was previously
proposed along the northern margin of the Tarim block
in the Paleozoic (Windley et al., 1990; Graham et al.,
1990, 1993; Allen et al., 1993).

6. New time-space framework

6.1. Major paleogeographic dividing boundary

It was proposed that the southern Altaids grew south-
ward and this growth ended in the late Paleozoic (S�engör
Turpan Bas
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Fig. 5. Schematic tectonic map of Northern Xinjiang in late Paleozoic illustrati
southern Tien Shan (modified after Dewey et al., 1988).

Fig. 6. Topographic map of Northern Xinjiang showing the tectonic domains
tectonic position of Northern Xinjiang in the southernmost part of the Central
complex. Bold line outlines the Kokshaal–Kumishi accretionary complex, dash
et al., 1993; Mossakovsky et al., 1994; Xiao et al., 2003,
2004a,b). Therefore, the late Paleozoic tectonic framework
should be preserved more intact than any stages before.
This is because in this huge accretionary orogen, large-scale
strike-slip translation and oroclinal bending, which have
been proposed to occur in the late Paleozoic (Levashova
et al., 2003; Collins et al., 2003), would superimpose and
rework the early and middle Paleozoic tectonic and paleo-
geographic marks. Like the Wallace Line in present day SE
Asia and SW Pacific (Metcalfe, 2006) separating Eurasian
faunas and floras to the northwest from Australasian fau-
nas and floras to the southeast, an important biogeo-
graphic boundary has long been found along the
Southern Tien Shan mountain range. It separates the Ang-
aran floras, to the north, from the North China floras, to
the south (Dewey et al., 1988) (Fig. 5). This nearly contin-
uous, wide boundary zone that composed of mixed flora
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ng the separation of the Angaran flora from the Cathaysian flora along the

(After Xiao et al., 2004a,b). Insert is a schematic map showing the special
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ed where proposed. Thin line denotes major faults or tectonic boundaries.



Fig. 7. Schematic Paleogeographic map of Northern Xinjiang in late
Paleozoic. (a) Carboniferous to Permian. (b) End-Permian. The Kazakh-
stan orocline is modified after S�engör et al. (1993). Bold lines are major
faults and those with barbs representing subduction zones. The cross-
section line of Figs. 8 and 9 is marked.
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tells us that it corresponds to an important divide in the
late Paleozoic.

6.2. New tectonic model

As it was shown above, the geology and tectonics of
Northern Xinjiang is characterized by middle Cambrian
to Permian subduction-related records, and composed of
Paleozoic orogenic collages, including the Chinese Altay,
East Junggar, West Junggar, and Tien Shan including the
Yili block, which is conveniently used to describe the
southernmost tectonic domain of the Altaids for it is con-
nected with the Kazakhstan Paleozoic magmatic arc,
occurring on the Precambrian rocks. Many ophiolites or
ophiolitic mélanges were emplaced within these orogenic
collages. The West Junggar has Paleozoic subduction-
related records that may have at least lasted to late Car-
boniferous. In its western extension in the Balkhash and
adjacent areas there are also some important late Paleozoic
to Permian subduction-related records (S�engör et al., 1993;
S�engör and Okurogullari, 1991; Buslov et al., 2001, 2003).
The Chinese Altay, East Junggar, Eastern Tien Shan, and
Yili all have early Paleozoic to Permian arc-related records.
It is obvious that there are mostly subduction–accretionary
domains in the north and a passive margin (Tarim) in the
south (Fig. 6). The late Paleozoic accretionary complex
(Kokshaal–Kumishi accretionary complex, see Xiao
et al., 2004b) was a major tectonic boundary separating
them (Fig. 6). The Kokshaal–Kumishi accretionary com-
plex (Xiao et al., 2004b; cf. South Tien Shan suture in
the literature) mainly occurs along the southern margin
of the Yili–Central Tien Shan arc from the Western Tien
Shan to the Eastern Tien Shan, extending some 1500 km
in the Chinese Tien Shan.

The northern Tarim domain was mainly a continental
margin, which remained passive during the Paleozoic.
Some of its Precambrian basement rocks were thrust south-
ward over its northern marginal sequences. Combining
other Paleozoic biogeographic data in the Paleozoic
(Guo, 2000, 2001), we propose that this boundary along
the southern Tien Shan, corresponding to the above-men-
tioned paleogeographic boundary, should be the major
suture zone along which the Tarim block got docked to
the southern Siberian active continental margin in the late
Permian.

Paleomagnetic data show that it is in the Permian that
the Tarim block got docked to the northern accretionary
marginal sequences including those in the Junggar and
Altay domains (Li et al., 1989, 1991). This is also in
good agreement with the paleomagnetic and geological
data of Levashova et al. (2003) and Collins et al.
(2003) who concluded that today’s strongly curved volca-
nic belt of Kazakhstan is an orocline, deformed most
before mid-Permian. The so-called Kazakhstan orocline,
however, has been reinterpreted recently by Windley
et al. (2007) as having a more complicated arc–arc colli-
sion scenerio.
All in all, the Northern Xinjiang orogenic collage, com-
posed of various Paleozoic tectonic domains, provides one
of the almost completely exposed traverses from the south-
ern Siberian margin to the northern Tarim block. A sum-
mary of its tectonic evolution and reconstruction for this
part of central Asia is given as follows (Figs. 7–9).

During early Paleozoic times, the Chinese Altay–East
Junggar–Eastern Tien Shan domain was more closely
located to Siberia, while the Tarim domain was near the
opposite side of the Paleoasian Ocean. The West Junggar
and Yili domains occupied an intermediate position near
the Kazakhstan block in the early Paleozoic Paleoasian
basin. The various tectonic elements of the West Junggar



Fig. 8. Conceptual cross-section of multiple subduction systems in the eastern part of Northern Xinjiang in late Paleozoic. The Kokshaal–Kumishi
accretionary complex was the product of the late Paleozoic accretion–subduction along the southern Tien Shan (from Xiao et al., 2004a,b; Xiao et al.,
2006b).
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and Yili domains drifted northwards and approached the
Chinese Altay–East Junggar–Eastern Tien Shan active
margin of the Siberian craton in the late Paleozoic. Subse-
quent complicated amalgamation processes of these
domains squeezed the archipelago systems of these
domains, leading to the closure of the Paleoasian Ocean
and formation of a complicated orogenic collage between
Siberian craton and the Tarim block in the Permian. These
multiple accretion processes significantly contributed to the
lateral growth of central Asia.

From the summery presented above, we conclude that,
although with a general southward younging growth, there
were multiple subduction systems existed in the long, com-
plicated evolution history of the Paleoasian ocean that
formed the Altaids. A number of the various terranes rep-
resent different parts of relicts of ancient subduction sys-
tems, mostly tectonically incorporated into accretionary
complexes or constitute Andean-type magmatic arcs.
Except for minor Precambrian rocks in some Andean-type
magmatic arcs, such as the Chinese Altay and Yili, no sig-
nificant old continents have been involved into the accre-
tionary growth of the Altaids (Ma et al., 1997; Han
et al., 1997; Qin et al., 1999; Qin, 2000; Hu et al., 2000;
Jahn, 2001; Xiao et al., 2004a,b, 2006b).

6.3. Significance

Our tectonic analysis provides a basis for understanding
the time-space evolution of the southern Altaids. It is clear
now that the major accretionary events took place before
the Triassic. Some important constituents, which caused
the previous studies to suggest an earlier closure for the
Paleoasian Ocean than the Permian, are actually the main
components of a huge accretionary active margin. For
example, based on the earlier discovery of Devonian radi-
olarian fossils and middle Paleozoic ages from some ophi-
olites, the final amalgamation time was regarded either as
early to middle Devonian (Wang et al., 1990; Han et al.,
1997) or late Devonian–early Carboniferous (Windley
et al., 1990; Allen et al., 1993; Gao et al., 1995, 1998; Zhang
et al., 2003a). However, the ophiolites are found either as
slivers in accretionary complexes or fragments of marginal
basins emplaced into convergent marginal sequences. Fur-
ther more, some studies proposed that oceans in the Tien
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Shan which is the southernmost orogenic collages of the
Altaids could survive until as late as mid-Carboniferous
on the basis of newly found Carboniferous ophiolites
(Chen et al., 1999; Xu et al., 2006a,b; Li et al., 2003; Xiao
et al., 2004a,b; Wu et al., 2006; Xiao et al., 2006b). Thus
the formation ages of these ophiolites only indicate that
the time when ocean existed or accretionary process was
still active. This does not constrain the closure timing of
the oceans.

The tectonic evolution and reconstructions of Northern
Xinjiang suggests that no single mechanism of the three
groups of models that we mentioned before can fully
explain the tectonics in this part of central Asia. The oro-
clinal bending of a long-lived, single subduction system
of S�engör et al. (1993) and S�engör and Natal’in (1996)
can well explain the general southward growth of the oro-
genic collages and strike-slip duplication occurred in cer-
tain areas, but cannot explain the multiple accretionary
processes happened in the early Paleozoic. The various
terranes collision model (Coleman, 1989, 1994; Mossakov-
sky et al., 1994; Buslov et al., 2001, 2003; Windley et al.,
2002; Badarch et al., 2002) can better evaluate the contri-
butions of many different ophiolites and some of the possi-
ble Precambrian fragments; but fail to explain the fact that
many ophiolites and older fragments are actually tectoni-
cally incorporated into accretionary complexes which usu-
ally can not be used to define large-scale collision events.
Actually, ages of the so-called Precambrian continental
Fig. 9. Conceptual cross-section of multiple subduction systems in the western
Fig. 8.
blocks have been verified as mostly Paleozoic. The huge
chains of double arc-backarc pairs (Yakubchuk, 2002,
2004) can better illustrate the back-arc geochemistry of
ophiolites in central Asia; but defining all oceans as back-
arc basins is obviously not a full scenario because major
oceans like today’s Pacific should have existed as evidenced
by the paleogeographic boundary supported by strati-
graphic, paleomagnetic and paleontological data.

Therefore, our tectonic analysis helps to reconcile the
long-standing controversy concerning the final closure of
Paleoasian Ocean and the way in which accretionary pro-
cesses took place. We acknowledge that the reconstruction
presented here is a preliminary one, and much work needs
to be done by incorporating data from Kazakhstan and
other areas in central Asia (Bykadorov et al., 2003; Filipp-
ova et al., 2001; Yakubchuk, 2005, 2008). This may give us
a hint that accretionary orogens are characterized by multi-
ple accretionary orogenic processes, the major features of
which are: (1) earliest accretion started with Japanese-type
oceanward migration (Taira, 2001), but this passed into a
more complex archipelago arc-accretion style of tectonics
similar to that in present-day southeast Asia (Coleman,
1989; Feng et al., 1989; Hsü, 1988, 1989, 1994; Konstanti-
novskaia, 2000; Xiao et al., 2004a,b); (2) Syn-tectonic and
post-tectonic rifting might have existed during the whole
orogenic process (Allen et al., 1993; Carroll et al., 1995;
Hendrix et al., 1992, 1996. Wartes et al., 2002); and (3) sub-
duction-related growth plays a fundamental role in build-
part of Northern Xinjiang in late Paleozoic. Legend is the same as that of
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ing of the Japan-type, Andean-type and in Mariana-type
margin processes, in which forearc accretion is the princi-
pal mechanism but backarc closure also plays a key role
(S�engör and Natal’in, 1996; Natal’in and S�engör, 2005;
Xiao et al., 2002a,b, 2003, 2004a,b, 2005). The multiple
accretionary processes led to significantly lateral growth
of central Asia, shedding light on global reconstruction in
the Paleozoic (Heubeck, 2001; Yakubchuk, 2002, 2004;
Torsvik and Cocks, 2004).
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