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Abstract

A novel, grid search-based stress inversion method is developed in this paper to find the global minima in the solution region
for the classification of fault/slip data into many single-phase subsets. Exhaustively repetitious grid searches are taken to deal with
possible local minima, in a departure from existing grid search-based inversion methods. Two stopping rules, to stop at the abrupt
change of the objective function or at the least change of the classification, are adopted in the method to look for the best
classification. Much calculation time is saved by using a modified version of conventional grid search. The feasibility of this
proposed method is demonstrated by applying it to two artificial examples and two real examples. However, enormous time in
calculation is still needed in the case of a data set either with a large number of data or for a large number of assigned subsets.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For structural geologists, the most important stress
analysis method is the inversion of stress (principal
directions and stress ratio) from fault/slip data measured
at outcrop (Ramsay and Lisle, 2000). This initially
assumes the existence of a single tectonic phase
recorded by the overall data, despite polyphase fault/
slip data being common, in reality, on account of the
variability of the stress field through geological time. A
recent improvement to this method is its extension, in
some elaborate ways, to make it applicable to polyphase
fault/slip data. Numerous inversion methods have been
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developed for this purpose. Among them, many
structural geologists prefer a forward scheme (e.g.,
Anglier, 1979; Hardcastle and Hills, 1991; Sato and
Yamaji, 2006b) for simplicity and directness, rather than
a numerical scheme (e.g., Huang, 1988; Nemcok and
Lisle, 1995; Yamaji, 2000; Shan et al., 2003, 2004; Shan
and Fry, 2005). The forward scheme is referred to as grid
search. In theory, the continuous parameter space is
meshed into a vast number of nodes that are searched
exhaustively for the solution of stress.

However, our recent re-examination of grid search
strategies provided a modification of the basic method.
In Fry's (1999) sigma space, each datum vector has a
normal hyperplane centered at the origin for its solution
region. For a certain fault/slip data set, many such
hyperplanes are superimposed, probably producing a
large number of possible solutions that satisfy at least
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four data, the minimum number of data for stress
inversion. Amongst these possible solutions there exist
many local minima, in addition to meaningless minima
defined by fewer than four independent data, if one
defines an objective function such as the sum of square
distances between the datum vectors and the stress
hyperplane (Shan et al., 2003, 2004). The next step is to
group the possible solutions into a few meaningful ones,
which in this circumstance becomes crucial to the
calculation. The important issue arises, of how to make
the best grouping. This issue seems to have attracted
little attention.

In applying an inversion method to a set of polyphase
fault/slip data, the data are eventually classified into
single-phase subsets through using some criterion
particular to the method. In the numerical methods,
iteration is normally undertaken to look for the best
classification, but local minima described above are then
pitfalls in reaching the global minimum. Not all
inversion methods of the numerical type can deal with
these local minima, for any given polyphase data set. We
believe that this is a major reason why applying the
methods to a certain data set may give widely varying
results. In relating variation to the reliability of the
methods, Liesa and Lisle (2004) never noticed the
effect, on the result, of local minima reached at the final
iteration.

This communication aims at the development of a
novel, grid-search based inversion method in the
forward category. The method can find the global
minimum, at which the best classification of the data is
obtained. This is of the greatest advantage to grid search,
but at the cost of enormous time needed in calculation.
Meanwhile, Xu (2004) has proposed a numerical
algorithm for nearly the same purpose; but this will
not be discussed here, as detailed comparison between
these two methods is beyond the scope of this paper.

Symbols used in this paper and their definitions are
listed in Appendix A.

2. Methodology

Let us classify a set, A, of n fault/slip data into k
single-phase subsets, Ai (i=1,2,3…,k). The number of
data in each subset is larger than 4, the minimal number
of fault/slip data for stress inversion. According to the
binominal theorem, there are a tremendous number of
combinations for k subsets that must be checked for the
best combination, that is to say, for the best classifica-
tion. Even when k=2, the number would become so
large that it is almost impossible to do using the
currently fastest personal computer. However, this issue
can be resolved by the inversion method proposed
below, which is based on grid search.

2.1. Parameter space

In preference to other parameter spaces, reduced
sigma space (Fry, 1999), or [σ11, σ22, σ12, σ13, σ23], is
adopted in this paper. It has the advantage that
polyphase data may be separated almost in a linear
way after some transformation. In the space, fault/slip
data of each individual phase are distributed along an
independent hyperplane centered at the origin; therefore,
polyphase data are readily discriminated into single-
phase subsets by recognizing the hyperplanar structures
of the overall data in the space (Fry, 1999; Shan et al.,
2003, 2004). For more information on sigma space,
interested readers are encouraged to read the articles of
Fry (1999) and of Shan et al. (2003).

Additionally, Sato and Yamaji (2006a) proved that,
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1ffiffiffi
2

p r11;
1ffiffiffi
2

p r22;
1ffiffiffi
2

p
�

r33;r12; r13; r23�, the Euclidean distance between two

stress vectors is equal to the similarity between their
corresponding stress tensors (Orife and Lisle, 2003). The
two spaces are transformable to each other.

2.2. Mesh

In reduced sigma space, the stress vector is distributed
in the hyper-sphere centered at the origin and has a unit-
length radius (Fry, 1999; Shan et al., 2003). The hyper-
sphere is evenly meshed in order of the first to the fifth
element. Hence, the region of the latter element depends
upon the values of previous elements as follows:

½−1; 1� for r11;
½− ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−r211;
p ffiffiffiffiffiffiffiffiffiffiffiffi

1−r211
p � for r22;

½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222;

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222

q
� for r12;

½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222−r212;

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222−r212

q
� for r13; and

½−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222−r212−r213;

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−r211−r222−r212−r213

q
� for r23:

There are other methods of more even meshing (e.g.,
Sato and Yamaji, 2006b), but discussion of this is
beyond the scope of this paper. No matter how the space
is meshed, there still exists a possibility that the
unknown controlling stresses are not located at the
nodes of the mesh. The misfit, if large, may influence
the result of grid searching. In order to overcome this,
denser meshes are needed, but this is at the cost of vast
memory and computation time. For example, there are
1,589,156 grid points for a mesh width of 0.05.
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2.3. Objective function

Like most inversion methods in the numerical
category, a criterion must be established by which to
search for the solution of stress in the parameter space.
This is generally done by optimizing an objective
function defined in a way particular to each method. The
objective function defined in this paper is the summa-
tion of square distances between datum vectors and their
corresponding stress hyperplanes in reduced sigma
space. It is expressed as follows:

Fðk;AÞ ¼
Xk
i¼1

X
jaAi

ðtjbTi Þ2 ð1Þ

where k is the number of subsets, tj is the j-th fault/slip
datum, bi is the controlling stress vector for the i-th
subset or Ai, A is the set of the overall data, A ¼ [k

i¼1 Ai

and T is the operation of matrix transposition. By
minimizing the objective function, we solve for the
single-phase subsets and their corresponding stresses.

The objective function mentioned above has been
used previously by Shan et al. (2003, 2004) to classify
polyphase data both in a hard way and in a soft way. For
the sake of simplicity, this paper will only consider hard
classification, in which, by definition, each fault/slip
datum must not simultaneously be assigned to more than
one subset. Hence,

Ai \ Aj ¼ fnullg ð2Þ

where i≠ j.

2.4. Best classification

In the introduction, a concept of “the best classification”
is introduced as a precursor to our new inversion method.
It is necessary to make a strict definition of this key
concept. By the best classification we mean that a certain
fault/slip data set is classified into subsets in a way that
produces the global minimum of the objective function
defined above. Provided that Ai (i=1,2,3,…,k) are single-
phase subsets, we have from the above definition a key
assumption that the set is classified in the best way into
those primary subsets. It can be restated as follows:

Fminðk;AÞ ¼
Xk
i¼1

Fminð1;AiÞ ð3Þ

whereFmin represents the global minimum of the objective
function for A or Ai. Based on this assumption, our new
inversion method is developed, as described below.
2.4.1. Two subsets (k=2)
This is a simple case where the fault/slip data set (A)

consists only of two single-phase subsets (namely, A1

and A2), with k=2. Let A(i) (i=4,5,…,n−4) stand for
whichever subset of i fault/slip data has the minimum
objective function, denoted Fmin(1, A(i)), for a given
value of “i”. The presumption tells us that one of the
subsets A(i), for some unknown i, must be either A1 or
A2, but gives us no hint which one. The subset A(i) for
each value i can be obtained by checking all the nodes in
reduced sigma space in the following way.

1) Produce a value associated with each fault/slip
datum, as follows. If the stress vector at the node
accounts for the slip sense of the datum, calculate the
dot product of the datum vector and the stress vector;
otherwise, assign a large value.

2) Sort the data into increasing order of associated
value.

3) Calculate the sum of squares of these values for the
first i sorted data. This sum, F(1, A(i)), is the smallest
value that any subset of i data, provided they have
correct slip sense, can contribute to the objective
function at this node, in accordance with Eq. (1).

4) Compare the value of the objective function
obtained, F(1, A(i)), with the smallest value from
all the previous nodes, and

5) If it is smaller, record this smallest value, and record
the first i of its associated sorted data. After all nodes
have been processed, this gives us the combination of
the node, and the corresponding subset A(i) of i data,
having globally the least value of objective function,
Fmin(1, A(i)), for the chosen value of i.

Once A(i) is obtained for this value of i, we take into
account a complementary subset of A to A(i), which we
designate A(i, n− i), where A(i, n− i)=A(n)−A(i). By
taking each node in turn, we then find the node giving
Fmin(1, A(i, n− i)), the smallest value of objective
function for this subset.

Finally, we look for the smallest summation of Fmin

(1, A(i)) and Fmin(1, A(n)−A(i)) (i=4,5,…,n−4). The
two subsets having the smallest sum are considered as
the best classification of A, because in the presumption
they are either A1 and A2, or A2 and A1. The principal
directions and stress ratio are calculated from the stress
vector assigned to each optimal subset. However,
because the controlling stress is not always precisely
at the node, the optimal subsets sometimes are not A1 or
A2, but are approximated by them.

In this final step, we disregard cases having either
Fmin(1, A(i)) or Fmin(1, A(n)−A(i)) larger than some



56 Y. Shan et al. / Tectonophysics 433 (2007) 53–64
assigned limit. In these cases, we may resort to
meaningful Fmin(1, A(i)) and Fmin(1, A(n)−A(i)), for
which the sum of the number of data in the subsets is as
large as possible.

2.4.2. More than two subsets (kN2)
When the data set consists of three single-phase

subsets Ai (i=1,2,3), the procedure for our proposed
inversion method is described below:

a) obtain subset A(i) (i=4,5,…,n−8), as in the previous
section,

b) calculate the complementary subset of A to A(i), and
then determine in the same way a new subset A(i, j)
( j=4,5,…,n− i−4) having a number of j data in A(n)−
A(i), and reaching the minimum objective function or
Fmin(1, A(i, j)),

c) calculate the complementary subset of A to A(i) and
A(i, j), that is A(i, j, n− i− j)=A(n)−A(i)−A(i, j),
and calculate the minimum objective function Fmin

(1, A(i, j, n− i− j)), and its associated node,
d) look for the smallest summation of Fmin(1, A(i)), Fmin

(1, A(i, j)), and Fmin(1, A(i, j, n− i− j)) (i=4,5,…,n−8;
j=4,5,…,n− i−4), at which the three subsets are
considered as the best classification, and

e) calculate principal directions and stress ratio from the
stress vector assigned to each optimal subset.

So, in a similar way, one can readily compact a
general procedure to carry out the method, with the aid
of a great number of symbols. Readers would feel
distracted by usage of too many symbols. So, this is not
done here but left to interested readers.

2.4.3. An unknown number of subsets
Commonly, we have little or no knowledge about

how many single-phase subsets there are in a fault/slip
data set collected at outcrop. In this situation, the
optimal number of subsets has to be determined by
mining the data themselves in some way, for example,
by comparing the partition coefficient at different
division number (Shan et al., 2004). Essentially, this is
an old stopping problem in clustering analysis. Despite
numerous proposed stopping rules, either empirical or
statistical, the problem has never been satisfactorily
resolved (Mojena, 1977; Everitt, 1979; Hartigan, 1985).

Two empirical stopping rules are adopted in this
paper. One rule is to look for an abrupt change in the
objective function (Eq. (3); Shan and Fry, 2005) for
varying assigned number of subsets, at which the
optimal subsets are considered the best classification of
the data set. Much care is needed in determining the
change, since only a small number of assigned subsets, 5
in this paper for instance, is taken into account. It is
worth noting that the objective function decreases with
the increase of the assigned number of subsets. It is
difficult to make the determination if this decrease is
smooth or gradual.

Another stopping rule is to look for the best
classification as the one having the least change with
the increase of assigned number of subsets. This is based
upon the belief that the best classification should have
the least difference from the classification having one
more assigned number of subsets, because it has reached
the global minimum. The concept of stress difference
(Orife and Lisle, 2003) is borrowed to quantify the
difference between two neighboring classifications. For
a certain subset, the variation of it is manifest by the
minimum difference in stress between it and any of the
subsets in the next classification.

2.5. Modified grid search

In the proposed inversion method, grid search is
exhaustively repeated in order to look for the optimal
subsets such as A(i), A(i, j), and so forth. This is
different from pre-existing inversion methods (e.g.,
Hardcastle and Hills, 1991) that make grid search only
once. Accordingly in the proposed method, much more
time will be taken in calculation. Due to the nearly
exponential increase of optimal subset with number of
subsets, the time may become so enormous that it may
be beyond the capacity of a computer.

The low efficiency of conventional grid search lies in
having to consider a vast number of nodes away from
the solutions. Any reduction of nodes would save time
in calculation, to a greater or lesser degree. Taking Dlimit

to be the upper distance limit, possible solution nodes
are obtained in the following way:

1) for a certain node, compare the calculated and the
observed slip senses for each fault/slip datum,

2) calculate the dot product of the stress vector and every
fault/slip datum vector with matching slip sense,

3) count the number of data that have a smaller dot
product than Dlimit, and

4) accept the node as one possible solution if the
number of acceptable faults is greater than 4.

One may confine grid search to these possible
solution nodes. This saves a vast time in calculation
(Fig. 1) at almost no cost of accuracy. In this, the value
of Dlimit becomes critical. The smaller their values, the
smaller number of possible solution nodes and hence



Fig. 1. The calculation time for differing assigned number of subsets,
using conventional (filled circles) and modified (filled diamonds) grid
search, for an artificial data set taken from Shan et al. (2003). In the
latter, the calculation time shown does not include the time of finding
possible solution nodes. Mesh width is 0.05. PC used has an Intel
Pentium 1.73 GHz CPU, and a 512 MB RAM.
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less calculation time, but increased possibility of
rejecting solution nodes. Herein lies the problem about
the optimal value of Dlimit, that has the smallest number
of possible solution nodes without any loss of accuracy.
It is difficult to resolve this problem with little
knowledge of the best classification in common cases.
The optimal value seems to depend upon the mesh, and
Fig. 2. Lower-hemisphere, equal-area projection of two artificial sets, polyph
dip directions (filled circles) and the slip directions of the hangingwalls (thick
and gray color, respectively.
the fault/slip data. In this paper, the upper distance limit
is set to 0.05, close or similar to the mesh width used.

In addition, it is not necessary to take all the optimal
subsets into consideration. For a set of polyphase fault/
slip data, the best subsets A(i) obtained by using the
proposed method corresponds to the homogeneous
subsets having the largest data number, as Eq. (3)
implies. Each subset A(i) need only be searched for
amongst the best subsets that have at least the mean data
number of data per subset. Likewise, following subsets
may be sought amongst only those having the least the
mean number for the remaining data. This makes it
possible to avoid calculating all the best subsets. Take A
(i) (i=4,5,…,n−1) for example. Given k to be the
maximum assigned number of subsets, we have a mean
number of [n /k] data in the best subset obtained through
using the proposed method. Only best subsets such that
A(i) (i=[n /k], [n /k]+1,…,n−4(k−1)), need be sought.
In an almost identical way, we can deal with A(i, j), A(i,
j, k) and so forth.

A computer program was written in the Fortran
language to carry out the proposed method, and applied
to data sets shown below in this paper.

3. Test of the proposed method

Two artificial fault/slip data sets (Fig. 2), one
polyphase and one randomized, are used to demonstrate
the feasibility of the proposed inversion method. These
data sets are so well-controlled that any calculated
classification can be compared with the prescribed
ase (a) and randomized (b). Fault/slip data are represented by the fault
short lines). For the former set, subset 1, 2 and 3 are in dark, deep gray,



Fig. 3. The variation of the objective function with mesh width
and with assigned number of subsets for the artificial polyphase
data.

Fig. 5. The variation of the objective function with assigned number of
subsets for the polyphase data and for the randomized data. Overall
numbers of data in subsets are displayed near the symbols. Mesh width
is 0.05.
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classification. That is why artificial data are chosen in
this section, instead of real data in which controlling
stresses are commonly unknown.

3.1. Polyphase set

The first artificial set (Fig. 2a; Appendix B) consists
of 60 fault/slip data, in which three single-phase subsets
are equally mixed. In each subset, data are evenly
Fig. 4. For an assigned number of subsets of 3, the differences between the
boundary values between the different classes of stress difference named by
similar” if their difference is less than 0.66, “similar” if in a range of 0.66 to 1.
than 1.71 (Orife and Lisle, 2003). See the text for more explanation.
generated under a certain prescribed stress, and are not
affected by any measurement error. Results of applying
the method to the data set are shown in Figs. 3–6a, and
listed in Tables 1 and 2.

In Figs. 3 and 5, there exists an abrupt change of
the objective function for an assigned number of
subsets of 3, even though mesh width is varied from
0.02 to 0.12. For an assigned number of subsets of 3
and at a mesh width of 0.02 or 0.05, the calculated
stresses are almost identical to the controlling
stresses, and so are the data classifications (Tables 1
and 2). Meanwhile, there is the least change of
classification for an assigned number of subsets of 3
(Fig. 6a). These indicate the validity of the proposed
calculated and the prescribed stresses. Gray dashed lines represent the
Orife and Lisle (2003), as follows. Two stresses are considered “very
01, “different” if in a range of 1.01 to 1.71, or “very different” if greater



Fig. 6. Stress difference between two neighboring classifications for polyphase data (a), randomized data (b), and Chichi data (c). For a certain
calculated stress, the difference is referred to as the smallest difference between it and the calculated stresses in next classification. The geometric
mean (“+”) of stress differences for each assigned number of subsets is linked by a zig-zag line. Calculated stresses for an assigned number of subsets
less than 5 are listed in Tables 1, 3 and 4. See the text for more explanation.
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method in separating the polyphase data set into its
three best subsets.

The calculated and the prescribed stresses need to
be matched in some way to make detailed compar-
ison between them. This is readily done by visually
matching two stresses, if they are similar. But it
becomes a great problem if two stresses are not
similar. Instead, an objective way used in this paper
is to match two stresses only if they have very small
difference. The similarity or difference between two
stress tensors can be quantitatively characterized by
the concept of stress difference (Orife and Lisle,
2003). Fig. 4 shows the difference at varying mesh
width between the calculated and the prescribed
stresses. The calculated stress starts to fluctuate
greatly from the first controlling stress at a mesh
width of greater than 0.05, and begins to deviate
from the third controlling stress at a mesh width of
no less than 0.10. In contrast, the second controlling
stress remains similar in range to the controlling
stress. For this example, using a mesh width of 0.02
to 0.12, stress difference remains less than 0.77,
indicating the high accurate estimation of all
controlling stresses.

For all mesh widths concerned, the third controlling
stress is less accurately estimated than either the first or
the second stress, and the first controlling stress tends to
be the most accurately estimated. The similarity among



Table 1
A list of prescribed stresses and calculated stresses from the polyphase data set

Phases Subset Number
of data

Principal directions (°) Stress
ratio

Objective
function

Maximum Intermediate Minimum

Bearing Plunge Bearing Plunge Bearing Plunge

Pres. 1 20 180.00 10.00 89.00 5.65 329.93 78.48 0.667 0.00
2 20 140.00 5.00 235.00 44.89 45.04 44.67 0.667
3 20 100.00 1.00 195.00 78.67 9.80 11.28 0.667

Calc. 1 1 53 132.19 6.57 228.10 41.77 34.98 47.48 0.779 4.20
2 1 51 144.68 6.86 239.88 37.02 45.78 52.13 0.792 3.00

2 9 268.87 21.19 87.51 68.80 178.69 0.46 0.546
3 1 26 141.13 6.59 237.20 42.48 44.07 46.77 0.639 0.10

2 18 180.06 10.96 88.85 6.19 329.91 77.38 0.663
3 16 98.27 0.00 180.00 90.00 8.27 0.00 0.646

4 1 26 141.13 6.59 237.20 42.48 44.07 46.77 0.639 0.04
2 18 180.06 10.96 88.85 6.19 329.91 77.38 0.663
3 11 102.88 8.15 223.58 74.33 10.94 13.29 0.686
4 5 90.00 0.00 180.00 90.00 0.00 0.60 0.852

Calculated stresses are made through applying the proposed inversion method to the set at a mesh width of 0.05. Stress ratio is
referred to as (σ1–σ2)/(σ1–σ3), where σ1, σ2 and σ3 are the relative magnitudes of the maximum, the intermediate and the
minimum principal stresses. Compressional stress is positive in sign, and tensional stress negative in sign. See the text for more
explanation.
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the controlling stress vectors has been considered as an
influence on the accuracy of stress estimation (Shan
et al., 2003). However, it is evidently not the unique
factor accounting for the variable accuracy, and one
should consider other factors, such as the way sigma
space is meshed.

Given a certain assigned number of subsets, the
objective function has a strong tendency of increasing
with decrease in mesh width (Fig. 3). It fluctuates
slightly at places, particularly at a large mesh width.
This is ascribed to the mesh effect on the solution. In this
case, which has definite solutions, decreasing the mesh
width does not always leave these solutions closer to
nodes in sigma space.
Table 2
Comparison between the estimated and the prescribed stresses

Calc. Pres.

Number of data Stress difference

1 2 3 1 2 3

A 1 20 1 6 0.038 1.074 1.626
2 0 18 1 1.048 0.013 1.233
3 0 0 13 1.625 1.226 0.019

B 1 19 2 5 0.035 1.055 1.627
2 0 18 0 1.007 0.064 1.242
3 0 1 17 1.697 1.365 0.026

The estimated stresses for a number of subsets of 3 are obtained at a
mesh width of 0.02 (A) and 0.05 (B). See Orife and Lisle (2003) for the
definition of stress difference between two stress tensors. The
parameter is in a range of 0 to 2, and increases with the decrease of
their similarity.
3.2. Randomized set

For comparison with the polyphase data set, a
randomized data set was stochastically generated
under no prescribed controlling stress. It also consists
of 60 fault/slip data (Fig. 2b). In the set, fault dip
directions are sampled in a range of 0° to 359°, and fault
dip angles in a range of 0° to 90°. The pitch of the slip on
the fault planes is sampled in a range from down dip
minus 90° to down dip plus 90°. Each such slip is
assigned at random either with normal sense or with
reverse sense. Application of the proposed method gives
results in Figs. 5 and 6b, and Table 3.

In Fig. 5, for an overall number of data of 60, the
objective function is greater for randomized data than
for polyphase data, indicating that the former is either
more dispersed or more heterogeneous (that is,
polyphase) than the latter. There exists a similar abrupt
change of the objective function at an assigned number
of subsets of 3. But, its corresponding classification is
not the least change (Fig. 6b), thus not allowing us to
accept an optimal number of three subsets for the data.
When the assigned number of subsets becomes larger,
the change of classification tends to decrease. This
hints at the much greater heterogeneity of the data.

For an assigned number of subsets of 4, the first
subset remains the most stable. Although they are
produced under no prescribed stress, we could be
inclined to believe that data in the subset have the
feature of a single phase. This artifact is probably due to



Table 3
Calculated stresses from the randomized data set using the proposed inversion method at a mesh width of 0.05

No Subset Number
of data

Principal directions (°) Stress
ratio

Objective
function

Maximum Intermediate Minimum

1 1 41 229.51 3.57 324.21 52.73 136.81 37.04 0.674 7.36
2 1 40 33.88 11.00 292.20 46.17 133.86 41.74 0.928 9.94

2 20 225.67 73.74 108.19 7.67 16.23 14.26 0.051
3 1 27 30.83 3.50 135.07 76.03 299.99 13.50 0.684 2.25

2 21 328.03 79.06 80.29 4.19 171.04 10.09 0.892
3 12 156.20 1.16 246.77 26.42 63.87 63.55 0.504

4 1 21 18.99 13.86 109.11 0.50 201.13 76.13 0.017 1.05
2 20 252.81 11.36 119.74 73.60 345.19 11.66 0.542
3 13 335.82 32.86 127.47 53.73 236.80 13.65 0.202
4 8 274.71 75.12 100.14 14.82 9.78 1.35 0.532

Notation and sign conventions as for Table 1.
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the relatively small number of data considered in this
case.

4. Applications

The proposed inversion method was applied to two
real examples, Chichi fault data (Lee et al., 2003) and
Altyn Tagh fault data (Xie and Liu, 1989).

4.1. Chichi fault data

This example is taken from Lee et al. (2003), as
modified by Blenkinsop (2006). It consists of 93 fault/slip
data from the active Chelungpu fault, a large thrust
dipping toward the east in western Taiwan. These surface
rupture data had been produced during the 1999 Chichi
earthquake along the fault (Lee et al., 2002, 2003;
Angelier et al., 2003). All observed slip senses are reverse.

Table 4 lists the results of applying the proposed
method to the data set. Stresses are calculated only for
an assigned number of subsets of 1 to 3, due to the
enormous time in calculation. They vary to a great
degree with the assigned number of subsets (Fig. 6c),
Table 4
Calculated stresses from the Chichi data set using the proposed inversion m

No Subset Number
of data

Principal directions (°)

Maximum Intermed

295 4 28
1 1 93 337.01 3.43 246.46
2 1 68 91.62 18.91 0.61

2 25 324.23 12.55 233.74
3 1 56 93.69 27.32 356.31

2 21 152.75 10.12 62.19
3 16 182.72 7.38 274.94

For comparison, stress inversed from focal mechanisms in the region by Kao
conventions as for Table 1.
reflecting the heterogeneous nature of the data.
However, there is a very slight stress difference for the
first subset between when the assigned number of
subsets is 2 and when it is 3. Most likely, this indicates
the presence of a single phase recorded by the subset, in
spite of the upper limit of 3 subsets. Calculated
maximum principal direction (Table 4) is approximately
horizontal and E–W trended.

In addition, stress inversed from focal mechanisms in
the region (Kao and Angelier, 2001) has no apparently
good counterpart among these calculated stresses
(Table 4). This misfit may be ascribed to asynchronous
slip everywhere along the fault (e.g., Price, 1988;
Gutscher et al., 1996), or to heterogeneous distributions
of shear stress drop over a large area of the rupture surface
(e.g., Day et al., 1998), or to other possible reasons.

4.2. Altyn Tagh fault data

This example consists of 198 fault/slip data that Xie
and Liu (1989) collected at the central Altyn Tagh
transcurrent fault on the northwest of the Tibetan plateau.
Xie and Liu (1989) recognized two distinctive phases, an
ethod at a mesh width of 0.05

Stress
ratio

Objective
function

iate Minimum

35 199 54 0.29
8.97 87.71 80.38 0.107 9.11
2.96 262.05 70.84 0.832 2.96
2.21 133.93 77.25 0.268
13.97 242.09 58.76 0.888 1.32
3.11 315.30 79.40 0.083
16.64 69.64 71.71 0.679

and Angelier (2001) is also shown at the first row. Notation and sign



Table 5
Calculated stresses from the Altyn Tagh fault data set using the proposed inversion method at a mesh width of 0.04

Scheme No Subset Number
of data

Principal directions (°) Stress
ratio

Maximum Intermediate Minimum

This paper 1 1 198 80.27 16.95 204.90 61.79 343.26 21.84 0.20
2 1 179 80.27 16.95 204.90 61.79 343.26 21.84 0.20

2 19 113.91 29.59 315.67 58.56 209.47 9.68 0.84
FCA 1 1 198 53.4 9.3 144.4 5.7 265.6 79.1 0.68

2 1 99 166.7 0.7 256.9 16.1 74.5 73.9 0.60
2 99 72.2 4.2 230.7 85.5 342.0 1.7 0.99

QS 2 1 354.28 43.53 115.19 28.40 225.89 33.17 0.90
2 65.02 3.55 161.02 59.32 332.93 30.43 0.65

For comparison, stresses inversed from fuzzy clustering analysis (FCA; Shan et al., 2004) and from the quartimini strategy (QS; Shan et al., 2006) are
shown below.
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earlier N–S compression and a later E–W compression,
from the data set and other geological observations. In
accordance with their study, Shan et al. (2004) found out
that the calculated partition coefficient is maximal for an
assigned number of subsets of 2, implying that the data set
should be separated into two single-phase subsets.

Listed in Table 5 are stresses calculated using the
method proposed here, fuzzy clustering analysis (FCA;
Shan et al., 2004) and the quartimini strategy (QS; Shan
et al., 2006), respectively. Calculated stresses vary tomore
or lesser degree with the adopted inversion methods,
which in turn illustrates the presence of many local
minima in the parameter space that are pitfalls for certain
methods. This illustrates the point that it is not good to
appraise methods that may not reach the global minimum
at all times, on the basis of similar or identical fault data.
However, stresses calculated by using the proposed
method are roughly similar to those by using FCA. Just
notice the similarity between the first subset of this paper
and the second subset of the FCA. This suggests that FCA
might be better than QS for this example.

In Table 5, for an assigned number of subsets of 1, the
stress shown in the category of FCA is obtained as an
analytical solution by using the moment method (Fry,
1999; Shan et al., 2003). Its misfit with the stress by
using the method developed in this paper is attributed to
the inaccuracy of stress solution caused by the
discretization of the parameter space. Much more
accurate stress would be obtained if finer mesh were
adopted, as noted in the second section.

5. Discussions and conclusions

For a given set of measured fault/slip data, there
probably exist a number of local minima in the solution
region. These local minima become pitfalls for many
existing inversion methods in the numerical category that
cannot reach the global minima at all times. A novel grid
search-based inversion method is developed in the paper
for this purpose. It reaches the global minima by means of
exhaustively repetitious grid search, and looks for the best
classification of the data set intomany single-phase subsets,
by adopting some stopping rules, to stop at the abrupt
change of the objective function or at the least change of the
classification. A modified scheme of conventional grid
search is taken in order to save time in calculation. The
feasibility of this proposed method is demonstrated by its
application to examples, two artificial and two real.

However, the main disadvantage of the proposed
method is the vast time in calculation, although some
measures are taken to reduce this problem. The time
increases greatly with either increase in the number of
data or increase in the assigned number of subsets. This
makes it impossible for users running a personal
computer to deal with a data set either with any greater
number or for any greater assigned number of subsets.

Without any prior knowledge about controlling
stress, it is difficult to determine the number of single-
phase subsets in a certain data set. This old problem has
not yet been satisfactorily resolved by the adoption of
the two stopping rules in this method. This awaits much
further study.
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Appendix A

A list of symbols and their definitions
Symbols
 Definitions
 Comments
σij
 Stress components.
 σij=σji, i, j=1,2,3.

n
 Number of fault/slip data in a set.

k
 Assigned number of subsets, or number of single-phase subsets.

[n/k]
 The integer of n/k.

A or A(n)
 A set of n fault/slip data, A=A(n).
 Eq. (2).

Ai
 A single-phase subset.
 i=1,2,…,k.

A(i)
 A subset of i data that has the minimum objective function.
 i=4,5,…,n.

A(i, n− i)
 A(i, n− i)=A(n)−A(i).
 i=4,5,…,n−4(k−1).

A(i, j, n− i− j)
 A(i, j, n− i− j)=A(n) −A(i)−A(i, j).
 i=4,5,…,n−4(k−1); j=4,5,…,n− i−4(k−2).

F(k, A)
 The objective function for k subsets.
 Eq. (1).

Fmin(k, A) or Fmin
 The global minimum objective function for k subsets.
 Eq. (3).

Fmin(1, A(i))
 The minimum objective function for subset A(i).

tj
 The j-th fault/slip datum.
 Eq. (1).

bi
 The controlling stress vector for subset Ai.
 Eq. (1).

Dlimit
 The upper distance limit.
 0.05 set in the paper.

T
 The operation of matrix transposition.
Appendix B

A list of 60 polyphase fault/slip data. They are generated under three prescribed stresses and without any measurement errors. Each single-phase

subset has a data number of 20. The prescribed stresses of phases 1–3 are shown in the 1st–3rd rows of Table 2. The slip kind is 1 if there is a

normal component of relative slip movement in the fault surface, and 2 if there is a reverse component
Phase 1
 Phase 2
 Phase 3
Fault planes (°)
 Slips (°)
 Slip
kinds
Fault planes (°)
 Slips (°)
 Slip
kinds
Fault planes (°)
 Slips (°)
 Slip
kinds
Dip
direction
Dip
angle
Bearing
 Plunge
 Dip
direction
Dip
angle
Bearing
 Plunge
 Dip
direction
Dip
angle
Bearing
 Plunge
0.01
 4.88
 352.62
 4.84
 2
 219.41
 25.61
 232.62
 25.02
 1
 345.08
 82.22
 73.43
 11.85
 1

216.49
 63.08
 163.70
 49.98
 2
 215.84
 57.66
 145.35
 27.82
 2
 40.88
 60.53
 314.44
 6.26
 1

348.46
 10.93
 353.22
 10.90
 2
 177.26
 50.61
 112.87
 27.76
 2
 224.01
 42.27
 134.42
 0.37
 1

185.39
 23.45
 191.65
 23.33
 2
 25.80
 11.06
 9.24
 10.61
 2
 221.06
 35.99
 136.76
 4.13
 1

94.65
 48.03
 57.63
 41.60
 2
 80.50
 51.29
 155.61
 17.78
 2
 54.33
 14.77
 99.74
 10.49
 2

32.24
 34.08
 354.25
 28.07
 2
 30.23
 10.45
 12.47
 9.96
 2
 287.62
 36.37
 281.51
 36.22
 2

209.60
 54.05
 177.22
 49.35
 2
 222.01
 35.39
 244.12
 33.35
 1
 322.79
 15.77
 278.54
 11.43
 2

213.09
 30.78
 202.06
 30.31
 2
 266.15
 18.31
 353.26
 0.96
 2
 71.26
 15.69
 93.39
 14.59
 2

315.59
 84.32
 226.99
 13.77
 1
 157.98
 24.33
 105.99
 15.56
 2
 142.69
 5.50
 213.72
 1.79
 1

261.44
 75.15
 190.82
 51.39
 2
 327.20
 82.89
 237.86
 5.29
 2
 233.31
 39.24
 314.60
 7.05
 2

106.96
 25.22
 66.00
 19.58
 2
 207.74
 9.43
 223.05
 9.11
 1
 45.03
 8.70
 73.05
 7.69
 2

323.82
 40.77
 6.06
 32.55
 2
 251.47
 19.56
 176.76
 5.36
 1
 31.99
 71.60
 307.39
 15.82
 1

324.55
 74.06
 51.78
 9.63
 2
 164.08
 4.37
 225.06
 2.12
 1
 194.63
 2.44
 179.48
 2.36
 1

59.30
 59.09
 344.95
 24.26
 2
 46.37
 10.05
 23.06
 9.25
 2
 197.99
 47.31
 147.35
 34.51
 1

326.46
 17.10
 351.50
 15.57
 2
 159.04
 2.14
 215.42
 1.18
 1
 174.44
 27.74
 220.48
 20.05
 1

337.05
 24.50
 355.60
 23.36
 2
 181.50
 27.87
 108.58
 8.83
 2
 2.61
 12.86
 84.20
 1.91
 1

111.04
 30.99
 101.31
 30.62
 2
 208.45
 42.39
 125.63
 6.51
 2
 74.23
 34.85
 115.16
 27.75
 2

142.35
 52.17
 183.13
 44.28
 2
 33.63
 3.82
 22.16
 3.75
 2
 41.40
 37.20
 312.51
 0.84
 1

248.09
 32.97
 256.31
 32.71
 2
 299.77
 22.94
 346.82
 16.09
 2
 61.25
 44.27
 131.54
 18.20
 2

213.27
 5.37
 152.69
 2.65
 1
 68.71
 9.52
 39.83
 8.35
 2
 87.85
 41.66
 107.80
 39.91
 2
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