太平洋海山富钴结壳铂族元素(PGE)和 Os 同位素 地球化学及其成因意义^{*}

孙晓明^{1,2} 薛婷¹ 何高文^{1,3} 张美¹ 石贵勇¹ 王生伟¹ 陆红锋^{1,3} SUN XiaoMing^{1,2}, XUE Ting¹, HE GaoWen^{1,3}, ZHANG Mei¹, SHI GuiYong¹, WANG ShengWei¹ and LU HongFeng^{1,3}

1. 中山大学地球科学系, 广州 510275

2. 中国科学院广州地球化学研究所南海海洋研究所边缘海地质重点实验室, 广州 510640

3. 国土资源部广州海洋地质调查局,广州 510760

1. Department of Earth Sciences, Sun Yat-sen University, Guangzhou 510275, China

 Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry & South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510640, China

3. Guangzhou Marine Geological Survey, The Ministry of Land and Resoures, Guangzhou 510760, China 2006-06-18 收稿, 2006-10-20 改回.

Sun XM, Xue T, He GW, Zhang M, Shi GY, Wang SW and Lu HF. 2006. Platinum group elements (PGE) and Os isotopic geochemistry of ferromanganese crusts from Pacific Ocean seamounts and their constraints on genesis. *Acta Petrologica Sinica*, 22(12):3014-3026

Abstract Platinum group elements (PGE), Au contents and Os isotopic compositions in ferromanganese crusts and their basaltic substrates from the central and west Pacific Ocean were analyzed. The results show that their PGE and Au contents are quite high and greatly varied, the Σ PGE is (70.09 ~ 629.26) × 10⁻⁹ and the total Au is (0.60 ~ 26900) × 10⁻⁹ respectively. In the three-layered (outer, porous and compact layers) crusts, the Σ PGE contents of porous ((339.37 ~ 545.82) × 10⁻⁹) and compact ((280.09 ~ 629.26) $\times 10^{-9}$ layers are significantly higher than the outer ((70.09 ~ 133.27) $\times 10^{-9}$) layers. The single-layered crusts are also enriched in PGE(Σ PGE = (83.94 ~ 479.75) × 10⁻⁹), and their Au contents are usually higher than the three-layered ones. In addation, $\sum PGE$ and Au contents of ferromanganese crusts are much higher than that in the nodules ($\sum PGE = (101.57 \sim 155.83)$) $\times 10^{-9}$, Au = (1 ~ 4) $\times 10^{-9}$). Different sedimentary water depths and oxygen fugacity of the ambient sea water of the crust and nodules may be the major reason for their different PGE and Au contents. Σ PGE and Pt are positively correlated with Mn % but inversely correlated with Fe %, which is just contrary to that in nodules, suggesting that PGE in the crusts may mainly occur in manganese mineral phases such as vernadites (δ -MnO₂), while the PGE in the nodules may predominantly occur in iron mineral phases such as goethites (FeOOH • nH, O). Chondrite-normalized patters and various geochemical parameters of PGE demonstrate that PGE and Au in the ferromanganese crusts were sourced from water/rock reaction between the basaltic substrates and seawater, and partly from extraterrestrial materials such as iron meteorite dusts, but not related to submarine hydrothermal venting. Calculation based on cobalt contents show that ferromanganese crusts in the west Pacific Ocean began to grow at about 42.5Ma, and underwent two growth hiatuses corresponding to the geological ages of 21.8Ma and 8.0Ma respectively. The growth rates of the outer, porous and compact layers are 2. 64mm/Ma, 1. 45mm/Ma and 1. 06mm/Ma, and the ¹⁸⁷Os/¹⁸⁸ Os of the corresponding ambient sea water are 0. 948 ~ 0.953, 0.599 ~0.673 and 0.425 ~0.536 separately, implying that the outer layers contained more continental eroded dusts, while the sediments in the porous and compact layers were mainly sourced from submarine basalt alteration and extraterrestrial materials such as interplanetary dust particles (IDPs).

Key words Platinum group elements (PGE) geochemistry, Os isotopic composition, Ferromanganese crusts, Polymetallic nodules, Seamounts in central and west Pacific Ocean

第一作者简介:孙晓明, 男, 1963 年生, 教授, 博士导师, 从事矿床地球化学和海底矿产资源研究, E-mail: eessxm@ mail. sysu. edu. cn

本研究得到国家自然科学基金(批准号:40473024,40343019)、国际海底区域研究开发"十五"课题(编号:DY105-01-04-13,DY105-01-02-1)、高等学校博士学科点专项科研基金(编号:20040558049)、中国科学院广州地球化学研究所南海海洋研究所边缘海地质重点实验室研究基金课题(编号:MSGLCAS03-4)和国家教育部跨世纪优秀人才培养计划基金联合资助.

摘 要本文分析了中西太平洋海山富钴结壳及其各主要层圈(外层、疏松层、亮煤层)和玄武岩基岩的铂族元素(PCE)和 Au含量以及 Os 同位素组成,发现富钴结壳中 PCE 和 Au含量均较高,且变化很大、 PCE 为(70.09~629.26)×10⁻⁹,平均 289.48×10⁻⁹, Au为(0.60~26900)×10⁻⁹.具三层结构的富钴结壳中,疏松层(∑PCE = (339.37~545.82)×10⁻⁹)和亮谋 层(∑PCE = (280.09~629.26)×10⁻⁹)的∑PCE 明显高于外层((70.09~133.27)×10⁻⁹.单层结壳的∑PCE 为(83.94~ 479.75)×10⁻⁹, Au含量普遍高于具三层结构者、结壳的∑PCE 和 Au含量远高于太平洋多金属结核(分别为(101.57~ 155.83)×10⁻⁹和(1~4)×10⁻⁹。沉积深度和海水氧逸度的不同是导致结壳和结核中 PCE含量明显差异的主导因素。富钴 结壳∑PCE和Pt与Mn(%)之间呈明显的正相关关系,而与Fe(%)具负相关性,与多金属结核正好相反,显示结壳中的 PCE 主要赋存在水羟锰矿(δ-MnO₂)等锰矿物相中,与针铁矿(FeOOH·nH₂O)等铁矿物相关系不大,而结核中的 PCE 主要赋存在 铁矿物相中。PGE 球粒陨石标准化曲线和各项参数显示富钴结壳的 PCE 和 Au 主要来自海底玄武岩的蚀变释放,部分来自 铁陨石徵粒等地外物质,而与海底热水活动无关。计算显示西太平洋结壳距今 42.5Ma 左右开始生长,生长过程中分别在 8.0Ma和 21.8Ma 处出现间断,相应形成外层、疏松层和亮煤层,其各自沉积速率为 2.64mm/Ma, 1.45mm/Ma 和 1.06mm/Ma, 相应海水的¹⁸⁷Os/¹⁸⁸Os 分别为 0.948~0.953, 0.599~0.673 和 0.425~0.536,显示外层含有较多的大陆风化尘,而疏松层和 亮煤层的沉积物主要来自海底洋壳蚀变和陨石碎屑或宇宙尘等地外物质。

关键词 铂族元素(PGE)地球化学; Os 同位素; 富钴结壳; 多金属结核; 中西太平洋海山 中图法分类号 P595

1 引言

铂族元素(PGE)是我国乃至世界上十分紧缺的贵金属 矿产资源。全球 PGE 的资源及生产量的 90% 集中在南非和 俄罗斯,而中国储量只有世界储量的3‰,因此,寻找新的 PGE资源至关重要。初步分析显示,太平洋洋底海山上大量 出现的富钴结壳中富集 PGE,具有十分重要的经济价值 (Hallbach et al., 1989; 石学法等, 2000; 何高文等, 2001; 姚德等, 2002)。前人对富钴结壳的矿物学组成、成矿元素 地球化学、围岩特征等进行了一些研究(潘家华等,1999;朱 克超等,2001;武光海等,2001a, 2001b;张海生等,2001;姚 德等,2002; Bai et al., 2002; Pan et al., 2005; Xue et al., 2005;何高文等, 2005;孙晓明等, 2006a),但关于其成因和 PGE 富集机制等问题一直存在不同意见,多数学者认为富 钻结壳是水生沉积成因(武光海等,2001a),但在成矿机制 上有不同的见解:张洁丽等(1998)提出了非线性震荡生长 假说:李延河等(1999)讨论了海底热水活动参与富钴结壳 成矿的可能性; 武光海等(2001a)则认为生物作用在富钴结 壳的成矿中可能起到很大作用。关于富钴结壳中 PGE 的来 源和富集机制,一些学者曾进行过初步探讨,如 Halbach 等 (1989)提出 Pt 可能与 MnO₂一起从海水中共同沉积,结壳中 的 PGE 主要有两种来源:海水和宇宙微粒; Stüben et al. (1999)和Le et al. (1989)等认为水成铁锰结壳和结核的球 粒陨石标准化图上出现明显的 Pd 负异常,表明陨石球粒不 是结壳 PGE 的主要来源: 孙晓明等(2006a)认为海底玄武岩 和海水之间的水/岩反应所释放的成矿元素有利于富钴结壳 的形成。

铂族元素(PGE)由于具有的特殊地球化学性质,其配分 模式一般不会受到蚀变等地质作用的影响(Barnes et al., 1985),因此目前已被广泛用于岩石成因和有关成矿作用的 地球化学示踪研究,取得了许多重要的进展(Barnes et al., 1985,1987,1993; Lorand, 1989; Fleet et al., 1991,1996; Chai et al., 1992; Garuti et al., 1997; 储雪蕾等, 2001, 2002; 李胜荣等,1994; 李晓林等,1998; 许成等,2003; Jiang et al., 2003; Pasava et al., 2003, 2004; Maier et al., 2004; 何高文等,2006; 孙晓明等,2006a,2006b,2007; 王生伟等, 2006)。而 Re-Os 同位素体系可用于金属矿床的直接定年和 成矿物质示踪,已被广泛用于矿床地球化学的研究(杜安道 等,1994; Lambert et al., 2000; 蒋少涌等,2000; 毛景文等, 2001,2002,2004; Fu et al., 2005; Klemm et al., 2005; 杨刚等,2005; 董方浏等,2005; 石贵勇等,2006)。本文较系 统地分析了太平洋海山富钻结壳的 PGE 和 Os 同位素组成, 并据此讨论了其成因和 PGE 富集机制.

2 样品与分析方法

本文所用样品主要为国土资源部广州海洋地质调查局 的"海洋四号" DY105-11 和 13 航次调查船在西太平洋麦哲 伦海山区和中太平洋海山区拖网获得,采样区水深一般超 过 2000m。该区富钴结壳有单层、双层和三层者。具三层结 构者由外到内,可明显分为外层(较致密层)、疏松层和亮煤 层(致密层),其厚度较大,一般超过 7cm,因此是目前富钴 结壳勘查和研究的重点。单层者多数厚度较薄.部分富钴 结壳中可见玄武岩和磷块岩等基岩。X 射线衍射和透射电 镜等鉴定表明结壳的主要组成矿物为水羟锰矿(δ-MnO₂)、 针铁矿(FeOOH・nH₂O)、黏土矿物(如蒙脱石和伊利石等)、 磷灰石和碳酸盐矿物。外层具树支状和叠层状构造;疏松 层具斑杂状构造,脉石矿物含量较多;亮煤层具极薄的纹层 状构造,较脆易碎,常见白色到肉红色石英-磷酸盐细脉, 显示了磷酸盐化的显著影响。

本次 PGE 分析在河南岩矿分析测试中心完成。其中

Pt、Pd和Au采用湿法分解-活性炭等富集-光谱法测定:将 10g样品用盐酸-过氧化氢溶样,活性炭-树脂组合工艺富集, 富集物灰化后加入光谱缓冲剂,用光栅光谱仪摄谱,相板用 光谱超痕量分析相板测量系统测定,方法检出限为 Pt: 0.2 ×10⁻⁹, Au 和 Pd: 0.1×10⁻⁹; Os 和 Ru 采用碱熔分解-蒸馏 分离-催化光度法测定:将5g样品用过氧化钠熔融法分解, 硫酸酸化,以溴酸钠-重铬酸钾-氯化钠作氧化剂,乙醇-硫酸 为分离剂,蒸溜法分离锇钌,利用锇钌对铈(IV)-砷(III)体 系,催化分光光法测定,方法检出限 0.02 × 10⁻⁹; Rh 和 Ir 用 镜试金富集-催化光度法和催化极谱法测定:样品经小镜试 金分离富集,试金扣置于蒸溜水中粉化,加入稀盐酸加热溶 解,过滤除去铁和镍,待测铂族元素硫化物沉淀后用焦硫酸 钠融熔法分解,用水提取并分成两份溶液,在硫酸-六次甲基 四胺体系中,催化极谱法测铑,砷(III)-铈(IV)-Ag(I)体系 中,催化光度法测铱,样品用量10g,方法检出限0.02×10-9; Ag用王水溶解-原子吸收法测定:王水溶解银后,溶液蒸至 尽干,用盐酸赶硝酸,转化为盐酸介质,定溶后用 GGX-9 型原 子吸收测定;检出限为0.2X10⁻⁶。分析中标样为中国国家 标准物质 GBW07288 和 GBW07289, 分析结果与推荐值相 符,12 次测定精密度为: GBW07288: Pt 25%, Pd 20%, Rh 15%, Ir 25%, Ru 8.7%, Os 5.4%, GBW07289: Pt 22%, Pd 18%, Rh 16%, Ir 20%, Ru 7.5%, Os 5.0%

Os 同位素分析在国家地质实验中心完成,主要采用同 位素稀释法(ID-ICP-MS)测定。具体分析流程参见石贵勇等 (2006)。

Ni和 Cu 等微量元素分析在南京大学壳幔演化与成矿 作用国家重点实验室完成,分析仪器为美国 Perkin-Elmer 公 司生产 ELAN9000 型的 ICP-MS。

3 分析结果和讨论

3.1 铂族元素(PGE)地球化学

本文富钴结壳及其基岩样品 PGE 和 Au 的分析结果及 其主要参数分别见表 1 和表 2。从中可知:(1)富钴结壳中 PGE 和 Au 含量较高,且变化较大,PGE 总量(ΣPGE)为 (70.09~629.26)×10⁻⁹,平均 289.48×10⁻⁹,其中 Os 为 (1.19~3.09)×10⁻⁹,Ir 为(1.05~7.04)×10⁻⁹,Ru 为 (11.63~23.92)×10⁻⁹,Rh 为(4.17~30.11)×10⁻⁹,Pt 为 (42.82~567.90)×10⁻⁹,Pd 为(0.51~1.99)×10⁻⁹,Au 为 (0.60~26900)×10⁻⁹;(2)具三层结构的富钴结壳中,疏松 层 ΣPGE 为(339.37~545.82)×10⁻⁹,亮煤层 ΣPGE 为 (280.09~629.26)×10⁻⁹,而外层 ΣPGE 为(70.09~ 133.27)×10⁻⁹,可见疏松层和亮煤层 ΣPGE 明显高于外层, 而 Au 含量的规律性不明显,个别样品中外层 Au 高于疏松 层和亮煤层;(3)比较而言,单层板状和瘤状结壳的 ΣPGE 变化相对较小,为(83.94~479.75)×10⁻⁹, 而 Au 含量普遍 高于具三层结构者,个别样品中 Au 含量超过 1.0×10⁻⁶,最

Acta Petrologica Sinica 岩石学报 2006, 22(12)

高达 2.69(10⁻⁶; (4)除个别样品外,富钴结壳的 Σ PGE 和 Au 含量远高于太平洋海底多金属结核; (5)富钴结壳 PGE 均属于 PPGE(Rh + Pt + Pd)富集而 IPGE(Os + Ir + Ru)亏损 型, PPGE/IPGE 均高于 1,为 2.23 ~ 27.74,高于太平洋多 金属结核的 PPGE/IPGE 比值(4.92 ~ 7.91); (6)图 1 可见, 富钴结壳的 Pt 与 Rh 间具明显的正相关关系,与 Pd 间也有 不明显的正相关,但与其它 PGE 元素间的相关性不明显; (7)富钴结壳的 Pt/Pd 很高,为 48.98 ~ 535.75,远高于正常 海水的 4.5 和铁陨石的 2 ~ 10(Halbach *et al.*, 1989),也高 于太平洋结核的 13.36 ~ 23.14(何高文等, 2006)。

图 1 太平洋富钴结壳和多金属结核 Pt 和 Ir、Ru、Rh 和 Pd 相关图

Fig. 1 Plots of Ir, Ru, Rh and Pd versus Pt in ferromanganese crusts and polymetallic nodules from Pacific Ocean.

图 2 可见,富钴结壳的 Σ PGE 与 Mn(%)含量呈明显的 正相关关系,而与 Fe(%)具负相关性,与多金属结核正好相 反。元素 Pt 和 Mn 与 Fe 间也显示了相似的相关性,说明富 钴结壳中的 PGE,特别是 Pt 主要赋存在锰矿物如水羟锰矿 (δ -MnO₂)中,而与铁矿物相如针铁矿(FeOOH · nH₂O)等关 系不大,而结核中的 PGE 主要赋存在铁矿物相中。此外, 图 3可见,结壳中 Σ PGE 与 Ni 和 Cu 间具较明显的正相关性,

Su 岩 Ni 小量
Au, (
PGE,
吉核中
有売和
富钴单
法平法

类型	采样位置	采样水梁(m)	样品描述	采样号	样品编号	ő	ы	æ	Rh	Ы	Pd	Au	С	Ní	数据来源
	150°71'E, 18°00'N	2250	外层	MDD47	0303 – 1	2.35	1.24	18.11	5.06	42.82	0.51	0.6	950.15	3087.93	
			疏松层		0303 – 2	1.91	1.35	23.92	24.92	286.61	0.66	2.21	1792.95	5269.60	
			亮煤层		0303 – 3	1.01	1.05	13.94	17.65	245.72	0.72	1.44	1757.93	2612.37	
	155°28'E, 15°53'N	1916.5	板状结壳	M07D	0311	2.53	1. 14	18.35	11.38	208.81	1.99	1.35	2198.91	3709.09	
	151°16'E, 18°10'N	2062.5		M17D	0312	2.94	1.19	22.10	10.94	176.89	1.38	1.43	1348.20	3857.17	
	150°89'E, 18°01'N	2032.5		M19D	0314 - 1	2.38	1.09	20.03	9.15	213.67	1.03	138.42	1372.09	3239.63	
	151°79'E, 17°11'N	1826.5		M26D	0320	3.04	4.18	23.76	9. 15	215.07	1. 12	2.36	965.67	2836.64	
	152°26'E, 17°18'N	2412.5	外层	M27D	0321 – 1	2.11	7.04	21.24	5.58	89.91	0.94	10.35	853.29	2659.14	
			疏松层		0321 – 1	1.57	6.83	19.71	15.64	500.62	1.48	29.88	2322.81	4794.90	
			亮煤层		0321 - 3	1.47	5.66	23.06	30.11	567.90	1.06	8.28	2651.38	3785.57	
富钴结壳	149°40'E, 20°19'N	2275	外层	MID30	0346 - 1	3.09	1.76	20.43	5.26	105.96	0.77	237.95	762.62	2767.93	本文
			疏松层		0346 – 2	2.35	2.13	29.47	24.79	372.57	1.22	5.09	2074.67	5493. 13	
			亮煤层		0346 – 3	1.25	2. 03	12.17	16. 14	411.58	0.90	86.9	1809.30	5112.72	
	149°80'E, 16°85'N	1530	板状结壳	MKD13	0349	2.38	1.65	17.82	6.88	227.23	1.39	56, 08	1020.97	2562.60	
	167°96'W, 10°39'N	2589.5		MP5D08	0361	1.57	1.84	18.35	12.46	444.49	1.04 26	006	1167.40	3423.49	
	167°86'W, 10°55'N	2759.5		MP5D17	0366	1.19	1.54	15.16	6,48	149.29	0.66 1	500	1265.83	2544.61	
	159°79'W, 19°79'N	1865		MP1 D01	0370	2.65	1.61	22.99	9. 15	324.00	1.15	160.5	1042.64	3653.64	
	169°53'W, 10°54'N	3071	瘤状结壳	MP2D07	0374	1.55	1.21	17.03	4.17	58.78	1.20	132.49	1293.18	3001.81	
	165°92'W, 14°33'N	1819	板状结壳	MP3 D24	0392	2.32	1.15	13.28	4.82	119.84	1.42	172.33	2810.80	3071.85	
	160°13'E, 21°28'N	2588.5		CLD11	0395	1.46	2.40	11.63	17.00	286.98	1.77	120	2038.31	2701.47	
	156°47'E, 11°36'N	2567.5	玄武岩基岩	MGD49	0340	0.80	1. 17	2.63	1.40	56.41	1.92	227.63	506.68	752.21	
			M[C]		8069C	0.87	2.08	12.2	4, 15	94.2	5.01	3.00	10800	13700	
为 下 十			M[C]		8069D	0.85	1.88	10.0	3.65	92.2	4.85	1.00	9300	10500	
☆ ▲ 十 千 名 全 雇			S[S]		8066A	0.99	2.58	12.6	6.34	115	4.97	2.00	6600	10900	
↓ ● ● ●			S[P]		8066B	1.28	4.56	13.7	6.34	124	5.95	2.00	2000	7800	何禹文,200
			M[P]		7255	1.42	2.16	12.3	4, 39	104	4.53	3.00	8600	11500	
			M[C]		6060	0.94	1.91	14.3	2.41	76.3	5.71	4.00	11100	13000	
톇始地幔						3.4	3.2	5	0.9	7.1	3.9	1.0			McDonough
求粒陨石						490	755	710	130	1010	650	140			2007 2 a

3017

莱铝 莱尔 小园 杨秋秋 杨秋祥原 杨秋语 杨秋子 杨秋子。 杨秋辰 杨秋子。 杨秋辰 杨秋子。 杨秋辰 杨秋子。 杨秋辰 杨秋子。 杨秋辰 杨秋子。 杨秋辰 杨秋子。 杨秋云。 杨秋云。 杨秋云。 杨秋云。 杨秋云。 杨秋云。 杨秋云。 杨秋云	ΣPGE 70.09 339.37 280.09 244.2 244.2	PPGE/IPGE 2.23	Pt/Pt +	* pd/pd	Pt/Ir	Pd/Ir	Au/Ir	PA/Pd	Cu/Pd	Ni/Pd	Ni/Cu	Au/Pd	Cu/Ir
今局 總校辰 大祥禄辰 將校辰 小林辰 大 子 大 本 代 代 代 代 代 代 代 代 代 代 代 代 一 一 一 一 一 一 一	70.09 339.37 280.09 244.2 215.44	2.23	7.06		1 50							1 12	
<i>職校</i> 服 被 教 者 術 修 修 修 修 修 修 修 修 修 者 統 合 成 者 成 者 成 者 成 者 成 者 成 者 成 者 成 者 成 者 成	339.37 280.09 244.2 215.44			0.069	34.33	0.41	U. 48	83.96	1863039	6054773	3.25	I. 10	766250
亮 被状结壳 水结子 小原 那一个。 水结壳 小原 水结壳	280.09 244.2 215.44	11.49	18.71	0.018	212.30	0.49	1.64	434.26	2716591	7984238	2.94	3.35	1328111
<mark>板状结壳 外展 外展 意物层 网络大结子 一般 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金</mark>	244.2 215 AA	16.51	18.25	0.026	234.02	0.69	1.37	341.28	2441569	3628292	1.49	2.00	1674219
★	215 44	10.09	11.62	0.081	183.17	1.75	1.18	104.93	1104980	1863866	1.69	0.68	1928868
<u>外限</u> 建森振 外原 連体限	F.017	7.21	12.05	0.059	148.65	1.16	1.20	128.18	976956.5	2795048	2.86	1.04	1132941
<u>外层</u> 連接层 外层 連体层	247.35	9.53	18.43	0.004	196.03	0.94	126.99	207.45	1332126	3145269	2.36	134.39	1258798
 外层	256.32	7.27	17.79	0.034	51.45	0.27	0.56	192.03	862205.4	2532712	2.94	2.11	231021.5
施松层 亮媒层 外层 亮林层	126.82	3.17	10.39	0.021	12.77	0.13	1.47	95.65	907755.3	2828876	3.12	11.01	121206
亮爆层 外层 寬松层 亮煤层	545.85	18.42	27.55	0.008	73.30	0.22	4.37	338.26	1569466	3239800	2.06	20.19	340089.3
外层 疏松层 亮煤层	629.26	19.84	26.61	0.011	100.34	0.19	1.46	535.75	2501302	3571295	1.43	7.81	468441.7
<mark>疏</mark> 松层 亮煤层	137.27	4.43	13.94	0.003	60.20	0.44	135.20	137.61	990415.6	3594718	3. 63	309.03	433306.8
亮煤层	432.53	11.74	17.94	0.019	174.92	0.57	2.39	305.39	1700549	4502565	2.65	4.17	974023.5
	444.07	27.74	28.59	0.003	202.75	0.44	42.81	457.31	2010333	5680799	2.83	96.56	891280.8
板状结壳	257.35	10.78	19.45	0.008	137.72	0.84	33.99	163.47	734510.8	1843599	2.51	40.35	618769.7
	479.75	21.05	32.69	0.000	241.57	0.57	14619.57	427.39	1122500	3291821	2.93	25865.38	634456.5
	174.32	8.74	19.11	0.001	96.94	0.43	974.03	226.20	1917924	3855474	2.01	2272. 73	821967.5
	361.55	12.27	26.44	0.003	201.24	0.71	99.69	281.74	906643.5	3177074	3.50	139.57	647602.5
瘤状结壳	83.94	3.24	6.96	0.009	48.58	0.99	109.50	48.98	1077650	2501508	2.32	110.41	1068744
板状结壳	142.83	7.53	12.13	0.007	104.21	1.23	149.85	84.39	1979437	2163273	1.09	121.36	2444174
	321.24	19.74	13.85	0.007	119.58	0.74	50.00	162. 14	1151588	1526255	1.33	67.80	849295.8
玄武岩基岩	64.33	12.98	9.11	0.012	48.21	1.64	194.56	29.38	263895.8	391775.6	1.48	118.56	433059.8
M[C]	118.51	6.82	5.47	0.204	45.29	2.41	1.44	18.80	2155689	2734531	1.27	0.60	5192308
M[C]	113.43	7.91	5.80	0.345	49.04	2.58	0.53	19.01	1917526	2164948	1.13	0.21	4946809
S[S]	142.48	7.81	5.42	0.224	44.57	1.93	0.78	23. 14	1327968	2193159	1.65	0.40	2558140
S[P]	155.83	6.97	5.35	0.258	27.19	1.30	0.44	20.84	336134.5	1310924	3.90	0.34	438596.5
M[P]	128.8	7.11	6.17	0. 175	48.15	2.10	1.39	22.96	1898455	2538631	1.34	0.66	3981481
M[C]	101.57	4.92	5.45	0.223	39.95	2.99	2.09	13.36	1943958	2276708	1.17	0.70	5811518
	23.5	1.03	1.00	1.001	2.22	1.22	0.31	1.82				0.26	
	3345	1.02	1.00	1.000	2.22	1.21	0.31	1.84				0.25	
M[P] M[C]		128.8 101. <i>57</i> 23.5 3345	128.8 7.11 101.57 4.92 23.5 1.03 3345 1.02	128.8 7.11 6.17 101.57 4.92 5.45 23.5 1.03 1.00 3345 1.02 1.00	128.8 7.11 6.17 0.175 101.57 4.92 5.45 0.223 23.5 1.03 1.00 1.001 3345 1.02 1.00 1.000	128.8 7.11 6.17 0.175 48.15 101.57 4.92 5.45 0.223 39.95 23.5 1.03 1.00 1.001 2.22 3345 1.02 1.00 1.000 2.22	128.8 7.11 6.17 0.175 48.15 2.10 101.57 4.92 5.45 0.223 39.95 2.99 23.5 1.03 1.00 1.001 2.22 1.22 3345 1.02 1.00 1.000 2.22 1.21	128.8 7.11 6.17 0.175 48.15 2.10 1.39 101.57 4.92 5.45 0.223 39.95 2.99 2.09 23.5 1.03 1.00 1.001 2.22 1.22 0.31 3345 1.02 1.00 1.000 2.22 1.21 0.31	128.8 7.11 6.17 0.175 48.15 2.10 1.39 22.96 101.57 4.92 5.45 0.223 39.95 2.99 2.09 13.36 23.5 1.03 1.00 1.001 2.12 0.31 1.82 3345 1.02 1.000 2.22 1.21 0.31 1.84	128.8 7.11 6.17 0.175 48.15 2.10 1.39 22.96 1898455 101.57 4.92 5.45 0.223 39.95 2.99 2.09 13.36 1943958 23.5 1.03 1.00 1.001 2.22 1.22 0.31 1.82 3345 1.02 1.000 2.22 1.21 0.31 1.84	128.8 7.11 6.17 0.175 48.15 2.10 1.39 22.96 1898455 2538631 101.57 4.92 5.45 0.223 39.95 2.99 2.09 13.36 1943958 2276708 23.5 1.03 1.00 1.001 2.22 1.22 0.31 1.82 3345 1.02 1.000 2.22 1.21 0.31 1.84	128.8 7.11 6.17 0.175 48.15 2.10 1.39 22.96 1898455 2538631 1.34 101.57 4.92 5.45 0.223 39.95 2.99 2.09 13.36 1943958 2276708 1.17 23.5 1.03 1.00 1.001 2.22 0.31 1.82 3345 1.02 1.000 2.22 1.21 0.31 1.84	128.8 7.11 6.17 0.175 48.15 2.10 1.39 22.96 1898455 2538631 1.34 0.66 101.57 4.92 5.45 0.223 39.95 2.99 2.09 13.36 1943958 2276708 1.17 0.70 23.5 1.03 1.00 1.001 2.22 0.31 1.82 0.26 3345 1.02 1.000 2.22 1.21 0.31 1.84 0.26

表 2 太平洋富钴结壳和多金属结核 PGE 主要参数

•

图 2 太平洋富钴结壳和多金属结核∑PGE 与 Mn(%)和 Fe(%)相关图

实心园为结壳, 空心园为结核

Fig. 2 Plots of Mn(%) and Fe(%) versus $\sum PGE$ in ferromanganese crusts and polymetallic nodules from Pacific Ocean.

Filled circle is ferromanganese crusts, open circle is polymetallic nodules

图 3 太平洋富钴结壳和多金属结核 $\sum PGE = Ni \cdot Co \cdot Cu$ 和 $\sum REE 相关图$ 。

Fig. 3 Plots of Ni, Co, Cu and \sum REE versus \sum PGE in ferromanganese crusts and polymetallic nodules from Pacific Ocean.

均与结核相反,而与 Co 和稀土元素总量(ΣREE)之间基本 不具相关性,可能显示本区结壳中的 Ni 和 Cu 主要存在于锰 矿物相,而 REE 和 Co 则主要与其它矿物相如黏土等有关。 同时,ΣPGE 与 Ni 和 Cu 间的正相关还暗示富钴结壳形成 时海水处于最低含氧带(OMZ)附近,其中含有较多的营养 型元素如 Cu²⁺ 和 Ni²⁺等。

类似与稀土元素(REE)的 Eu 和 Ce 异常表达方式,可以 采用如下公式计算 PGE 中 Pt 和 Pd 的异常;

$$Pt/Pt^* = \frac{PT_N}{\sqrt{Rh_N \cdot Pd_N}}, \quad Pd/Pd^* = \frac{Pd_N}{\sqrt{Pt_N \cdot Au_N}},$$

式中 Pt_N 、 Rh_N 、 Pd_N 、 Au_N 均为球粒陨石标准化值。表 2 可见, 本区富钴结壳的 Pt/Pt * 均远高于 1,为 6.96 ~ 32.69,高于 多金属结核,而 Pd/Pd * 均远低于 1,为 0.0001 ~ 0.081,低 于结核样品,也显示富钴结壳均具有 Pt 高度富集而 Pd 高度 亏损的特点。

在富钴结壳的 PGE 和 Au 球粒陨石和原始地幔标准化 配分模式上(图4和图5),可见具三层结构者和单层结构者 的配分模式基本一致,且三层结构中的外层、疏松层和亮煤 层的配分模式也基本相同,均属 Au、Pt 富集而 Pd 亏损型, 同时样品 Σ PGE 和 Au 均低于球粒陨石,而部分元素 (Ir、Ru、Rh、Pt)含量高于原始地幔。

图4 太平洋海山三层结构富钴结壳 PGE 和金标准化配分图 图中:1、4 外层;2、5 疏松层;3、6 亮煤层;1、2、3 为原始地幔标准 化配分曲线;4、5、6 为球粒陨石标准化配分曲线;原始地幔和 C1 球粒陨石值引自 McDonough & Sun 1995

Fig. 4 Normalized patterns of PGE and Au for ferromanganese crusts with three-layered structures from Pacific Ocean seamounts.

1, 4 are outer layer; 2, 5 are porous layer; 3, 6 are compact layer; 1, 2, 3 are primitive mantle- normalized patterns; 4, 5, 6 are chondrite-normalized patterns. The PGE and Au values of primitive mantle and C1 chondrite are after McDonough &Sun 1995.

在图 6 上可见,富钴结壳 PGE 和 Au 的球粒陨石配分曲 线与太平洋主要多金属结核基本一致,且相似于其玄武岩基 岩的配分曲线,而明显不同于海水、球粒陨石、海底热液硫化 物和原始地幔的配分曲线,显示其中结壳和结核的 PGE 和 Au 的来源基本一致,可能与玄武岩基岩和海水的水/岩反应 3020

图 5 太平洋海山板状和瘤状结壳和玄武岩基岩的 PGE 和 Au 标准化配分图

原始地幔和 C1 球粒陨石值引自 McDonough &Sun 1995.

Fig. 5 Normalized patterns of PGE and Au for ferromanganese crusts with platy and knotty structures from Pacific Ocean seamounts. The PGE and Au values of primitive mantle and C1 chondrite are after McDonough & Sun 1995.

有关,而与海底热水活动关联不大,也不可能主要来自正常 海水。图7上也可见,本区结壳主要落在世界典型水成富钻 结壳和结核的范围内,相对远离热液型结壳的范围,也说明 本区结壳主要是正常水成沉积成因,基本没有受到海底热 水活动和成岩作用的影响。

图 6 还显示,结壳的 PGE 和 Au 球粒陨石配分曲线与铁 陨石相似,均显示明显的 Pd 负异常和 Pt 正异常,暗示其中 部分 PGE 可能来源于铁陨石等地外物质。事实上,Halbach 等(1989)从中太平洋海山区的铁锰结壳中曾挑出直径为 0.1~0.35mm球状和椭球状颗粒,显微镜鉴定加电子探针分 析后发现绝大部分为富含 Ni 的铁陨石。惰性气体同位素测 定也显示富钴结壳,特别是其中疏松层的沉积过程中有地外 物质如陨石微粒等的参与(孙晓明等,2006a)。

在 Cu/Ir - Ni/Pd 和 Ni/Cu - Pd/Ir 图中(图8)中,可见太 平洋结壳和结核的投点均位于层状侵入体范围附近,但由于 其中 Pd 的强烈亏损而出现偏移,也显示海底玄武岩可能是 PGE 的主要来源之一。玄武岩与海水之间水/岩反应释放的 PGE 和 Au 可能以络合物的形式存在,并被结壳所吸附。

图 6 太平洋富钴结壳 PGE 和 Au 球粒陨石标准化曲线 对比图。图中结核 PGE 和 Au 的数据来自 Stüben et al. (1999)和何高文等(2006),铁陨石来自 Wilson et al. (1997),海底热液硫化物来自 Pasava et al.(2004),海水 来自 GERM 数据库(网址 http://earthref.org/),球粒陨石 数据来自 McDonough &Sun 1995。

Comparative PGE and Au chondrite normalized Fig. 6 patterns of the Pacific Ocean ferromanganese crusts. The contents of PGE and Au in polymetallic nodules are after Stüben et al. (1999) and He et al. (2006), siderolites are after Wilson et al. (1997), submarine hydrothermal sulfides are after Pasava et al. (2004), sea water after Geochemical Earth Reference Model (GERM) Reservoir Database (http://earthref. org/), C1 chondrite are after McDonough et al. (1995). • primitive mantle; + C1 chondrite; \bullet basaltic substrate; \diamond compact layer of three-layered crusts; \times porous layer of three-layered crusts; \triangle outer layer of three-layered crusts; Crusts with platy and knotty structures; \blacktriangle and \bigcirc hydrogenous nodules; \bigstar sea water; siderolite; \times and \rtimes submarine hydrothermal sulfides; \bigcirc and \triangle diagenetic nodules.

从前文讨论可以看出:结壳和结核 PGE 可能具有相似 的来源,均主要来自海底玄武岩和海水之间水/岩反应,部 分来自铁陨石等地外物质微粒,但与结核相比,结壳中 ΣPGE 更高, Pd 更加亏损,而 Pt、Au 相对更富集,显示 PGE 和 Au 被结壳和结核吸附的机制有所不同。Puteanus *et al*. (1988)曾认为结核和结壳中 PGE 和 Co 等成矿元素的含量 主要与沉积速率有关,其间具明显的反比关系,但目前看来 结壳和结核的沉积速率并无太大的区别,因此沉积速率可 能不是导致其中 PGE 含量差异的主要因素。

前人研究显示: PGE 和 Au 在海水中主要以各种络合物 形式存在(Halbach et al., 1989; Stuben et al., 1999; Anikeeva et al., 2002)。PGE 中除 Rh 为 +3 价外,其余多以 +2 和/或 +4 价态出现。对 Pt 来说, Halbach et al. (1989)认为, Pt 在 海水中主要以 $PtCl_4^{2-}$ 和 $PtCl_6^{2-}$ 形式存在,但后者仅存在于强 氧化条件下,其间存在如下关系:

图7 太平洋富钴结壳 Pt/Pd 与 Ir/Pd 关系图。图中●为 结壳, ■为结核。原始地幔和球粒陨石数据来自 McDonough &Sun (1995); 煌斑岩来自孙晓明等, 2006c; 海水和地壳来自 GERM 数据库(网址 http://earthref. org/); 不同成因结核和结壳范围来自 Stuben *et al.*, 1999.

Fig. 7 Pt/Pd versus Ir/Pd diagram of the Pacific Ocean ferromanganese crusts. ● crusts; ■ nodules; Primitive mantle and chondrite are after McDonough *et al.*, 1995; lamprophyre are after Sun *et al.*, 2006c; Sea water and continental crust are after GERM Reservoir Database (http://earthref.org/); crust and nodule fields are after St ben *et al.*, 1999.

$$\log([PtCl_4^{2^-}]/[PtCl_6^{2^-}]) = -15.96 - \frac{1}{2}\log p_{o_2} + 2pH$$

计算显示 PtCl²-是海水条件下 Pt 的最主要存在形式,只有在 pH(7.8 且强氧化环境条件下 Pt 才主要以 PtCl²-形式存在, 且由于 PtCl²-在海水中非常稳定,难以被结壳和结核吸附。

Halbach et al. (1989)提出, 具阴离子特征的 PtCl₄²⁻不可 能直接被同样带负电荷的 MnO₂胶体颗粒所吸附, 而结壳中 锰矿物相中富含 Pt 的主要原因可能与 O₂不充足的最低含氧 带(OMZ)中及其附近发生的氧化还原反应有关:

 $Mn^{2+} + PtCl_4^{2-} + 2H_2O = Pt^0 + MnO_2 + 4Cl^- + 4H^+$

在 Mn^{2+} 氧化为 Mn^{4+} 的过程中, $PtCl_4^{-}$ 分解,将 Pt^{2+} 还原 为 Pt° 金属并沉淀在锰矿物相中。海水中 Mn^{2+} 浓度的增加, 有利于 Pt 的沉淀。

Anikeeva et al. (2002)则认为, Pt 和 Pd 在海水中主要以 [PtCl₄]²⁻和[PdCl₄]²⁻存在,同时在 OMZ 附近,[PtCl₄]²⁻中 的 Cl⁻常被 NH₃取代,可以氨的络合物([Pt(NH₃)₄]²⁺和 [Pd(NH₃)₄]²⁺存在,络合物由带负电荷转为带正电荷,从而 被表面带负电荷的 MnO_2 胶体所吸附,并伴随着结壳中锰矿 物的形成(Mn^{2+} 氧化为 Mn^{4+}), Pt 由 Pt²⁺还原为 Pt⁰。计算 显示: Pt 与氨络合所需 NH₃含量比与氯络合低 300 倍,而 Pd

图 8 太平洋富钴结壳和结核 Cu/Ir - Ni/Pd 和 Ni/Cu -Pd/Ir 图。据 Pasava (2003)修改。图中●为富钴结壳投 点,(为玄武岩基岩投点,■为多金属结核投点。 Fig. 8 Plot of Cu/Ir vs. Ni/Pd and Ni/Cu vs. Pd/Ir of

ferromanganese crust and nodules from Pacific Ocean (modified after Pasava, 2003). • represents projecting points of crust, (basaltic substrate, polymetallic nodules.

与氨形成 [Pd (NH₃)₄]²⁺ 所需 NH₃ 的浓度要比形成 [Pt(NH₃)₄]²⁺高 40 倍,因此,在一定的 NH₃浓度条件下, Pt 易与之形成络合物,这可能是导致结壳中 Pt 强烈富集而 Pd 明显亏损的重要原因之一。

Stuben *et al.* (1999)根据对海水条件下(T = 25℃, Cl = 19.35g/kg)的Eh - pH 图解研究提出了不同见解,认为在假 定海水Eh = +0.4和pH = 8的情况下,Pt 在海水中的主要存 在形式应当是 Pt(OH)₂₀,而非 PtCl²⁻,海水中接近饱和的 中性Pt(OH)₂₀可能以表面络合形式结合在铁锰矿物表面, 并不存在 Halbach *et al.* (1989)所提出的氧化还原反应。 而 Pd的存在形式为 PdCl²⁻和 Pd(OH)₂₀,在海水中可能处 于不饱和状态,导致水成结核和结壳中 Pd 的明显亏损。

图 9 可见,本区富钴结壳中 Pt/Pd 与 Ce/La 存在较明显的正相关,而结核中则不具相关性,结壳中的相关性与 Goldberg et al. (1990)得到的结果一致,而与 Stuben et al. (1999)的研究结论有所差异,进一步显示 Pt 进入结核和结

图 9 太平洋富钴结壳和结核 Pt/Pd 与 Ce/La 关系图. Fig. 9 Plot of Pt/Pd vs. Ce/La of ferromanganese crust and nodules from Pacific Ocean.

壳的状态和形式有所不同,同时显示 Pt 在结壳中的富集机 制与 Ce 类似,海洋环境的氧化性愈强,愈有利于 Pt 在结壳 中的富集。海洋地球化学研究表明,富钴结壳主要富集于 OMZ 下方的海山表面,在 OMZ 下方,随着海水中溶解 O_2 含 量逐渐增加,在相同的海水氧化条件下,由于 Pt 的还原电位 较 Mn^{2+} 高, Mn^{2+} 优先氧化为 Mn^{4+} ,而 Pt^{2+} 以[PtCl₄]²⁻和/ 或[Pt(NH₃)₄]²⁺形式存在,并被吸附到水羟锰矿(δ -MnO₂) 等锰相矿物表面,同时伴随着 Mn^{2+} 的氧化作用, Pt^{2+} 被还原 为 Pt^0 。而结核大多远离 OMZ,其所处的海洋化学环境决定 了其周围海水中 Pt 的存在形式主要为中性的 Pt(OH)₂₀或 PtO(Stuben *et al.*,1999),不存在类似结壳中的氧化还原反 应机制,而 Pt 主要以吸附方式在铁相矿物中富集,这可能是 造成结壳中 PGE,特别是 Pt 相对较结核中富集的主要原因。

3.2 Os 同位素地球化学

PGE 中的 Os 在海水中的滞留时间较长,可达4~60Ka (Burton et al., 1999),远超过海水完全混合所需的时间(约 1.5Ka),因此海水总体来说其 Os 含量分布是基本均匀的。 同时,水成富钴结壳生长速率十分缓慢,其中 Re/Os 比值很 低,且相对¹⁸⁷ Re 衰变为¹⁸⁷ Os 的半衰期((4.56(0.11) (10¹⁰a)而言,主要形成于新生代的结壳中放射性衰变形成 的¹⁸⁷ Os 基本可忽略不计,加上 Os 在海洋沉积物中的扩散系 数很低,约为 3.0×10^{-8} cm²/a,远低于 Sr 的扩散系数(2.0 ×10⁻⁵ cm²/a)(Klemm et al., 2005),故沉积后期的地质作 用基本不会改变其 Os 含量,因此富钴结壳的¹⁸⁷ Os/¹⁸⁸ Os 比 值可近似代表其沉积时海水的 Os 同位素组成。

本区具三层结构的富钴结壳 Re-Os 同位素组成测定结 果见表 3,可见其 Re/Os 比值很低,为0.014~0.218,平均 0.075,¹⁸⁷Os/¹⁸⁸Os 在结壳的三层中差异较大,外层为0.948 ~0.953,疏松层 0.599~0.673,亮煤层 0.425~0.536,外 层 >疏松层 > 亮煤层,显示富钴结壳沉积过程中海水的 ¹⁸⁷Os/¹⁸⁸Os组成出现了明显的变化。

able 3 Re-Os isotor	pic compositions of	ferromangane	se crusts fron	n the Pacific O	cean							
Ĩ	2	样重	Re ((B/gn)	眷 0s	(ng/g)	¹⁸⁷ Os	(ng/g)	¹⁸⁷ R.	e/ ¹⁸⁸ Os	¹⁸⁷ 0	/ ¹⁸⁸ 0s
中	样兮	(g)	测定值	不确定度	测定值	不确定度	测定值	不确定度	测定值	不确定度	测定值	不确定度
富钴结壳外层	0321 外	2.000	0.0149	0.0007	1.097	0.013	0.1368	0.0028	0.0648	0.0033	0.948	0.021
富钴结壳疏松层	0321 疏	2.000	0.0979	0.0056	0.803	0.011	0.0632	0.0026	0.583	0.034	0.599	0.025
富钴结壳亮煤层	0321 亮	2.000	0.0662	0.0039	0.5138	0.0055	0.0287	0.0011	0.617	0.036	0.425	0.017
富钴结壳外层	0346 카	2.000	0.0470	0.0080	1.560	0.017	0.1954	0.0036	0.144	0.024	0.953	0.018
富钴结壳疏松层	0346 疏	2.000	0.0326	0.0024	1.022	0.008	0.0904	0.0011	0.153	0.011	0.673	0.008
富钴结壳亮煤层	0346 亮 1	2.000	0.0062	0.0015	0.3513	0.0037	0.0247	0.0008	0.084	0.021	0.536	0.017
富钴结壳亮煤层	0346 亮 2	2.000	0.0122	0.0009	0.3560	0.0037	0.0240	0.0007	0.165	0.013	0.514	0.016
富钴结壳	321	0.997	0.1135	0.0006	0.5212	0.0043	0.0468	0.0008	1.042	0.020	0.683	0.011

太平洋富钴结壳 Re-0s 同位素组成

海水中的 Os 主要有三种来源: 陆源风化物质、海底洋壳在 水/岩反应中的释放和地外物质如陨石微粒和宇宙尘(IDPs) 等, 其各自¹⁸⁷Os/¹⁸⁸Os 分别为 1.26、0.12~0.63 和0.13(Roy-Barman et al., 1994; Peucker-Ehrenbrink et al., 1996; Sharma et al., 1997), 三种来源的交替变化导致地质历史上海水 ¹⁸⁷Os/¹⁸⁸Os组成的改变。目前人类对新生代以前海水的 ¹⁸⁷Os/¹⁸⁸Os组成了解不多, 但对 80Ma 以来海水的Os 同位素 组成演化已有较清楚的了解,并建立了海水¹⁸⁷Os/¹⁸⁸Os演化 曲线(Klemm et al., 2005)。大量前人研究显示新生代以来, 特别是 35Ma 以来,海水 Os 同位素组成一直呈上升趋势, 目 前大洋海水¹⁸⁷Os/¹⁸⁸Os 约为 1.01~1.06(Ravizza et al., 1993), 一般认为是喜山运动导致的大陆风化物质大量带人 海洋所致(Reush et al., 1998)。

根据 Puteanus et al. (1998)提出的富钴结壳磷酸盐化对 Co含量的校正方法和沉积速率估算公式,本次测定样品三 层的平均沉积速率分别为 2. 64mm/Ma, 1. 45mm/Ma 和 1.06mm/Ma,与前人估算速率有所不同(朱克超等, 2001)。 根据沉积速率,我们估算出西太平洋海底富钴结壳三层的 沉积所需时间分别为:外层 8.0Ma,疏松层 13.8Ma,亮煤层 20.7Ma,考虑到沉积间断,推测本区富钴结壳开始沉积的下 限为 42.5Ma,因此推测疏松层和亮煤层的界限约为 21.8Ma,外层与疏松层的界限约为 8.0Ma,与 Ling et al. (2005)和 Fu et al. (2005)的估算结果有一定的区别,可能 表明西太平洋地区结壳的开始生长时间和速率与中太平洋 有一定的差距。

从海水¹⁸⁷Os/¹⁸⁸Os 演化曲线(Klemm et al., 2005)上可 见, 距今8~21.8Ma 时海水¹⁸⁷Os/¹⁸⁸Os 约为0.8~0.9,本区 疏松层实测¹⁸⁷Os/¹⁸⁸Os 结果(0.599~0.673)显然低于此,表 明其中可能含较多颗粒相对较大的陨石碎屑等地外物质, 它们较快地沉积并被结壳俘获,导致结壳¹⁸⁷Os/¹⁸⁸Os 较环境 海水为低,与惰性气体同位素分析结果所显示的疏松层很 高的³He/⁴He 比值相一致(孙晓明等, 2006a)。外层和亮煤 层的 Os 同位素落在各自沉积期间对应海水的范围内。

三层富钴结壳中,外层较低的(PGE 和较高的 Os 同位 素组成显示其中含有较多的大陆风化物质,而疏松层和亮 煤层较高的(PGE 和较低的 Os 同位素表明其中主要沉积物 来自地外物质和海底洋壳蚀变。

4 结论

太平洋富钴结壳中 PGE 和 Au 含量均较高,且变化很 大,ΣPGE 为(70.09~629.26)×10⁻⁹,平均289.48×10⁻⁹, Au 为(0.60~26900)×10⁻⁹。具三层结构的富钴结壳中,疏 松层((339.37~545.82)×10⁻⁹)和亮煤层((280.09~629. 26)×10⁻⁹)的ΣPGE 明显高于外层((70.09~133.27)× 10⁻⁹。单层结壳的ΣPGE 为(83.94~479.75)×10⁻⁹, Au 含 量普遍高于具三层结构者;富钴结壳 PGE 均属于 PPGE 富 集而 IPGE 亏损型, PPGE/IPGE 为 2.23 ~ 27、74, 高于太平 洋多金属结核(4.92 ~ 7.91); 同时, 结壳和结核均强烈富集 Pt 而亏损 Pd。

比较而言,太平洋富钴结壳的 Σ PGE 和 Au 含量远高于 太平洋海底多金属结核(分别为(101.57~155.83) × 10⁻⁹ 和(1~4) × 10⁻⁹。沉积深度和海水氧逸度的不同是导致结 壳和结核中 PGE 含量差异的主导因素。

富钴结壳 Σ PGE 与 Mn(%) 呈明显的正相关关系,而与 Fe(%) 具负相关性,与多金属结核正好相反,显示结壳中的 PGE 主要赋存在水羟锰矿(δ -MnO₂) 等锰矿物相中,与针铁 矿(FeOOH · nH₂O)等铁矿物相关系不大,而结核中的 PGE 主要赋存在铁矿物相中。

富钴结壳的 PGE 地球化学显示其中 PGE 和 Au 主要来 自海底玄武岩的蚀变释放,部分来自铁陨石微粒等地外物 质,而与海底热水活动和成岩等作用无关。

计算显示西太平洋结壳距今42.5Ma 左右开始生长,生 长过程中分别在8.0Ma和21.8Ma处出现间断,相应形成外 层、疏松层和亮煤层,其各自沉积时海水的¹⁸⁷Os/¹⁸⁸Os分别 为0.948~0.953,0.599~0.673,0.425~0.536,显示外层 含有较多的大陆风化尘,而疏松层和亮煤层的沉积物主要 来自海底洋壳蚀变和陨石碎屑或宇宙尘等地外物质。

致谢:样品采集过程中得到国土资源部广州海洋地质调查 局样品室的大力协助,河南岩矿分析测试中心姚文生高工协 助完成 PCE 和 Au 分析,国家地质实验测试中心杜安道研究 员、屈文俊研究员等协助进行 Os 同位素分析,南京大学成 矿作用国家重点实验室高剑锋工程师协助进行微量元素 ICP-MS 测定,同时得到中国大洋协会周宁处长和田赤英 女士、广州海洋地质调查局杨胜雄总工和黄永样总工、中国 科学院广州地球化学研究所周怀阳研究员等的大力支持, 谨致谢忱!

References

- Anikeeva LI, Andreev SI, Alexandrov PA et al. 2002. Formation Processes of PGE-Bearing Oceanic Ores. In: Andreev S I, Torokhov M P (Eds.), "Minerals of the Ocean" International Conference Abstracts (St. Petersburg), 31-35
- Bai ZM, Yin CQ, Jiang XX et al. 2002. Nanometer properties of oceanic polymetallic nodules and cobalt-rich crusts, Chinese Science Bulletin, 47(15): 1308 - 1311
- Barnes S J and Naldrett A J. 1987. Fractionation of the platinum-group elements and gold in some komatiites of the Abitibi greenstone blet, Northern Ontario. Economic Geology, 82(1): 165-183
- Barnes S J, Couture JF, Sawyer EW et al. 1993. Nickel-copper occurrences in the Belleterre- Angliers belt of the Pontiac subprovince and the use of Cu/Pd ratios in interpreting platinumgroup element distributions. Economic Geology, 88: 1402 - 1418
- Barnes SJ, Naldrett AJ and Gorton MP. 1985. The origin of the

fractionation of platinum-grouup elements in terrestrial magmas. Chem. Geol. ,53: 303-323

- Burton KW, Bourdon B, Birck JL et al. 1999. Osmium isotope variations in the oceans recorded by Fe - Mn crusts. Earth and Planetary Science Letters, 171: 185 - 197
- Chai G and Naldrett AJ, 1992. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Economic Geology, 87: 1475 - 1495
- Chu X L, Sun M and Zhou M F. 2001. The platinum-group elements geochemistry in chemical geodynamics. Acta Petrologica Sinica, 17 (1): 112 - 122 (in Chinese with English abstract)
- Chu X L, Sun M and Zhou M F. 2002. PGE patterns of ores of the Dajing Cu-polymetallic deposit in Linxi County, Inner Mongolia: indicator to source of metallogenic elements. Chinese Science Bulletin, 47, 1119 - 1124.
- Dong FL, Hou ZQ, Gao YF et al. 2005. Re-Os isotopic dating of molybdenite from Datongchang copper-lead-zinc deposit in Tengchong area, Western Yunnan. Mineral Deposits: 24(6): 663 - 668(in Chinese with English abstract)
- Du AD, He HL and Yin WN et al. 1994. The study on the analytical methods of Re-Os age for molybdenites. Acta Geologica Sinica, 68 (4): 339-347 (in Chinese with English abstract)
- Fleet ME and Stone WE. 1991. Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature. Geochim Cosmochirm. Acta, 55: 245 - 253
- Fleet ME, Crocket JH and Stone WE. 1996. Partitioning of platinum group elements (Os, Ir, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim. Cosmochim. Acta, 60: 2397 - 2412
- Fu YZ, Peng JT, Qu WJ et al. 2005. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chinese Science Bulletin, 50(18): 2106 - 2112
- Garuti G, Fershtater G, Bea F et al. 1997. Platinum-group elements as petrological indicator in mafic-ultramafic complexes of the central and southern Urals: preliminary results. Tectonophysics, 276: 181 - 194
- Goldberg ED and Koide M. 1990. Understanding the chemistries of the platinum group metals. Marine Chemistry. 30: 249-257
- Halbach P, Kriete C, Prouse B et al. 1989. Mechanisms to explain the platinum congcentration in ferromanganese seamout crusts. Chemical Geology, 76: 95 - 106
- He GW, Sun XM, Yang SX, et al. 2006. Platinum group elements (PGE) geochemistry of polymetallic nodules in the CC zone, Eastern Pacific Ocean. Mineral Deposits, 25(2): 164 - 174 (in Chinese with English abstract)
- He GW, Zhao ZB, Zhu KC *et al.* 2001. Cobalt-rich Crust Resources in the West Pacific. Beijing: Geological Publishing House, 1-92 (in Chinese with English abstract)
- Jiang SY, Yang JH, Ling HF et al. 2003. Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polymetallic sulf ide bed from the Lower Cambrian Niutitang Formation, South China. Progress In Natural Sciences, 13(10): 788 - 794
- Jiang SY, Yang JH, Zhao KD et al. 2000. Re-Os isotope tracer and dating method in ore deposits research. Journal of Nanjing University (Natural Sciences Edition), 36(6): 669 - 677 (in Chinese with English abstract)

Klemm V, Levasseur S, Frank M et al. 2005. Osmium isotope

stratigraphy of a marine ferromanganese crust. Earth and Planetary Science Letters, 238: 42-48

- Lambert DD, Frick LR, Foster JG et al. 2000. Re-Os isotope systematic of the Voisey's Bay Ni-Cu-Co magmatic sulfide system, Labrador, Canada: II. Implications for parental magma chemistry, oregenesis, and metal redistribution. Econ Geol., 95(4): 867-888
- Le SR, Pichocki C, Pautot G et al. 1989. Geological and mineralogical study of Co-rich ferromanganese crusts from a submerged atoll in the Tuamotu Archipelago(French Polynrsia). Marine Geology, 87: 227 -247
- Li S R, Gao Z M and Chen N S. 1994. A trial discussion on geochemical tracing system of platinum group elements. Bulletin of Mineralogy, Petrology and Geochemistry, 1: 36 ~ 37(in Chinese)
- Li X L, Cai Z F and Mao X Y. 1998. Study of geochemical tracing of platinum group elements: the geochemical characteristics of platinum group elements in Xinjie layered intrusion, Sichuan Province. Acta Geophysica Sinica, 41 (suppl.): 162 - 168 (in Chinese with English abstract)
- Li YH, Li JC and Song HB. 1999. A comparative study of helium isotope of polymetallic nodules and cobalt crusts. Acta Geoscientia Sinica, 20(4): 378 - 384 (in Chinese with English abstract)
- Lorand JP. 1989. Abundance and distribution of Cu-Fe-Ni sulfides, sulfur, copper and platinum-group elements in orogenic type spinel lherzolites massifs of Ariege (Northeastern Pyrenees, France. Earth Planet. Sci. Lett., 93: 50 - 64
- Maier WD and Barnes SJ. 2004. Pt/Pd and Pd/Ir ratios in mantlederived magmas: a possible role for mantle metasomatism. South African Journal of Geology, 107: 333 - 340
- Mao J W and Du A D. 2001. 982Ma Re-Os isotopic age of Cu-Ni sulphide deposit and its geological implication from Baotan area, GuangXi Province, China. Science in China (series D), 31 (12): 993 - 998
- Mao J W, Stein H, Du A D et al. 2004. Molybdenite Re-Os precise dating for molybdenite from Cu-Au-Mo deposits in the MiddleLower reaches of Yangtze River belt and its implications for mineralization. Acta Geologica Sinica, 78(1): 121 - 131 (in Chinese with English abstract)
- Mao J W, Yang J M, Qu W J et al. 2002. Re-Os dating of Cu-Ni sulphide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323 - 330 (in Chinese with English abstract)
- McDonough WF and Sun S-S. 1995. The composition of the earth. Chemical Geology, 120: 223 - 253
- Pan JH and Liu SQ. 1999. Distribution, composition and element geochemistry of Co-rich crusts in the Western Pacific. Acta Geoscientia Sinica, 20 (1): 47 - 54 (in Chinese with English abstract)
- Pan JH, Carlo EHD, Yang Y et al. 2005. Effect of phosphatization on element concentration of Cobalt-rich ferromanganese crusts. Acta Geologica Sinica (English edition), 79(3): 349-355
- Pasava J, Barnes S and Vyma A. 2003. The use of mantle normalization and metal ratios in the identification of the sources of platinum-group elements in various metal-rich black shales. Mineralium Deposita, 38: 775 ~ 783
- Pasava J, Vyma A, Petersen S et al. 2004. PGE distribution in massive sulfides from the PACMANUS hydrothermal field, eastern Manus

basin, Papua New Guinea: implications for PGE enrichment in some ancient volcanogenic massive sulfide deposits. Mineralium Deposita, 39: 784 - 792

- Peucker-Ehrenbrink B. 1996. Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim. Cosmochim. Acta 60: 3187-3196
- Puteanus D, Halbach P. 1988. Correlation of Co concentration and growth rate — a method for age determination of ferromanganese crusts. Chemical Geology, 69: 73 - 85
- Ravizza G. 1993. Variations of the ¹⁸⁷Os/¹⁸⁸Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates, Earth Planet. Sci. Lett. 118: 335 - 348
- Reusch DN, Ravizza G, Maasch KA et al. 1998. Miocene seawater ¹⁸⁷Os/¹⁸⁸ Os ratios inferred from metalliferous carbonates, Earth Planet. Sci. Lett. 160: 163 178
- Roy-Barman M and Allegre CJ. 1994. ¹⁸⁷Os/¹⁸⁶Os of mid-ocean ridge basalts and abyssal peridotites. Geochim. Cosm ochim. Acta, 58: 5043 - 5054
- Sharma M, Papanastassiou DA and Wasserburg GJ. 1997. The concentration and isotopic composition of osmium in the oceans. Geochim. Cosmochim. Acta 61: 3287 3299
- Shi GY, Sun XM, Wang SW et al. 2006. Re-Os isotopic dating and its geological implication of Baimazhai Cu-Ni sulphide deposit, Yunnan province, China. Acta Petrologica Sinica, 22(10):2451-2456
- Shi XF, Peng JT and Bu WR. 2000. Pilot study on platinum-group elements of ferromanganese crust from Pacific Ocean, Bulletin of Mineralogy, Petrology and Geochemistry 19 (4): 339 - 340 (in Chinese)
- St ben D, Glasby G P, Eckhardt J-D et al. 1999. Enrichments of Platinum-group elements in hydrogenous, diagenetic and hydrothermal marine manganese and iron deposits. Exploration and Mining Geology, 8: 233 - 250
- Sun XM, Xue T, He GW et al. 2006a. Noble gas isotopic compositions and sources of Cobalt-rich crusts from Pacific seamounts. Acta Petrologica Sinica, 22(9): 2331 - 2340 (in Chinese with English abstract)
- Sun XM, Xiong DX, Wang SW et al. 2006b, Platinum group elements (PGE) geochemistry of Mojiang Au-Ni deposit and its constraint on the ore genesis. Mineral Deposits, 25(4): 438 - 446 (in Chinese with English abstract)
- Sun XM, Shi GY, Xiong DX et al. 2007. Platinum group elements geochemistry and Re-Os isotopic compositions and their metallogenic implications of Daping gold deposit in Ailaoshan gold belt, Yunnan province, China. Acta Geologica Sinica(in press)
- Wang SW, Sun XM, Shi GY et al. 2006. Platinum group elements (PGE) geochemistry of Baimazhai Ni-Cu sulfide Deposit and its constraints on the ore genesis. Acta Geologica Sinica, 80(9): 1474 -1486(in Chinese with English abstract)
- Wilson GC, Rucklidge JC, Kilius LR et al. 1997. Precious metal abundances in selected iron meteorites: in-situ AMS measurements of the six platinum-group elements plus gold. Nuclear Instruments and Methods in Physics Research, B123: 583 - 588
- Wu GH, Zhou HY and Chen HL. 2001a. Progress in research of Cobaltrich crusts. Geological Journal of China Universities, 7(4): 379 389 (in Chinese with English abstract)

Wu GH, Zhou HY, Yang SF and Chen HL. 2001b. Variation of Fe-Mn

oxides minerals assemblage in Co-rich crusts during its growth. Acta Mineralogica Sinica, 21(2): 137 - 209 (in Chinese with English abstract)

- Xu C, Huang ZL, Liu CQ et al. 2003. Review on geochemistry of platinum group elements. Earth Science Frontiers, 10(4): 520 – 528(in Chinese with English abstract)
- Xue T, Sun XM, He GW. et al. 2005. Geochemistry of PGE and Au in ferromanganese crusts from seamounts in the west Pacific Ocean. In: Mao J W, Bierlein F P. Eds., Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the 8th Biennial SGA Meeting. Springer-Verlag, Berlin Heidelberg, 207 - 209
- Yang G, Du AD, Lu JR et al. 2005. Re-Os isotopic age dating of Cu-Ni-PGE sulphide deposit from Jinchuan area, Gansu province, China. Science in China(series D), 35(3): 241-245
- Yao D, Zhang LJ, Wiltshire J et al. 2002. PGE and Re-Os isotope compositions and their significances of Co-rich ferromanganese crusts. Marine Geology & Quaternary Geology, 22(3): 53 ~ 58 (in Chinese with English abstract)
- Zhang HS, Zhao PD, Chen SY et al. 2001. Mineralizing characteristics of Cobalt-rich ferromanganese nodule and crust in central Pacific Ocean seamount. Earth Science, 26(2): 205 - 209 (in Chinese with English abstract)
- Zhang LJ, Yao D, Cui RY and Qi CM. 1998. A discussion on ferromanganese deposits on the sea floor. Marine Geology and Quaternary Geology. 18 (2): 75 - 80 (in Chinese with English abstract)
- Zhu KC, Zhao ZB and Li Y. 2001. Cobalt-rich ferromanganese crusts from the MA, ME and MF seamounts of the Magellan seamounts. Marine Geology and Quaternary Geology. 21 (2): 33 - 38 (in Chinese with English abstract)

附中文参考文献

- 储雪蕾,孙敏,周美夫. 2001. 化学地球动力学中的铂族元素地球化 学. 岩石学报,17(1):112-122
- 储雪蕾,孙敏,周美夫. 2002. 内蒙古林西大井铜多金属矿床矿石的 铂族元素分布和物质来源. 科学通报, 47(6): 457-461
- 董方浏,侯增谦,高永丰等.2005. 滇西腾冲大硐厂铜-铅-锌矿床的 辉钒矿 Re-Os 同位素定年.矿床地质,24(6):663-668
- 杜安道,何红蓼,殷宁万等.1994.辉钼矿的铼-锇同位素地质年龄 测定方法研究.地质学报,68(4):339-347
- 何高文, 孙晓明, 杨胜雄等. 2006. 东太平洋 CC 区多金属结核铂族 元素(PGE)地球化学及其意义. 矿床地质, 25(2): 164-174
- 何高文,赵祖斌,朱克超等. 2001. 西太平洋富钻结壳资源,北京:地 质出版社,1~92
- 蒋少涌,杨竞红,赵葵东等. 2000. 金属矿床 Re-Os 同位素示踪与定 年研究. 南京大学学报(自然科学),36(6):669-677
- 李胜荣,高振敏,陈南生. 1994. 试论铂族元素地球化学示踪体系. 矿物岩石地球化学通报,1:36-37
- 李晓林,柴之芳,毛雪瑛. 1998. 铂族元素地球化学示踪研究——四 川新街层状侵入岩体铂族元素地球化学特征. 地球物理学报, 41(增刊):162~168
- 李延河,李金城,宋鹤彬. 1999. 海底多金属结核和富钴结壳的 He 同 位素对比研究. 地球学报, 20(4): 378-384

Acta Petrologica Sinica 岩石学报 2006, 22(12)

- 毛景文, Stein H, 杜安道等. 2004. 长江中下游地区铜金(钼) 矿 Re-Os 年齡精測及其对成矿作用的指示. 地质学报, 78(1): 121 -131
- 毛景文,杜安道. 2001. 广西宝坛地区铜镍硫化物矿石 982 Ma Re-Os 同位素年齡及其地质意义. 中国科学(D辑), 31(12): 993 -998
- 毛景文,杨建民,屈文俊等.2002.新疆黄山东铜镍硫化物矿床 Re-Os 同位素测定及其地球动力学意义.矿床地质,21:(4):323 -330
- **潘家华**,刘淑琴. 1999. 西太平洋富钴结壳的分布、组分及元素地球 化学. 地球学报, 20(1): 47-54
- 石**贵勇,孙**晓明,王生伟等. 2006. 云南白马寨铜镍硫化物矿床 Re-Os 同位素定年及其地质意义. 岩石学报,22(10):2451-2456
- 石学法,彭建堂,卜文瑞. 2000.太平洋铁锰结壳铂族元素的初步研 究,矿物岩石地球化学通报,19(4):339-340
- **孙晓明,薛婷,何高文等.** 2006a. 西太平洋海底海山富钴结壳惰性气 体同位素组成及其来源,岩石学报,22(9):2331-2340
- **孙晓明,熊德信,**王生伟等. 2006b. 云南哀牢山金矿带墨江金镍矿床 铂族元素(PCE)地球化学及其对矿床成因的制约,矿床地质, 25(4):438~446
- **孙晓明,石贵勇, 熊德**信等. 2007. 云南哀牢山金矿带大坪金矿铂族 元素(PCE)和 Re-Os 同位素地球化学及其矿床成因意义. 地质

学报(待刊)

- 王生伟,孙晓明,石贵勇等. 2006. 云南白马寨铜镍硫化物矿床铂族 元素地球化学及其对矿床成因的制约,地质学报,80(9):1474 -1486
- 武光海,周怀阳,陈汉林. 2001a. 大洋富钴结壳研究现状与进展. 高 校地质学报,7(4):379-389
- 武光海,周怀阳,杨树峰,陈汉林. 2001b. 富钴结壳生长过程中铁锰 氧化物矿物组合的变化. 矿物学报,21(2):137-209
- 许成,黄智龙,刘丛强等. 2003. 铂族元素地球化学研究评述. 地学 前缘, 10(4): 520-528
- 杨刚,杜安道,卢记仁等. 2005,金川镍-铜-铂矿床块状硫化物矿石的 Re-Os(ICP-MS)定年. 中国科学,D 辑,35(3):241-245
- 姚德,张丽洁,Wiltshire JC 等. 2002. 富 Co 铁锰结壳铂族元素与铼-' 银同位素组成及其意义. 海洋地质与第四纪地质,22(3):53-58
- 张海生,赵鹏大,陈守余,胡光道. 2001. 中太平洋海山多金属结壳 的成矿特征. 地球科学, 26(2): 205-209
- 张丽洁,姚德,崔汝勇,戚长谋. 1998. 海底沉积铁锰矿床形成机制 讨论. 海洋地质与第四纪地质,18(2):75-80
- 朱克超,赵祖斌,李扬.2001. 麦哲伦海山区 MD, ME, MF 海山富钴 结壳特征.海洋地质与第四纪地质,21(1);33-38