新疆北部的富镁火成岩

赵振华 王强 熊小林 牛贺才 张海祥 乔玉楼 ZHAO ZhenHua, WANG Qiang, XIONG XiaoLin, NIU HeCai, ZHANG HaiXiang and QIAO YuLou

中国科学院广州地球化学研究所,广州 510640 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 2007-02-19 收稿, 2007-03-30 改回.

Zhao ZH, Wang Q, Xiong XL, Niu HC, Zhang HX and Qiao YL. 2007. Magnesian igneous rocks in northern Xinjiang. Acta Petrologica Sinica, 23(7):1696-1707

Abstract The magnesian andesites (MAs) discussed in this paper are simply defined as andesitic rocks having $SiO_2 > 53\%$ and Mg* >55 and including magnesian dacite and diorite. The MAs are widespread in north Xinjiang. The MAs distributed in south Altay were mainly generated during middle Devonian. Carboniferous MAs are distributed in Alataw mountain, west and east Tianshan. The MAs span range of SiO₂53% ~ 65%, with TiO₂ < 1% (average 0.72% and range of 0.21% ~ 1.08%). Relative to the world boninites the MgO contents (average 5.90%) are lower and the contents of Ti, K and Na are high. Flat chondrite-normalized REE patters are characterized for the MAs with weak-no depletion of Eu anomalies (Eu/Eu * 0.65 ~ 1.15), low (La/Yb) (0.98 ~ 6.4, mostly 4) and low total REE contents ($15 \times 10^{-6} \sim 95 \times 10^{-6}$). The MAs are characterized by high contents of compatible Cr and Ni with 72 × 10⁻⁶ ~ 790 × 10⁻⁶ and 29 × 10⁻⁶ ~ 276 × 10⁻⁶, respectively. Relative depletion of high field strength elements Nb, Ta, Ti and relative enrichment of mobile LIL elements Rb, K, Pb are evident in primitive mantle-normalized spidergram of trace elements for the MAs. In addition, the relative high Y contents ($>15 \times 10^{-6}$) and low Sr/Y ratios (4.4 ~ 6.2), together with low (La/Yb)_N and high Mg", provide the evidences of interaction of oceanic slab melts with the peridotite in mantle wedge. The MAs have wide range of isotopic compositions of Sr and Nd such as $(143^{Nd}/^{144} \text{ Nd})_1 = 0.51221 \sim 0.51255$, $\varepsilon_{Nd}(t) + 0.28 \sim +7.2$ and $({}^{87}\text{Sr}/{}^{86}\text{Sr})_1 = 0.7029$ ~0.7065. In the diagram of $\varepsilon_{\rm Nd}(t)$ vs. (${}^{87}{\rm Sr}/{}^{86}{\rm Sr})_i$, the MAs were plotted in the first quadrant. Based on the above the mechanism for explaining the MA petrogenesis is as follows; (1), Multi-source materials composed of subducted oceanic slab with the juvenile materials from the forearc accretionary prism, and peridotite in mantle wedge; (2), Combination of different processes of petrogenesis including partial melting of subducted oceanic slab together with the juvenile materials and the interaction of slab melts with the peridotite in the mantle wedge (metasomatism of slab melt); (3), Typical physicochemical conditions of MA magma generation, such as high geothermal gradient resulting in high temperatures (>1000°C) and volatile-rich source region; (4) Special tectonic settings including oblique subduction of oceanic slab, slab tear or break off resulting in asthenosphere upwelling and forming of slab window, and the subduction erosion resulting in going of the forearc accretion materials into the source region of MA magma.

Key words Magnesian andesites, Metasomatism of slab melts, Subduction erosion, Asthenosphere window, North Xinjiang

摘 要 本文重点讨论的富镁安山岩(MAs)是指 SiO₂ > 53%, Mg[#]≥55 的安山岩,也包括富镁英安岩和富镁闪长岩。阿尔 泰南的富镁安山岩形成于中泥盆世,东、西天山和阿拉套山的富镁安山岩形成于石炭纪。本区富镁安山岩 SiO₂ 53% ~65%, TiO₂含量低于 1%(0.21% ~1.08%),平均 0.72%; MgO 平均 5.90%,与国外玻安岩平均值相比,Mg 含量较低,Ti、K、Na 含量 较高。稀土元素总含量低(<100×10⁻⁶,范围 15~95×10⁻⁶),相对富重稀土(La/Yb)_N 0.98~6.4, 多数在 4±; Eu 弱亏损 到无亏损(Eu/Eu*0.65~1.15)。相容微量元素 Cr、Ni 含量高,分别为 72×10⁻⁶ ~790×10⁻⁶和 29×10⁻⁶ ~276×10⁻⁶; 高场 强元素 Nb、Ta、Ti 明显亏损;相对富集流体中富集的大离子亲石元素 Rb、K、Pb; Y 含量较高(>15×10⁻⁶); Sr/Y 比值较低 (4.4~6.2)。(¹⁴³ Nd/¹⁴⁴ Nd);值变化范围较大 0.51221~0.51255, $\varepsilon_{Nd}(t)$ +0.28~+7.2,Nd 模式年龄 t_{DM} 485~1220Ma;(⁸⁷ Sr/⁸⁶ Sr);值变化范围较大 0.7029~0.7065, $\varepsilon_{Ra}(t)$ -(⁸⁷ Sr/⁸⁶ Sr);图解中位于第一象限。上述特点表明,本区富镁安山岩源区

^{*} 国家自然科学基金 40373017 和 40673037 及中国科学院广州地球化学研究所知识创新工程项目 GIGCX-04-03 资助. 第一作者简介: 赵振华, 男, 1942 年生, 研究员, 博士生导师, 地球化学专业, E-mail: zhzhao@ gig. ac. cn

为复合源,包括有蚀变洋壳、弧前增生棱柱的不成熟、新生地壳物质及地幔楔橄榄岩。成岩作用具复合性,既有俯冲洋壳板片 的部分熔融,又有俯冲板片熔体对地幔楔橄榄岩的熔体交代作用。形成于特殊构造环境:高地热梯度和富挥发分;导致弧前 增生棱柱俯冲的俯冲剥蚀作用;由俯冲板片撕裂、断离所形成的软流圈窗或洋脊俯冲。

关键词 富镁安山岩;晚古生代;板片熔体交代;俯冲剥蚀;软流圈窗;新疆北部

中图法分类号 P588.125

1 引言

富(高)镁火成岩(Magnesian or High-Mg igneous rocks) 受到了越来越广泛关注,主要原因基于一是具有重要的理 论意义,富 Mg 的火成岩,特别是富镁的基性、超基性岩,代表 了地幔的高温岩浆,如苦橄岩、科马提岩代表了地幔岩在高 温(>1000℃)、干(无水)条件下>50%的高程度部分熔融, 这种高温火成岩浆代表了与地幔平衡所形成的原始的或近 于原始的岩浆部分(Tatsumi, 2006),是地幔,或以地幔来源 为主的岩浆的代表,更是了解地幔过程,如软流圈、岩石圈、 软流圈和岩石圈相互作用以及壳-幔相互作用的标志,如苦 橄岩是地幔柱存在的证据之一。富镁安山岩成分与大陆地 壳相似,其形成构造环境与太古宙类似(Kelemen, 1995; Rudnick et al., 1995; Taylor et al., 1995), 可用于探讨早期 地球的岩浆作用(Tatsumi, 2006)。第二,具有重要的经济意 义,与富镁火成岩有关广泛发育了 Cu、Ni、Co、PGE、Au 等的 成矿作用,例如,在澳大利亚、南非、加拿大等国,均产出了与 此类岩浆岩有关的大型-超大型 Ni、Cu 等矿床,我国金川超 大型 Ni、Cu 矿, 金宝山大型 Ni、Cu 矿(汤中立, 2006), 新疆北 部喀拉通克和黄山大型 Ni、Cu 矿均与铁镁-超镁铁侵入岩有 关; 阿舍勒大型 Cu、Zn 矿, 阿希大型 Au 矿, 土屋-延东大型-超大型 Cu 矿则与或部分与富镁安山岩或富镁闪长岩有关 (毛景文等,2006; 王润民等, 1991; 王强等,2006)。

在 Le Maitra et al. (2002)编辑的火成岩分类和名词一书中,高镁火山岩(High-Mg volcanic rocks)包括了多种岩石, 划分标准是:玻安岩:SiO₂ > 52%,MgO > 8%,TiO₂ <0.5%;科马提岩:52% > SiO₂ > 30%,MgO > 18%,TiO₂ <1%,(Na₂O + K₂O) <2%,当TiO₂ > 1%时为麦美奇岩;苦 橄岩:52% > SiO₂ > 30%,MgO > 12%,(Na₂O + K₂O) < 3%。他们还同时提出,在用TAS图[(Na₂O + K₂O)-SiO₂] 进行岩石分类命名前,应按上述标准确定其是否属玻安岩、 科马提岩或麦美奇岩,排除它们不是似长石岩、苦橄玄武岩、 玄武岩、玄武安山岩和安山岩。由于还存在相同成分的侵入 岩以及对其中某些岩石的划分标准存在不同认识,所以本文 将上述岩石统称之为富镁火成岩。

根据 Le Maitra et al. (2002)提出的上述原则,在新疆北部晚古生代广泛发育了富镁火成岩,岩石类型包括了:蛇绿岩、镁铁-超镁铁侵入岩(橄榄岩、橄榄辉长岩、苏长岩);苦橄岩、苦橄玄武岩、富镁安山岩、富镁英安岩、富镁闪长岩等。限于篇幅,本文重点研究新疆北部晚古生代的富镁安山岩

(包括富镁闪长岩和富镁英安岩)。

目前文献中所讨论的富镁安山岩常包括高镁安山岩和玻安 岩(Boninite): 玻安岩是高镁的、含有单斜顽火辉石的安山岩, SiO₂52% ~63%, MgO >8%, TiO₂ <0.5%。由于发现于西北太 平洋 Bonin 岛而命名, 是高镁的安山岩(Kikuchi, 1889); Crawford *et al.* (1989)将 SiO₂ >53%, Mg^{*} >60 定为玻安岩。 高镁安山岩(High-Mg 或 High Mg^{*} andesite, 简称 HMA)最早 由 Dallwitz *et al.* (1966)和 Dallwitz (1968)在巴布亚新几内 亚的 Cape Vogel 区火山岩中发现,含单斜顽火辉石及独特的 主、微量元素化学组成使其成为一种不寻常的岩石,随后在 马里亚那海沟区和 Bonin 岛也相继发现。Jenner(1981)提出 用高镁安山岩命名这类岩石,以避免一些蛇绿玄武岩和用玻 安岩(Boninite)定义界定的高镁安山岩之间的相似。

由上述,高镁安山岩的特点是 MgO 含量高和高 Mg* (=100×Mg/(Mg+Fe))而区别于普通岛弧安山岩。不同 学者界定高镁安山岩的标准不同,如 Jenner et al. (1989)的 标准是去掉挥发分后的 SiO2 含量为 57% ~ 58%,相应的 MgO 含量为 11%~20%,并根据 REE 含量,将其划分为两个 亚类,一是C型,稀土元素球粒陨石标准化分布型式为凹型, (La/Yb)_N < 2, Zr/Nb≈35;二是 E 型,稀土元素分布型式为 富集型, (La/Yb)、为3~7, Zr/Nb低,为19。Kelemen (1995)提出 Mg[#]>30, MgO < 10% 的安山岩为高镁安山岩, 其K > 6000 × 10⁻⁶, K/Ti > 11, 高场强元素亏损, K/Nb > 500, Ni 高, 21×10⁻⁶~200×10⁻⁶。Kelemen et al. (2004)将 其标准修改为 Mg[#] > 50, SiO₂ > 54%。Polat and Kerrich (2001)提出 Mg[#] 64~50 的安山岩为富镁安山岩 (Magnesian andesite), 其 Ni 为 21 × 10⁻⁶ ~ 230 × 10⁻⁶, Cr 为 106 × 10⁻⁶ ~531 × 10⁻⁶, 富 Th、LREE, Nb/Th 和 Nb/La 比值高。 McCarro et al. (1998) 用 SiO₂-MgO 图解给出了划分高镁安 山岩和普通安山岩的界线(图1)(范围约为 SiO₂ 52% ~ 60%, MgO 相应约为 6.5% ~ 2.8%)。Sun and McDonough (1989)将SiO, = 51%~55%, MgO = 10%~16%的岩石称为 硅质高镁玄武岩(SHMB)。Yogodzinski et al. (1995)提出了 埃达克型(Adak-type)和皮波型(Piip-type)富镁安山岩(后者 比前者的 Mg[#]、Cr、Ni、Co 含量高,但 K、LIL、La/Yb 低),其 $FeO^{T}/MgO < 1.0$, $MgO \approx 4.5\%$, $SiO_{2} = 58\% \sim 60\%$. Tatsumi (2006)将高镁安山岩定义为 $FeO^T/MgO < 1$ 的安山岩(FeO^T 为 以 FeO 表示的全 Fe 含量)。

目前,文献中的高镁安山岩还常包括以下类似的岩石: Bajaite [玻安岩的变种,MgO 约 8%, SiO₂ 56%,高 Sr(>1000 × 10⁻⁶),高 K/Rb(>1000)],由发现于墨西哥 Baja California 而

图 1 富镁安山岩的 SiO₂-MgO 图解

Fig. 1 Diagram of SiO₂vs MgO for magnesian andesites

命名,作为富镁安山岩描述(Magnesian, andesite)(Rogers et al.,1985);赞岐岩(Sanukite 或 Sanukitoid),最早由 Weinschenk (1981)命名为 Sanukite,它产于日本西南四国岛 的瀬户内火山岩带,含有针状古铜辉石斑晶,Koto(1916)提 出用 Sanukitoid 来代表这类结构上受到改造的岩石,包括了 成分上相同的侵入体或太古宙高镁石英二长闪长岩和花岗 闪长岩。在印度南部发现的 Closepet 型花岗岩也具有 Sanukitoid 的一些特点(Jayananda et al.,1995)。Tatsumi (2006)提出阿留申的埃达克岩也属高镁安山岩。

综合上述,高(富)镁安山岩(HMA 或 MA)是一概括性 术语,含义没有很严格限制,而且包含了多种富镁的中酸性 火成岩名称,如玻安岩、埃达克岩、赞岐岩、Bajaite 等,鉴于 此,本文采用富镁安山岩名称(Magnesian andesite, MAs),其 成分特点是 SiO₂ 范围 52% ~63%, Mg^{*}≥55, 多数情况下, FeO^T/MgO≤1。它包括了高镁安山岩(HMA)、玻安岩、赞岐 岩和富镁埃达克岩,富镁英安岩,与之成分类似的侵入岩如 富镁闪长岩也归于此。

2 新疆北部晚古生代富镁安山岩的分布

新疆北部晚古生代富镁安山岩的分布较为广泛(图略), 其中, 富镁安山岩(富镁英安岩)主要分布于阿舍勒(富镁英 安岩)、富蕴南、阿拉套山、达巴特、西天山阿希、果子沟、东天 山土屋-延东(富镁安山岩); 富镁闪长岩分布于东天山尾 亚、企鹅山和 312 国道东。在一些蛇绿岩分布区,如西天山 巴音沟蛇绿岩区,也发现了富镁安山岩(王强等, 2006)。更 为特征的是,不同类型的富镁火成岩在时空分布上有密切的 关系,形成密集分布区,例如,在阿尔泰富蕴南(张海祥等, 2003),富镁安山岩与同时代(中泥盆世)的苦橄岩(Chen et al.,2005)相邻分布,其后,在石炭纪末一二叠纪早期(约 300Ma),有镁铁-超镁铁的侵入岩产出,形成了富蕴富镁火成 岩集中分布区。与此类似,在东天山哈密南的土屋-延东、黄 山-井儿泉集中分布了富镁安山岩、富镁闪长岩(中一晚石炭 世)和镁铁-超镁铁侵入岩(早二叠世),形成了东天山富镁火 成岩集中区;在西天山的果子沟、阿希和阿拉套山分布了富 镁安山岩(中一晚石炭世)。与上述富镁火成岩相关,发育了 强烈的 Cu、Ni、Au和 Zn 的成矿作用,多数达到了大型矿床规 模,如喀拉通克、黄山、黄山东、土屋-延东及阿希等。新疆北 部富镁火成岩的集中分布,也为探讨该区的晚古生代地球 动力学演化提供了重要依据。

3 富镁安山岩的岩石学特征

富蕴南沙尔布拉克的富镁安山岩具有含气孔、杏仁构造,含斑玻璃结构,斑晶主要为单斜辉石、橄榄石、假像纤闪石和板条状斜长石。橄榄石斑晶具自形晶轮廓(长0.2~1mm),已蚀变为蛇纹石。辉石斑晶(长0.3~3mm)受到绿泥石化和纤闪石化。镕尖晶石(0.1~0.3mm)常被包裹在辉石斑晶中。基质主要为角闪石和斜长石。阿舍勒富镁英安岩与之相似,所不同的是斑晶中含有石英。阿希金矿围岩富镁安山岩呈斑状结构,斑晶有斜长石、角闪石、辉石、橄榄石和少量石英,基质具半晶质一隐晶质,形成玻晶交织结构。

岩石化学特点: SiO₂ 53% ~65%,属玄武安山岩、安山 岩,少部分为英安岩,侵入岩主要为闪长岩或闪长玢岩。 MgO 含量均较高,Mg[#]≥55,MgO 含量变化范围较大 3.12% ~12.19%(平均 6.39%); FeO^T/MgO 0.32 ~1.29(平均 0.80); TiO₂ 含量均低于 1.0%(个别样品为 1.03% ~ 1.08%),范围0.21% ~1.08%(平均0.72%)。与国外玻安 岩(344 个样; Kelemen *et al.*,2003; 表1)平均值相比,MgO

反华争	等:书	f 疆北	部的	富	镁	火	成	岩																																				10	599
	348 个样	玻安岩 ^① 平均值	56.83 0.25	13. 22	7.93	21.0	c1 .0	5.35	2.02	0.56	0.06		100 001	10.001	36.45	188.01	696.03	43.1	191.76		9.47	141.84	20 05	50.00 EL C	54, 53	0.7	0.13	1.83	0.42	0.26	1.00	0.92	2.79	0.77	0.28	0.92	1.0	1.01	02.0		0.80	0.14	15.13 • 22	/c.1	1.02
	尾亚北 MD	2215	54.56 0.79	17.1	8.33	-	18	32.8	3.62	0.61	0.2	-	17.1	20.02 25	3			25.4	32.9		16.7 543	040 5 1	18.0	7 84	187	1.6	0.15	1	2.53	5	7.71	3.86	16.3	3.59	0.97	3.7	00 2 44	1 %	181	0.27	1. 72	0.27	78.29	۲. 4. ۲۰	10.0
	312 国道 东 MA	2079	58.41 0.8	15.43	6.68	11 0	0. II 4 61	10 1	4.73	1.92	0.23	-	1. 22 08 07	26.92 58	2			4.35	2.28		163	400	315	010 11 A	2023	8.57	0.65	;	22.4	0 00	167	17.3	60.1	7.42	1.35	3.65	0.49 23	7C -7	1.07	0.12	0.75	0.11	351.95	80.31	6.0
	企鹅山 MD	B201	57.63 0.97	14.64	2.35	3.95	- ×		3.9	1.8	0. 23	5	77 -7	67.7	i						29.1		16.1	2 4	374	2.98			3.22	0 71	78 6 28 6	0.07	16.9	4	1.35	3.93	5.0				1.91	0.30	72.53	5. 23 1 00	5
	ξ MA	FW-34	51.35 1.03	18.38	2.52	6.45 0.07	0.07 6 67	4.42	3.21	0.41	0.29	4. /8	20 73	585	2							16.2	c.cl							0 33	2	2.86	13.1	3.1	0.82	3.02	0.4 2 8 9	2.67 0.56	1.61	0.24	1.47	0. 22	59.43 • 25	2.5 2.5	70.07
	土屋-延寿	T0011	3.97	6.94	. 55	21	1 27	126	56	0.07). 26	02	2 F	24				7.4	5.6		. 41	000	0. /	98	298	. 97	. 22	;	80	c v	2.4 37	.95	0.3	. 26	.35	8 1	10.	9.5	19	. 24	.60	. 24	8. i	5	63
injiang	音沟 IA	707 DX	.17 S	.33 1	₹°	ي ج	38	16	67 4	56 (= 2	4	1 0 1 0		.3	10	% .	85 2	68	ا	1 2	~ ~	-	36	1.0	13 2	38	8	5 26	- 67 73	- 2 -	51 4	.2 2	59	62	20 20	0 72 74 0	20	25	50	56 1	09	8 8	8/ 8/	-
north Xi	Ξ×	29 wxt	57 63. 6 0.	6 14.				. 4	7 3.	2 0.	-0 0		00		4	-	13	7.	× `	9	8 F	÷ 2	1 -	4	: 26	3.5.	3.0.		. 4			- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 15	8 	90.			f -		0	0 3.	1 0.	0 · .7.	4 °	5
cks in 1		Xa-2	53.5	13.	4.4	4.2	- c ~ ~		1.7	0.2	0.0	Ċ	7.4	- 59 -	19	161	15	95	26	:	24 C	17	86	ς χ	614	6.3	0.5	1	5.7			ŕ	20.	4.3	1.2	4.0	°.0				3.3	0.5	103.	4 C	
eous ro		Xa-24	60.87 0.76	16.03	2.71	2.55	4 05	5.59	3.68	1.37	0.01		10.01	\$ }	11	117	140	19	58	1	75	1	5 F	3	3 <u>8</u>	3.41	0.55	;	5.62	1.62	7.CI		14.9	3.09	1.03	3.76	/c .n				1.77	0.27	20.12 20.12	c/ .c	74.10
sian ign	- MA	wxt819	56.23 0.74	15.26	7.26	20, 0	0.0 8 47	4.38	2.65	1.45	0.06	5	3. %2 06. 57	02	15.3	118	768	27.2	183	16.1	29.5	7 7	7./1	5 74	287	3.08	0.47	11.4	5.11	1.37	C.11	2.86	1.1	2.52	0.93	2.67	9.0 9.6	4 9 4 0	5	0.26	1.69	0.26	62.72	4.20	
magne	阿希	wxt818	57.93 0.72	15.19	5.36	20	20.0	. 9	2.54	1.76	0.08	76 6	06.0 06.0	79.74	17	117	790	26.6	182	l 9. l	59.4 207	167	17.4	971 9	295	3.58	0.54	12.2	5.5	1.58	0.11 8 16	3.07	12.2	2.77	0.93	2.85	- 4 - 6	70.0	1.62	0.27	1.66	0.28	65.84	4.26	5-
s for the		wxt810	60.32 0.6	12.3	6. 29	00 0	80.0 80.0	3.13	1.65	0.98	0.08		0. /	04.72	13 1	99.4	467	24.9	171	12.9	53.8		14.J	4 50	74.7	2.39	0.38	9.66	4.13	1.12	0.11	2.84	10.6	2.23	0.66	2.18	00 7 . 1	4.7 0 40	1.29	0.23	1.41	0.23	60.74 5.5	10.0	14.00
e sample:		wxt809	55.41 0.77	14.59	7.54	20.0	0.0	2.18	2.57	0.72	0.09	, ,	0.42 03.67	10.02 77	20.4	120	1132	33.1	276	14	36.4	81./ 15		C01	59.4	2.71	0.36	8.9	3.18	0.90	70.0 200	2.73 2.73	10.3	2.21	0.75	2.27	6.6 ∕	0.7 0.50	1.41	0.25	1.56	0.27	59.07	4.08	70.1
esentativ		CZ-1	54.53 0.96	14.84	4.27	4.07	0. It	6.47	4.84	0.24	0.15	10,0	5. 94 100, 00	60'00I	5	305	162	30.6			42.3	/m]	0.0 83	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	145	3.67	050		3.82	1.28	20 5	C.17	15.4	3.8	1.32	4.55	0. 00	1 17		0.45	2.51	0.32	75.11	4.08	12.0
of repr	МА	CZ-10	55.29 0.96	14.85	3.02	4.78	71.0	4.82	3.8	1.37	0. 14	5	3, 03 00 20	70. 20 57	5	276	168	29.5			28.6 957	000	0.%		525	3.64	9.56		3.85	1.21	/ .01	+ .07	15.7	3.89	1.19	3.89	0.0/	0 08	2.2	0.40	2.35	0.31	73.47	4.48	t. 5
positions	果子沟」	CT-358	58.48 0.98	14.89	2.66	4.85	71 7 2 4	4 06	3.66	1.51	0.11	2.78	- 	58.5	24.6	193	148	22.2	28	17.6	27.0	₹ ;	140	- - -	927	3.62	0.46	5.22	4.28	- :		3.22	13.4	2.99	0.99	3.09	0. 55 00 6	9. G	7.7	0. 278	1.83	0.30	68.13	4.28	A. 10
-6) com		T-357 X	52.28 0.38	16.06	2.04	5.19	0.10 5 81	19.0	1.61	2.4	0.34	5	5. 83 2. 83		42.9	299	79.1	25.6	29	14.2	56.1 537	/ 55	12.4	1.24	654	0.65	0. 14	7.51	1.64	0.69	0. 20	1.62	7.28	1.77	0.58	2.29	(?.) 	17.7	1 34	0.21	1.45	0.25	38.29	2.89	0.00
E (× 10	11	- K 69-L	3.13 0.64	15	2.32	2.48	5 C	2 22	4.16	2.1	0.36	3.33	25 00		15	86	73	16	40	20	12	421	156	0.1	342	3.91	0.52		6.9	1.48	19.0	4.98	20.2	4.27	1.6	4.13 :	0. /I	4.03 86	0.00 140	0.35	2.14	0.34	04.81	6. 14 0. 74	2
and REI	达巴特 N	T-65	52.9 6 0.79	5.47	1.27	88	20.0	0.0	4.5	2.97	0.15	2.11	1 15		61	12	72	×	43	19	286	349	78 87		356	3.98	0.56		5, 66	1.37	0.23 77 6	22.0 4.25	17.4	3.87	1.04	4.01	9. /4	ŧ 3	11.0	0.4	2.47	0.38	1.48 1	4.40	10
), trace	V	«1745 X	6, 99	4.89 1	. 39	. 37	5.5	709	54	. 62	0.15	. 89	0	0.7 0.03	6.6	107	254	24.9	161	1.9	13.2	222	C.12	01	270	1.16). 63	14.7	5.79	1. 95 1. 95	6.4 	C.70	17	3.68). 94	3.18	- -	5.0 75	2 2	50	8	0.35	4.85	62	7.04
or(wt%	阿拉套 M	t(750 w	04 5	5.32	.25	. 65	8,3	00.0	41	. 87	. 12	8	0	6. 6 5	4.7	158	253	4.3	6.2	9.1	8.0	502 202	7.5	2 8	376	11	. 57 (. 52	66.	.57	7 1		14	24	=	. 58	62.0	60 · 06	00.0	. 35	.37	.41 (1.50 8	3. 17 20	安山岩
Table 1 Maj	地 点	本 · ·	Si0 ₂ 57 Ti0 ₂ 1	Al ₂ 03 16	Fe_2O_3 2	FeO 4	MnU MnU	MgC Co A	NanO 2	K,0	$P_2 \tilde{O}_5 = 0$	H ₂ 0 1	烧失单	11日日	a y	3 >	- L	Co 2	Ni 7	Ga 1	Rb . 2		× r	1	or a	Hf 4	Ta 0	Ph 8	Tb 4	- ·	-,],	، بەرە	PN	Sm 3	Eu	3	ی ہے 19	Ϋ́Υ Ϋ́Υ	ло Е.	i T	Yb 2	Lu C	SREE 7	(La/Yb) _N	

表 1 新疆北部富镁火成岩的主量(wt%)、微量及稀土元素(×10⁻⁶)成分

																												Ac	cta	P	etro	olo	gic	a	Sin	ica		岩	Б	学	报		20	07	, 2	3(7)
	Az509-16	53.54	0.01 13.94	2.3	7.43	0.16	12.19	5.83	1.28	0.31	0.09	2.18	99.86	6	8 Ş		ផ	\$		Ş	7	10	c	0.0 191	191 2 20	0.92	5.	<u>و</u>	75.0	0.16	4. C	2 Z	00.0	- 1 00-1	0.47	1.55	0. 29	1.95	0.42	1.29	0.19	1.29	0.21	16.35	0.73		
	A408-19	52.38	90.0 13.91	2.52	6.91	0.14	11.34	6.18	1.74	0.3	0.11	3.78	6. <u>6</u> 6	6	S 5	212	<u>8</u>	<u>୧</u> :	\$	Ę	6	01		0.0 	s į	0.73	сл.,	~ `	0. 6	0.12	11.7	10.0	4 81	1.31	0.48	1.58	0.26	1.77	0.4	1.18	0.18	1.12	0.18	25.57	1.62	1.02	
	AZ509-8	65.73	97 50 17 70	1.06	4.5	0.08	2.69	3.47	2.87	1.22	0.06	3.85	99.75 1	4 -		114	- 2	8		ć	2	11	0	0.9	45 ; 42 ;	C	s,	۰ ر د	0.0	5. 8.	5. 6 6 5		4 73	1.36	0.47	1.75	0.32	2.25	0.51	1.67	0.26	1.86	0.3	27.41	1.31	66.0	
	AZ509-10	62.93	U. 2/ 14. 25	1.02	4.72	0.11	3.26	3.36	3.43	1.58	0.06	4.63	99.62 7	7 2	સ કું	<u>a</u> :	នន	5		ę	78	10	6	0.9	4 <u>5</u> 1,	1. fy	000	4	5 C	10.0	3. / 0	c0.0 21	4 86	1.33	0.41	1.74	0.32	2.26	0.51	1.61	0.25	1.81	0.28	28. 24	1.37	70.0	
	AZ504-6	58.62	13.89	2.1	5.82	0.09	5.24	2.06	3.18	0.61	0.05	4.8	96.01	ន : រ	3	2 :	4 6	R		ç	82	12	0	8.0 .8	8 <u>;</u>	1.01	s,	~ ·	1.01	0.38	10.2		60.00 12 6	1.13 1.13	0.33	1.48	0.28	2.01	0.46	1.45	0.23	1.62	0.26	21.15	- 5 7	0.0	
安岩)	AZ504-4	63.89	15.1	1.82	5.32	0.1	4.31	1.89	3.45	0.9	0.06	2.66	99.79	72	61	134 4	ۍ د	8		ç	2 2	13	0	0. <u>0</u>	£ ;	cl .1	۰.u	~ i	16.0	0.52	5. <u>9</u> 5	07.0	52.5	1.53	0.52	1.95	0.37	2.62	0.6	1.89	0.29	2.05	0.33	30.93	1.28	0.92	
勒(富镁英	A98-6	64.1	0. 28 4. 23	2.01	3.92	0.07	3.43	2	3.26	1.61	0.07	4,68	89.68	22	ន	121	- 9	71 -	7	ç	5	15	•	1.1	<u>8</u> :	1.3 •	1.0	ۍ . د	1	0.47	8. %	90.00 1	4 53	1.35	0.42	1.73	0.32	2.23	0.52	1.6	0.27	1.83	0.31	78	1.38	5	
阿舍	A1301-4	65.89 0.20	3 86	2.34	3.29	0.08	3.92	0.99	3.89	1.3	0,06	3.37	89.28	5	24	<u>.</u>	7 ;	71	2	ì	9/	4 9	. 4 .	I. I	771	1.36	60. n	~ ` ·	1.26	0.55	3.09	6 6 -	4 60	141	0.43	1.71	0, 32	2.23	0.5	1.58	0, 26	1.75	0, 29	28.41	1,41	6,0	
	A1301-16	6.91 66.91	0.78	3.24	3.25	0.1	2.56	1.65	5.02	0.56	0.06	2.77	100.46	47	53	<u>4</u>	m ;	71	m		116	16 20	, 4	: 5	9	1.35	60.n	4	1.53	0.54	4.28	71 12	5 03	1.47	0.4	1.88	0.35	2.42	0.56	1.74	0.29	1.95	0.32	31.00	1.47	0.81	
	BA05-4	64.25	0. 29 14 36	1.54	4.3	0.04	2.98	3.34	3.26	1.02	0.04	4.79	100.21	\$	ន	122	4	<u>-</u>	ŝ	2	101	13	× ;	6.0	116	1.29	80.0	~ ;	1.4 2.5	0. 4 :	4 . 4 .	\$ S	70.1	1.20	0.41	1.67	0.3	2.06	0.46	1.32	0.23	1.62	0, 28	26.14	1.42	6.0	
	BA05-1	63.83	17.0	2.15	3.32	0.04	2.37	3.93	3.49	0.85	0.05	4.81	99.46	4 (57	111	<u>،</u> م	12	2		4	15	3 .		128	1.37	, 08 0	7 .	1.52	0.5	4 4 7	06.00	1.10	1.37	0, 43	1.94	0.34	2.4	0.54	1.55	0.28	1.94	0.34	29.82	1.4	0.81	
	BA01	60.76	0.32 15 00	2.38	4.5	0.09	3.16	5.18	2.87	0.78	0.04	4.98	100.08	\$;	33	151	01 3	- IQ	ŝ		119	; 16	4	- :	\$	1.39	60 o	, س	1,6 2	0.49	4.17	70.4	C7 -1	1.46	0.5	2.1	0.38	2.62	0.59	1.67	0.29	2.02	0.34	31,88	1.38	0.8/	
	A98-1	62.2	0.27	2.54	3.74	0.15	3.37	3.47	3.63	0.55	0.06	5.94	99.52	8	57	113	m ;	4	ŝ		118	4	5	- :	6	1.25	0.1	4	1.42	0.46	3.63	/.48 00 0	00 7. 1	1.5	0.36	1.65	0.31	2.17	0.5	1.52	0.25	1.71	0.29	26.37	1.42	e o	
	BB18-1	60.45	0. 34 14 83	2.06	4	0.15	3.97	4.66	3.61	2.02	0,2	3.36	99.65	23	24.3	168	75.7	18.3	31	77	597	10.2	21.4	3.1	651	0.76	0.19		0.81	0.334	5.65	4.11	: ; ;	0.12	0.41	1.65	0.25	1.6	0.34	1.00	0.17	1.08	0.19	32.69	3.51	0.83	
	BB16	56.25	0.21	2.92	3.65	0.1	3.91	5.51	3.25	3.23	0.28	3.69	99.23	51	30.7	215	39.2	19.2	29.2	44.9	16/	8.1	12.5	2.7	894	0.39	0.16	:	0.58	0.3	5.74	8.	1. I4	4. 0 80	0.24	1.13	0.17	1.13	0.27	0.82	0.14	1.01	0.18	27.01	3.81 2.51	0.73	
安山岩)	BB15-1	53.95	0.35	3.83	4.9	0.14	5.22	5.84	4.3	2.06	0.41	2.32	99.33	51	39.9	220	74.9	23.9	30.8	24,9	685	11.1	17.3	2.33	562	0.61	0.14	1	1.38	0.65	10.7	21.3	2. 88	51 15 (69.0	2.26	0.32	1.79	0.37	1.09	0.18	1.25	0.21	58.55	5.74	0.80	5242
拉克(富镁	BB14-6	52.13	0.33	2.65	6.18	0.16	8.73	8.35	2.22	2.02	0.15	3.14	98.9	63	51.5	275	385	35.9	68.8	20.9	170	10.7	15.8	1.15	763	0.47	0.08		0.223	0.14	1.79	5. 5 7	8.5 6	C 7	0.23	1.35	0.23	1.55	0.35	1.06	0.18	1.22	0.2	16.19	0.98	0.08 日由容 城 示	NHHHHHH
沙尔布	BB10-3	58.94	0.25	12.7	6.1	0.18	7.82	9.46	1.75	1.88	0.33	1.56	99.98	2	31.4	189	265	28.6	71.2	28.5	242	12.2	14.1	0.7	732	0.4	0.05		0.26	0.56	2.53	5.3 1	0. /4 •	9.4 0 05	0.24	1.49	0.24	1.62	0.37	1.14	0.19	1.26	0.22	19.69	1.34	0.62	= ! (cnnz)
	BB10-1	54.22	0.3	1 90	6.05	0.16	9.31	8.09	2.00	2.91	0.22	2.04	99.4	67	39.8	195	5 66	32.8	105	45.2	300	10.9	17.2	0.87	1573	0.49	0.06		0.33	0.59	2.27	4.83	/9.0 19.0	0 00 0	0.14	1.61	0.23	1.56	0.36	1.07	0.19	1.24	0.21	18.44	1.23	0.36 E Kelemen	拓 Nelenien
	BB09-2	57.76	0.24	ور.بر ۱۱۱۱	5.85	0.15	8.99	8.6	2.12	2.53	0.19	2.18	99.31	02	37.1	201	395	44.9	111	30.2	131	9.06	13.3	0.7	1511	0.38	0.05		0.28	0.26	1.85	4	(C.) (C.)	10.2	15	1.28	0.2	1.32	0.3	0.92	0.15	1.03	0.17	15.23	v 1.2	0.48	「石十三日」
地 间 有	本品	SiO_2	Ti02	FeeO.	FeO -	MnO	MgO	CaO	Na ₂ O	K_2^{-0}	P_2O_5	烧失量	受量	Mg*	ŝ	>	స	ථ	N	Rb	አ	Y	Zr	Ŋ	Ba	Ηſ	Ta	ዋ	ц	n	La	ບັ	£ ;	PL J	F d	33	8 ∉	ð	, H	Ę	Tm	Yb	Lu	SREE	(La/Yb);	Eu/Eu	支援す

较低(10.64%), TiO₂ 较高(0.25%), FeO^T/MgO 略高(0.75); 富镁英安岩 MgO 含量较低,2.69%~5.24%, Mg^e、 FeO^T/MgO 值高于1,为1.11~1.85(平均1.47)。阿希富镁 安山岩强烈富镁 Mg^e>70, Cr、Ni 含量高(Cr = 467×10⁻⁶~ 1132×10⁻⁶, Ni = 171×10⁻⁶~276×10⁻⁶,表1)的特点与日 本濑户内(Setouchi)火山岩带的赞歧岩很相似,而沙尔布拉 克富镁安山岩岩石化学与辉石化学成分特点属玻安岩。在 SiO₂-MgO 图解中,本区富镁安山岩、富镁英安岩和富镁闪长 岩均位于富镁安山岩区(图1)。CaO/ Al₂O₃ 比值(0.10~ 0.49, <0.50)属低 Ca 型(Crawford *et al.*,1989)。

本区富镁安山岩明显富碱, K_2 O 含量除个别样品外, 普 遍高于 1%, Na_2 O 高于 2%。沙尔布拉克辉石核的 Mg/(Mg + Fe) 比值范围为 0. 90 ~ 0. 93, Cr_2O_3 含量 0. 5% ~ 0. 7%, TiO₂ < 0. 1%。包裹在辉石斑晶中的铬尖晶石 Cr/(Cr + Al) 比值高(0. 83 ~ 0. 84), 高于 Bonin 岛的玻安岩中铬尖晶石 (Niu *et al.*, 2006a; Shirak *et al.*, 1980)。果子沟富镁安山 岩的辉石属普通辉石, Mg/(Mg + Fe) 比值为 0. 77, Cr_2O_3 含 量 0. 14%。

由上可见,本区富镁安山岩显示了富镁、低 Ti 的特点, 这与文献所报道的富镁安山岩特征一致。低的 FeO^T/MgO 比值更反映了原始高镁安山岩岩浆的存在(Tatsumi, 2006)。 辉石斑晶的高 Mg/(Mg + Fe)比值和 Cr 含量与地幔单斜辉 石相似(Niu *et al.*, 2006a;牛贺才等,2006)。 1701

4 富镁安山岩的微量元素与稀土元素

4.1 稀土元素

与文献中富镁安山岩特征一致,本区富镁安山岩的稀土 元素总含量较低,除富镁闪长岩外,稀土元素总含量均 <100×10⁻⁶,含量范围 15×10⁻⁶~95×10⁻⁶,多数在 50× 10⁻⁶±。重稀土(HREE)相对富集,(La/Yb)_N0.98~6.4,多 数在4±。Eu 弱亏损-无亏损,Eu/Eu^{*}0.62~1.15,Q个别样 品 Eu 亏损明显,为0.36,0.48。上述特点使富镁安山岩形 成了平坦的或凹形-碟形稀土元素分布型式(图2)。

4.2 微量元素

相容元素 Cr、Ni,含量高, Cr 含量范围 72 × 10⁻⁶ ~ 790 × 10⁻⁶,个别样品达 1132 × 10⁻⁶, Ni 含量范围 29 × 10⁻⁶ ~ 276 × 10⁻⁶。以阿希金矿的富镁安山岩 Cr、Ni 含量最高, Cr 含量范围 467 × 10⁻⁶ ~ 1132 × 10⁻⁶, Ni 171 × 10⁻⁶ ~ 276 × 10⁻⁶。高场强元素 Nb、Ta、Ti 相对亏损,在原始地幔标准化图解中呈明显负异常 (TNT 负异常,图 3)。Y 含量较高,一般 > 15 × 10⁻⁶, Sr/Y 比 值较低,变化范围大 4.4 ~ 62(个别达 100),在 Sr/Y-Y 图解中 位于埃达克岩与普通岛弧安山岩-英安岩的交叉区两侧(图 4),这是俯冲洋壳板片熔体与地幔楔橄榄岩相互作用的反映。

图 2 富镁安山岩的球粒陨石标准化 REE 分布型式

Fig. 2 Chondrite-normalized REE patterns of magnesian andesites

图 3 富镁安山岩微量元素原始地幔标准化蛛网图(原始地幔值据 Sun and McDonough 1989)

Fig. 3 Primitive mantle-normalized spidergram of trace elements for magnesian andesites

图4 富镁安山岩 Sr/Y-Y 图解

Fig. 4 Sr/Y-Y plot for magnesian andesites

在流体中活动的大离子亲石元素如 Rb、K 相对富集,流 体中活动的 Pb 的 Pb/Ce、Pb/Nd 比值为 0.21~0.70 和 0.47 ~1.06,明显高于其原始地幔值 0.10 和 0.14。反映普通沉 积物或其形成的熔体加入程度的 Th/Yb 比值很低,范围0.18 ~3.32,多数小于 1.0;反映俯冲板片流体加入程度的 Ba/La 比值较高,变化范围大,5.4~816,多在 30 ±,与玻安岩的 Th/Yb、Ba/La 平均值相近(0.5,29.0,Kelemen *et al.*,2003)。 上述特点反映了来自俯冲板片的流体不同程度地参与了成 岩过程,而普通沉积物对岩浆的成分贡献很小。

5 富镁安山岩的形成时代

根据地质产出的层位及部分同位素年龄测定资料,新疆 北部富镁安山岩的时代主要为中泥盆世和石炭纪。分布于 阿尔泰西部阿舍勒的富镁英安岩产于阿舍勒组。李华芹等 (1998)对该组中的铁质碧玉岩体作 Sm-Nd 和 Rb-Sr 年龄测 定,分别获得 372 ± 14Ma 和 378.3 ± 39Ma,而上覆的齐也组 细碧岩 Sm-Nd 等时线年龄为 359.9 ± 11Ma,结合周良仁 (1994)的化石资料报道,将阿舍勒组定为中一下泥盆统。富 蕴西南的沙尔布拉克富镁安山岩产于中泥盆统北塔山组,该 组中含中泥盆世早期生物化石 Leptostrophia sp, Elytha sp, Xinjiangolites sp 和 Prismatophyllum xinjiangense 等。

我们对独库公路巴音沟的富镁安山岩获得⁴⁰ Ar/³⁹ Ar 等 时线年龄 332.70 ± 6.65Ma(王强等,2006)。徐学义等 (2005,2006)测定了巴音沟蛇绿岩中斜长花岗岩锆石 SHRIMP U-Pb 年龄为 ≈ 324.7Ma,辉长岩中锆石的 LA-ICPMS U-Pb 年龄为 342.6 ± 2.2Ma。我们对产于阿拉套山哈 拉吐鲁克沟埃达克岩、富铌玄武岩和普通火山岩⁴⁰ Ar/³⁹ Ar 年 龄测定分别为 320 ± 1.2,318.9 ± 2.2Ma 和 306.3 ± 3.5Ma; Chen *et al.* (2000)测定的该区火山岩年龄为 310 ~ 340Ma。 据此,阿拉套山的富镁安山岩应属中一晚石炭世。西天山阿 希金矿的赋矿围岩辉石安山岩的 Rb-Sr 等时线年龄 345.9± 9Ma,⁴⁰ Ar/³⁹ Ar 坪和等时线年龄分别为 325.1±0.6Ma 和 324.4±31Ma(李华芹等,1998); 翟伟等(2006) 报道的年龄 为 363.3±5.7Ma (锆石 SHRIMP),我们测定的该矿围岩富 镁安山岩年龄为≈340Ma(锆石 SHRIMP,未发表)。

东天山土屋-延东花岗闪长斑岩年龄为 334.3 ± 3Ma,赤 湖石英闪长岩 322 ± 10Ma(锆石 SHRIMP)(陈富文等, 2005); 企鹅山石英闪长岩 308.52Ma(锆石 U-Pb)(刘德权 等,2003),表明该区富镁安山岩、富镁闪长岩(企鹅山,312 国道等,尾亚)等时代应为中一晚石炭世。

综合上述,新疆北部的富镁安山岩、富镁英安岩、富镁闪 长岩在形成时代上由北向南变年轻,在阿尔泰区为泥盆纪, 在东、西天山为石炭纪。

6 Sr、Nd 同位素组成

本区富镁安山岩与富镁英安岩的 (¹⁴³ Nd/¹⁴⁴ Nd)_i 比值变 化范围较大,为 0. 512213 ~ 0. 512554, ¹⁴³ Nd/¹⁴⁴ Nd 为 0.512564 ~ 0.512936 值, $\varepsilon_{Nd}(t)$ 为 + 0.28 ~ +7.2 (表 2),该 值明显低于世界玻安岩平均值 0. 51294 (Kelemen *et al.*, 2003)。Nd 模式年龄 t_{2DM} 值变化范围较大,为 485 ~ 1220Ma。⁸⁷ Sr/⁸⁶ Sr 具有类似特点,变化范围较大,为 0.7050 ~ 0.7095, (⁸⁷ Sr/⁸⁶ Sr)_i0.7029 ~ 0.7065 (表 2),该值与世界玻 安岩平均值 0.7042 相近。与区内埃达克岩、富铌玄武岩和 镁铁超镁铁岩相比 $\varepsilon_{Nd}(t)$ 值较低。上述特点表明,本区富镁

表 2 新疆北部富镁火成岩的 Sr 和 Nd 同位素组成

Table 2 Sr and Nd isotopic compositions of magnesian igneous rocks in north Xinjiang

安山岩 Nd、Sr 同位素组成具有弱亏损或弱富集特点:在 $\varepsilon_{Nd}(t)$ -(⁸⁷Sr/⁸⁶Sr)_i图解中(图5),本区富镁安山岩分布于 第一象限(仅1个样位于第二象限),与地幔排列平行。

7 富镁安山岩的成岩机理

7.1 源区物质

综合本区富镁安山岩(英安岩、闪长岩)Sr、Nd 同位素组 成特点可以看出, $\varepsilon_{Nd}(t)$ 为较低的、变化范围较大的正值及 (87 Sr),论值较高、变化范围较大(表 2,图 5),这些特点 表明在其源区中有地壳物质加入,但 Cr、Ni 含量高,富 Mg、富 重稀土的特点表明,所加入的地壳物质应是一种不成熟的、 未经强烈地壳循环的新生地壳物质,符合这种特点的是在俯 冲带弧前的增生棱柱(Accretionary prism)。Sr 含量较高,Y 含量低(<20×10⁻⁶),在 Sr/Y-Y 图解中位于埃达克岩与普 通岛弧火山岩交叉区两侧,以及 Ti/Zr、Th/Ta 及 La/Yb 比值 低等特点均与普通岛弧火山岩不同(图 4,表1),表明其源区 为俯冲的洋壳板片;而 Mg、Ni 和 Cr 含量高的特点显示地幔 楔橄榄岩的加入;高场强元素 Nb、Ta、Ti 的明显亏损、大离子 亲石元素(LIL)与 Pb 的富集(图3)以及变化范围较大的 Ba/ La 比值,表明成岩过程中有源自俯冲洋壳板片的流体的加 入(图5)。

综合上述地球化学特点以及它们在时空上与区内埃达 克岩、富铌玄武岩的密切组合,可以认为,其源区物质为非单 一的、复合源。主要为俯冲的洋壳板片,在其岩浆形成过程

样品号	xt358	2079	2215	wxt-750	Sha-1	Sha-2	BB10-3	Az504-4	Az504-6	Az509-16
Sm(×10 ⁻⁶)	3.60	7.42	3.59	3.24	0.696	0.757	0.945	1.618	1.057	0.7871
Nd(×10 ⁻⁶)	15.79	60.1	16.3	14	2.611	2.522	3.399	5.692	3.649	2.448
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0. 1379	0.0746	0.1335	0. 141 1	0.1614	0. 1818	0.1681	0.172	0. 1753	0. 1945
¹⁴³ Nd⁄ ¹⁴⁴ Nd	0.512660	0.512564	0.512581	0.512567	0.512918	0.512936	0.512905	0.512644	0.512643	0.512702
$(\pm 2\sigma)$	14	12	10	12	13	13	9	10	11	10
(¹⁴³ Nd⁄ ¹⁴⁴ Nd)i	0.51238	0.51255	0.51255	0.51227	0.51252	0.51249	0.51250	0.51222	0.51221	0.51222
$\varepsilon_{\rm Nd}(t)$	2.72	3.78	1.59	0.9	7.2	6.5	6.6	0.44	0.28	1.32
t _{2DM} (Ma)	764	707	869	1220	485	563	528	920	933	916
Rb($\times 10^{-6}$)	23.36	163	16.7	20.8	30.21	22.7	28.48	10.58	9.54	5.96
$Sr(\times 10^{-6})$	591.6	488	543	265	130.7	304.58	242.2	100.4	98.17	24.79
⁸⁷ Rb/ ⁸⁶ Sr	0. 1287	0.9683	0.0888	0.2270	0.2311	0.0745	0.3402	0.3051	0.2816	0.6962
⁸⁷ Sr/ ⁸⁶ Sr	0.705524	0.707546	0.706532	0.707544	0.707346	0.705049	0.707000	0.707575	0.707549	0.709462
$(\pm 2\sigma)$	22	16	14	11	16	17	40	18	19	26
$({}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr})_{i}$	0.7050	0.7029	0.7061	0.7065	0.7038	0.7039	0.7052	0.7059	0.7060	0.7057

世界玻安岩平均:⁸⁷ Sr/⁸⁶ Sr = 0.70423,¹⁴⁷ Sm/¹⁴⁴ Nd = 0.51294(Kelemen et al., 2003)

图 5 富镁安山岩 $\varepsilon_{Nd}(t)$ -(⁸⁷ Sr/⁸⁶ Sr);图解(图中超镁铁 岩据张招崇等, 2006;李华芹等, 1998;钱青等, 2006; 朱永峰等, 2006a,b)

Fig. 5 Diagram of $\varepsilon_{Nd}(t)$ vs $({}^{87}\text{Sr}/{}^{86}\text{Sr})_i$ for magnesian andesites

中,弧前增生棱柱、地幔楔橄榄岩及俯冲洋壳板片脱水形成 的流体均有不同程度的加入。

7.2 成岩过程

探讨钙碱性岩浆与拉斑玄武质岩浆系列差别的原因一 直是火成岩岩石学的中心议题。Green and Ringwood (1968) 早就提出了由玄武质洋壳俯冲达到高温和变质为榴辉岩相 而部分熔融形成岛弧钙碱性安山岩浆的认识,但许多学者对 此怀疑,认为俯冲板片不够热,达不到玄武质岩石的熔融温 度,只能释放出含水流体,这种流体交代俯冲带上方地幔楔 的橄榄岩,发生部分熔融形成火山弧岩浆(Gill, 1981; Tatsumi et al., 1986; Hawkeworth, 1993)。因此, 20世纪90 年代以前有关富镁安山岩的成岩模式,集中于由二辉橄榄 岩和方辉橄榄岩在饱和水条件下部分熔融形成。埃达克岩 的发现及其由俯冲洋壳部分熔融形成的模式及玄武岩体系 部分熔融和相平衡实验研究表明(Kay, 1978; Defant, 1990; Rapp et al., 1999, Sen and Dunn, 1994), 富镁安山岩的高 Mg 和高 Ni、Cr 含量是熔体与地幔楔橄榄岩平衡的结果,不 可能由地幔楔橄榄岩形成的玄武岩浆的分异结晶作用产生。 特别是有关板片熔体与地幔楔橄榄岩反应及安山岩浆的实 验研究(Green et al., 1976; Kay, 1978; Quick, 1981; Myers et al., 1985; Fisk, 1986; Kelemen, 1990; Rapp et al., 1999; Prouteau et al., 2001),进一步证明俯冲洋壳板片在高地温 梯度区和富 H₂O 条件下可以发生部分熔融。这种板片熔体 在上升穿过上覆地幔楔时与地幔楔橄榄岩发生反应,是形成 富镁安山岩的合理机制(Kelemen, 1995, 2003; Yogodzinski et al., 1995, 2001; Polat and Kerrich, 2001). Tatsumi et al. (2003, 2006)用地球化学方法模拟了俯冲的蚀变洋壳部分 熔融及其所形成熔体交代地幔楔橄榄岩后的成分,结果表明 这种熔体/岩石反应机制可以模拟富镁安山岩的主量、微量 元素及 Sr、Nd、Pb 同位素组成(Hf 同位素组成需要深海沉积 物加入)。Suzuki and Tatsumi (2006)认为可以用玄武岩浆 的分离结晶混染作用模型模拟富镁安山岩的主量元素成分, 但不能满足其微量元素及 Sr、Nd、Pb 同位素组成。

上述研究成果表明,形成富镁安山岩岩浆的要素是:

(1)复合物源、复合成岩作用:源区物质包括洋壳(受到 蚀变后多形成为角闪岩)、弧前沉积物及地幔楔橄榄岩;成 岩作用既有部分熔融作用,又有熔体、富水流体与固相岩石 之间相互作用(熔体交代及富水流体交代作用)。根据本区 富镁火成岩的岩石学及地球化学特点,如变化范围较大的具 有幔源特点的 Sr、Nd 同位素组成,表明其源区中应有一定量 的具地壳 Sr、Nd 组成特点的物质加入,符合这种特点的是在 弧前的增生棱柱物质。它是源自地幔的未经长期地表循环 作用的新生地壳物质,这种物质与洋壳共同俯冲发生低程度 部分熔融,所形成的熔体在上升过程中与上覆地幔楔橄榄岩 发生相互作用(混染或部分熔融),使板片熔体中的 Mg、Ni、 Cr 含量增加,高场强元素(Ti、Nb、Ta、Zr、Hf)含量降低,稀土 元素含量降低,重稀土元素相对含量增加(La/Yb 降低),形 成富镁安山质岩浆。

(2)富挥发分及高地热梯度区: 富镁安山岩普遍富水, 实验研究均在饱和水和高温(>1000℃)条件下进行。

(3)特殊的成岩构造环境:对世界各地的富镁安山岩的 调查表明,虽然它们在整个地质历史时期均有产出,它们的 形成时代具有一老一新的明显特点,一老是产于许多太古宙 绿岩带中,例如在加拿大苏必利尔省晚太古宙 Wawa 绿岩带 (Polat and Kerrich, 2001); 一新是产于阿留申群岛、巴布亚 新几内亚、日本岛弧、印度尼西亚、西墨西哥 Baja California、 智利南 Cook 岛等地新生代火山岩中。它们的共同特点是高 的地热和地热梯度,前者是源于太古宙较薄的地壳和强烈的 岩浆活动,后者则是年轻的、热的洋壳板片的斜向、平缓俯冲 和高地热及地热梯度的地幔楔(Tatsumi et al., 1986; Defant, 1990, 2001; Kelemen, 1995)。这些特殊的构造环境 为富镁安山岩岩浆形成提供了充足的条件。实验岩石学资 料也表明(Tatsumi et al., 1981), 富镁安山岩岩浆来自橄榄 岩-H₂O体系的熔融或与其相关的过程,不可能来自干的地 幔橄榄岩的熔融,因此,板内伸展或裂谷环境很难形成富镁 安山岩岩浆。新疆北部富镁火成岩分布广泛,并在一些地区 形成典型富镁火成岩组合,如在阿尔泰富蕴地区,在中泥盆 世产出了苦橄岩、富镁安山岩、富铌玄武岩和埃达克岩组合, 在早二叠世还产出了橄榄岩、橄榄苏长岩等镁铁-超镁铁侵 入岩。这种特征的岩石组合的集中分布,暗示在晚古生代富 蕴地区的高地热和高地热梯度,它很可能是由于俯冲板片撕 裂或断离而形成软流圈窗(赵振华等,2006a,b),在东、西天 山也有类似特点。类似于北美洲 Baja Califonia 等地的洋脊 俯冲在本区也可能存在,它们均可为富镁安山岩的形成提供 充足热源。

(4)俯冲剥蚀作用(subduction erosion):如上述,弧前增 生棱柱物质参与了本区富镁安山岩的形成作用,何种作用 导致这种弧前物质进入富镁安山岩的源区?根据对安第斯 及阿留申等地富镁安山岩的研究,俯冲剥蚀作用是其成岩的 重要过程之一。Kay et al. (2002)和 Kay (2004,32 届国际地 质大会 T01.02 分组报告)认为,俯冲剥蚀作用是地壳物质进 人地幔的三种主要过程之一(洋壳上陆源沉积物与洋壳一起 的俯冲;由于地壳加厚而发生的下地壳拆沉作用;俯冲剥蚀 作用)。在俯冲剥蚀作用过程中,本区增生弧前新生地壳物 质被拖曳下来并与洋壳一起俯冲到高温区发生低程度部分 熔融,参与富镁安山岩浆的形成过程。俯冲剥蚀作用是周期 性的,它随板块俯冲的方向或速率而变化,或随板块俯冲角 度变平缓或变陡而变化。

需要指出的是,北疆富镁安山岩(英安岩、闪长岩)及其 它类型富镁火成岩的广泛分布,一方面反映了本区在晚古生 代显著的地壳增生作用;另一方面,与这些富镁火成岩有 关,发育了强烈的 Ni、Cu、Au、Zn(Pb)等成矿作用,因此,对本 区晚古生代富镁火成岩开展深入的地质、岩石和地球化学研 究,具有重要的理论和经济意义,应当引起足够的重视。

致谢 作者感谢特邀主编朱永峰教授和张旗研究员及另 一匿名审稿人对本文提出的宝贵意见。

References

- Che ZC, Liu L, Liu HF and Luo JH. 1996. Review on the Ancient Yili Rift, Xinjiang, China. Acta Petrologica Sinica, 12(3): 478 - 490 (in Chinese with English abstract)
- Chen FW, Li HQ, Chen YC, Wang DH, Wang JL, Liu DQ, Zhou YL and Zhou RH. 2006. Zircon SHRIMP U-Pb dating and its geological significance of mineralization in Tuwu-Yandong porphyry copper mine, east Tianshan mountain. Acta Geologica. Sinica. 79:256 - 261
- Chen JF, Zhou TX, Xie Z, Zhang X and Guo XS. 2000. Formation of positive (Nd (T) granitoids from the Alataw Mountains, Xinjiang, China, by mixing and fractional crystallization: Implication for Phanerozoic crustal growth. Tectonophysics, 328: 53 - 67
- Chen YC, Liu DQ, Wang DH, Tang YL, Zhou RH and Chen ZY. 2004. Discovery and geological significance of picritic rocks in north Junggar, Xinjiang. Geological Bulitin of China, 23 (11): 1059 – 1065 (in Chinese with English abstract)
- Crawford AJ, Falloon TJ and Green TH. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford (ed). Boninites. London: Unwin Hyman, 1-49
- Dallwitz WB, Gren DH and Thompson JE. 1966. Clinoenstatite in a volcanic rock from the Cape Vogel area, Papua. J. Petrol., 7:275 – 403
- Dallwitz WB. 1968. Chemical composition and genesis of clinoenstatitebearing volcanic rocks from Cape Vogel, Papua: A discussion. In 23rd Int. Geol. Cong. 2:229 - 242
- Defant MJ and Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. EOS, 82: 62-69
- Drummond MS, Defant MJ and Kepezhinskas PK. 1996. The petrogenesis of slab derived trondhjemite-tonalite-dacite/adakite magmas. Trans. R. Soc. Edinburg; Earth Sci., 87:205-216
- Fisk MR. 1986. Basalt magma. interaction with harzburgite and the

formation of high-magnesian and esites. Geophys. Res. Lett. , $13:\,467-470$

- Gill JB. 1981. Orogenic andesites and plate tectonics. Berlin: Springer-Verlag, 358
- Green D H. 1973. Experimental melting studies on a model upper mantl composition at high pressure under water-saturated conditions. Earth Planet. Sci. Lett., 19:37 - 53
- Green DH. 1976. Experimental testing of "equilibrium" partial melting of peridotite under water-saturated, high pressure conditions. Can. Mineral., 14:255 - 268
- Green TH and Ringwood AE. 1968. Genesis of the calk-alkaline igneous rock suit. Contrib. Mineral. Petrol., 18:105-162
- Hawkesworth CJ, Gallagher K and Hergt JM. 1993. Mantle and slab contributions in arc magmas. Ann. Rew. Earth Planet. Sci., 21: 175 - 204
- Jayanand M, Martin J, Peucat J and Mahabaleswar B. 1995. Late Archean crust-mantle interaction in the Closepet granite, southern India: Evidence from Sr-Nd isotope, major and trace element geochemistry. Contri. Mineral. Petrol., 119:314 - 329
- Jenner GA. 1981. Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chemi. Geol., 33:307-332
- Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. J. Volcanol. Geotherm. Res., 4: 117-132
- Kay RW. 2002. Andean andesites: Three ways to make them. Acta Petrologica Sinica, 18 (3): 303 - 311 (in Chinese with English abstract)
- Kelemen PB. 1995. Genesis of high Mg[#] andesites and the continental crust. Contrib. Mineral. Petrol., 120:1 - 19
- Kelemen PB, Joyce DB, Webster JD and Holloway JR. 1990. Reaction between ultramafic wall rock and fractionating basaltic magma: pert II, experimental investigation of reaction between olivine tholeiite and harzburgite at 1150°C and 1050°C and 5kbar. J. Petrol., 31: 99 134
- Kelemen PB, Hanghoj K and Greene AR. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphosis on primitive andesite and lower crust. In: Holland HD and Turekian KK (ed). Treatise on geochemistry, Vol. 3. Amsterdam: Elsvier, 593 - 660
- Koto B. 1916. On the volcanoes of Japan (VO. J. Geol. Soci. Tokyo, 23:95 - 127
- Kushiro I. 1972. Effect of water on the composition of magmas formed at high pressures. J. Petrol., 13:311-334
- Le Maitre RW(ed). 2002. Igneous rocks, a classification and glossary of terms, Cambridge, Cambridge university press; 34 35; 89
- Li HQ, Xie CF, Chang HL, et al. 1998. Study on Metallogenetic Chronology of Nonferrous and Precious Metallic Ore Deposits in North Xinjiang, China, Beijing: Geological Publishing House, 107 - 127 (in Chinese with English abstract)
- Liu DQ, Chen YC, Wang DH, Tang YL, Zhou RH, Wang JL, Li HQ and Chen FW. 2003. A discussion on problems related to mineralization of Tuwu-Yandong Cu-Mo Orefield in Hami, Xinjiang. Mineral Deposits, 22(4): 334 - 344
- Mao JW, Pirajno F, Zhang ZH Chai FM, Yang JM, Wu H, Chen SP, Cheng SL and Zhang CQ. 2006. late Variscan post-collisional Cu-Ni sulfide deposits in east Tianshan and Altay in China, principle characteristics and possible relationship with mantle plume. Acta Geologica. Sinica. 20:925 - 941 (in Chinese with English abstract)
- McCarro JJ and Smellie JL. 1998. Tectonic implications of fore-arc magnesian and generation of high-magnesian andesites: Alexander island, Antactica. J. Geol. Soc. London, 155:269 - 280
- Myers JD, Marsh BD and Sinha AK. 1985. Strontium isotopic and selected trace element variation between two Aliutian volcano centers (Adak and Atka): Implication for the development of arc volcanic plumbing systems. Contrib. Mineral. Petrol., 19: 221-234
- Niu HC, Sato H, Zhang HX, Ito J, Yu XY, Nagao T, Terada K and Zhang Q. 2006a. Juxtaposition of adakite, boninite, high-TiO₂ and low-TiO₂ basalts in the Devonian southern Altay, Xinjiang, NW China. J. Asian Earth Sci., 28:439 - 456

- Niu HC, Yu XY, Xu JF, Shan Q, Chen FR, Zhang HX and Zheng ZP.
 2006b. Late Paleozoic volcanism and associated metallogenesis in the Altay area, Xinjiang, China. Beijing: Geological Publishing House.
 8 68 (in Chinese with English abstract)
- Polat A and Kerrich R. 2001. Magnesian andesites, Nb-enriched basaltandesites, and adakites from late-Archean 2. 7Ga Wawa greenstone belts, Superrior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contrib. Mineral. Petrol., 141:36-52
- Prouteau G, Scaillet B and Pichacent M. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410:197-20
- Qian Q, Gao J, Xiong XM, You LL and Huang DL. 2006. Petrogenesis and tectonic settings of Carboniferous volcanic rocks from north Zhaosu, western Tianshan Mountains: constrains from petrology and geochemistry, Acta Petrologica Sinica, 22:1307 – 1323
- Quick JE. 1981. The origin and significance of large tabular dunite bodies in the Trinity peridotite, northern California. Contrib. Mineral. Petrol., 78:413-422
- Rapp RP, Shimizu MD and Morman GS. 1999. Reaction between slabderived melts and peritotite in the mantle wedge: Experimental constrants at 3.8GPa. Chem. Geol., 160:333-356
- Rapp RP, Watson EB and Miller CF. 1991. Partial melting of amphyblite/eclogite and the origin of Archean tronhjemites and tonalities. Precam. Res., 51:1-25
- Rogerst G, Saunders AD, Terrell DJ, Verma SP and Marriner GF. 1985. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexcico. Nature, 315;389 – 392
- Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust; A lower crustal perspective. Rev. Geophyss. ,33; 267-309
- Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1. 5 and 2. OGPa: Implication for the origin of adakites. Contrib. Mineral. Petrol., 117; 394-409
- Shirak K, Kuroda N, Urano H and Maruyama S. 1980. Clinoenstite in boninite from the Bonin Ialand, Japan. Nature, 285:31-32
- Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of ocaric basalts; implications for mantle composition and processes. Geological Society of London, Special Publication, 42; 313 - 345
- Sun SS, Nesbitt RW and McCulloch MT. 1989. geochemistry and petrogenesis of Archean and early Proterozoic siliceous highmagnesian basalts. In: Crawford (eds). Boninites. London: Unwin Hyman, 149 – 173
- Suzuki K and Tatsumi Y. 2006. Re-Os systimatics of high-Mg andesites and basalts from the Setouchi volcanic belt, SW Japan; Implications for interaction between wedge mantle and slab-derived melt. Geochem. J., 40;297 - 307
- Tang ZL, Yan HQ, Jiao JG and Li X H. 2006. New classification on the Chinese Cu-Ni sulfide ore deposits and mineralization of small intrusive plutons. Mineral Deposits, 25(1): 1-9 (in Chinese with English abstract)
- Tatsumi Y. 1981. Melting experiments on a high-magnesian andesites. Earth Planet. Sci. Lett., 54: 357-365
- Tatsumi Y, Hamilton DI and Nesbitt RW. 1986. Chemicalcharacteristics of fluid phase from the subducted lithosphere; Evidence from highpresure experiments and natural rocks. J. Volcanol. Geotherm. Res., 29:293 - 309
- Tatsumi Y and Hanyu T. 2003. Geochemical modeling of dehydration and partial melting of subducting lithosphere: Twards a comprehensive understanding of high-Mg andsite formation in the Setouchi volcanic belt, SW Japan. Geochem. Geophy. Geosyst., 4, 1081, doi: 10. 29/2003GC000530
- Tatsumi Y. 2006. High-Mg andesites in the Setouchi volcanic belt, southwester Japan; Analogy to Archean magmatism and continental crust formation? Annu. Rew. Earth. Planet. Sci., 34:467-499
- Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Rev. Geophys. ,33 ;241 265
- Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F and Bai ZH.

2006. Carboniferous adakite-high-Mg andesite Nb-enriched basaltic rock suites in the Northern Tianshan area: Implications for Phanerozoic crustal growth in the Certral Asian Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-32 (in Chinese with English abstract)

- Wang RM, Zhao CL and Ma WL. 1991. No. One Cu-Ni Sulfide Ore Deposit, Kalatongke, Xinjiang. Beijing: Geological Publishing House, 1-319
- Xia LQ, Xia ZC, Xu XY, Li XM, Ma ZP and Wang LS. 2004. Carboniferous Tianshan large igneous province and mantle plume. Geol. Bull. China, 23 (9 - 10): 903 - 910 (in Chinese with English abstract)
- Xu XY, Ma ZP, Xia LQ, Li XM, Xia ZC and Wang LS. 2005. Accurate dating of Bayingou ophiolite in northern Tianshan mountains and its tectonic significance. Journal of Earth Sciences and Environment, 27 (2): 17 - 20(in Chinese with English abstract)
- Xu XY, Li XM, Ma ZP, Xia LQ, Xia ZC and Peng SX. 2006. LA-ICPMS zircon U-Pb dating of gabbro from the Bayingou ophiolite in thenorthern Tianshan Mountan. Acta Geologica Sinica,80(8):1168 -1175(in Chinese with English abstract)
- Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV and Kay SM. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin. 107: 505 - 519
- Zhai W, Sun XM, Gao J, He XP, Liang JL, Miao LC and Wu YL. 2006. SHRIMP dating of zircons from volcanic host rocks of Dahalajushan formation in Axi gold deposit, Xinjiang, China, and its geological implications. Acta Petrologica. Sinica. 5:1399 – 1404
- Zhang HX, Niu HC, Yu XY, Sato H, Ito J and Shan Q. 2003. Geochemcal characteristics of the Shaerbulake boninites and their tectonic significance, Fuyun County, northern Xinjiang, China. Geochimica, 32:155 - 160 (in Chinese with English abstract)
- Zhang Q, Wang Y L, Qian Q, Zhai MG, Jin WJ, Wang YL and Jian P. 2004. Sanukite of late Archaean and early earth evolution. Acta Petrologica Sinica, 20: 1355 - 1362 (in Chinese with English abstract)
- Zhang ZC, Yan SH, Chen BL, Zhou G, He YS, Cai FM and He LX. 2005. Middle Devonian picrites of South margin of Altay orogenic belt and implications for tectonic setting and petrogenesis. Earth Science Journal of China University of Geosciences, 30: 289 - 296 (in Chinese with English abstract)
- Zhang ZC, Yan SH, Chen BL, He LX, He YS, Zhou G and Cai FM. 2006. Sr-Nd-O isotope geochemistry of the mafic-ultromafic complexes in the south margion of Altay orogenic belt and discussion on their sources, Geologica Revieew, 52: 38 - 42 (in Chinese with English abstract)
- Zhao ZH, Bai ZH, Xiong XL and Mei HJ. 2006. The Alkali-rich Igneous Rocks and Related Mineralization in North Xinjiang, China. Beijing: Geological Publishing House. 12 – 148 (in Chinese with English abstract)
- Zhao ZH, Wang Q, Xiong XL, Zhang HX, Niu HC, Xu JF, Bai ZH and Qiao YL. 2006. Two types of adakites in north Xinjiang, China. Acta Petrologica Sinica, 22 (5): 1249 - 1265 (in Chinese with English abstract)
- Zhu YF, Zhang LF, Gu LB, Guo X and Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin 50; 2201 – 2212
- Zhu YF, Guo X and Zhou J. 2006. Petrology and geochemistry of a + $\mathcal{E}_{Nd}(t)$ gabbro body in Baluntai region, central Tianshan, Acta Petrologica Sinica, 22: 1178 1192 (in Chinese with English abstract)
- Zhu YF, Zhou J and Guo X. 2006. Petrology and Sr-Nd isotopic geochemistry of the Carboniferous volcanic rocks in the western Tianshan Mountain, NW China. Acta Petrologica Sinica, 22: 1341 - 1350 (in Chinese with English abstract)

附中文参考文献

- 车自成,刘良,刘洪福,罗金海. 1996. 论伊犁裂谷. 岩石学报,12: 478-490
- 陈毓川, 刘德权, 王登红, 唐延龄, 周汝洪, 陈振宇. 2004. 新疆北 准噶尔苦橄岩的发现及其地质意义. 地质通报, 23(11): 1059 -1065
- 李华芹,谢才富,常海亮,等. 1998. 新疆北部有色贵金属矿床成矿 作用年代学.北京:地质出版社,107-127
- 刘德权,陈毓川,王登红,唐延龄,周汝洪,王金良,李华芹,陈富 文. 2003. 土屋-延东铜钼矿田与成矿有关问题的讨论. 矿床地 质,22:334-344
- 毛景文, Pirajno F, 张作衡, 柴凤梅, 杨建民, 吴华, 陈世平, 程松 林, 张长青. 2006. 天山-阿尔泰东部地区海西晚期后碰撞铜镍 硫化物矿床:主要特点及可能与地幔柱的关系. 地质学报, 80 (7): 925-941
- 牛贺才,于学元,许继峰,单强,陈繁荣,张海祥,郑作平.2006.中 国新疆阿尔泰晚古生代火山作用及成矿.北京:地质出版社,8 -68
- 钱青,高俊,熊贤明,尤灵利,黄得志.2006.西天山昭苏北石炭纪火 山岩的岩石地球化学特征、成因及形成环境.岩石学报,22: 1307-1323
- 汤中立, 阎海卿, 焦建刚, 李小虎. 2006. 中国岩浆硫化物矿床新分类 与小岩体成矿作用. 矿床地质, 25:1-9
- 王强,赵振华,许继峰,Wyman DA,熊小林,资峰,白正华.2006. 天山北部石炭纪埃达克岩-高镁安山岩-富 Nb 岛弧玄武质岩:对 中亚造山带显生宙地壳增生与铜金成矿的意义.岩石学报,22 (1):11-30
- 王润民,赵昌龙,马文鹏. 1991、新疆喀拉通克一号铜镍硫化物矿床。 北京:地质出版社,1-319

- 熊小林,蔡志勇,牛贺才,陈义兵,王强,赵振华,吴金花.2005.东 天山晚古生代埃达克岩成因及铜金成矿意义.岩石学报,21 (3):967-976
- 徐学义,马中平,夏林圻,李向民,夏祖春,王立社.2005.北天山 巴音沟蛇绿岩形成时代的精确厘定及意义.地球科学与环境学 报,27(2):17-20
- 徐学义,李向民,马中平,夏林圻,夏祖春,彭素霞.2006.北天山 巴音沟蛇绿岩形成于早石炭世:来自辉长岩 LA-ICPMS 锆石 U-Pb 年龄的证据.地质学报,80(8);1168-1175
- 张海祥,牛贺才,于学元,Sato H, Ito J,单强. 2003. 新疆北部富蕴沙 尔布拉克玻安岩的地球化学特征及构造意义.地球化学,32(2): 155-160
- 张旗, 王焰, 钱青, 翟明国, 金惟俊, 王元龙, 简平. 2004. 晚太古代 Sanukite(赞岐岩)与地球早期演化. 岩石学报, 20: 1355 - 1362
- 张招崇,闫升好,陈柏林,周刚,何永康,柴凤梅,何立新.2005.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义. 地球科学(中国地质大学学报),30(3):289-297
- 张招崇, 闫升好, 陈柏林, 何立新,何永胜, 周刚, 柴凤梅. 2006. 阿尔泰造山带镁铁质-超镁铁质杂岩体的 Sr、Nd、O 同位素地球化学及其源区特征探讨.地质论评,55:38-42
- 赵振华,王强,熊小林,张海祥,牛贺才,许继峰,白正华,乔玉楼. 2006.新疆北部的两类埃达克岩.岩石学报,22(5):1249 -1265
- 赵振华,白正华,熊小林,梅厚钧. 2006.中国新疆北部富碱火成岩 及其成矿作用.北京:地质出版社,12-148
- 朱永峰,郭璇,周晶. 2006a. 新疆中天山巴仑台地区晚石炭世 + *e*_{Nd}(*t*)辉长岩体的岩石学和同位素地球化学. 岩石学报, 22: 1178 - 1192
- 朱永峰,周晶,郭璇. 2006b. 西天山石炭纪火山岩岩石学及 Sr-Nd 同位素地球化学. 岩石学报,22:1341-1350