西太平洋海底海山富钴结壳惰性气体同位素组成 及其来源[:]

孙晓明^{1,2} 薛婷¹ 何高文^{1,3} 叶先仁⁴ 张美¹ 陆红锋^{1,3} 王生伟¹ SUN XiaoMing^{1,2}, XUE Ting¹, HE GaoWen^{1,3}, YE XianRen⁴, ZHANG Mei¹, LU HongFeng^{1,3} and WANG ShengWei¹

- 1. 中山大学地球科学系, 广州 510275
- 2. 中国科学院广州地球化学研究所 南海海洋研究所 边缘海地质重点实验室, 广州 510640
- 3. 国土资源部广州海洋地质调查局,广州 510760
- 4. 中国科学院兰州地质研究所气体地球化学实验室, 兰州 730000
- 1. Department of Earth Sciences, Sun Yatsen University, Guangzhou 510275, China
- 2. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry & South China Sea Institutes of Oceanology, Chinese Academy of Sciences, Guangzhou 510640, China
- 3. Guangzhou Marine Geological Survey, MLR, Guangzhou 510075, China

4. Laboratory of Gas Geochemistry, Lanzhou Institute of Geology, Chinese Academy of Sciences, Lanzhou 730000, China

2006-04-13 收稿, 2006-08-22 改回.

Sun XM, Xue T, He GW, Ye XR, Zhang M, Lu HF and Wang SW. 2006. Noble gases isotopic compositions and sources of cobalt-rich crusts from west Pacific Ocean seamounts. *Acta PetrologicaSinica*, 22(9):2331-2340

Abstract Noble gases abundances and isotopic compositions of various layers in the three-layered Cobalt-rich ferromanganese crusts and their substrate rocks, which were collected from Magellan seamounts in west Pacific, were analyzed by using a high vacuum gas mass spectrum, and the results show that: 1. Most of the ferromanganese crusts in the west Pacific Ocean were hydrogenous origin and the noble gases in the crusts derived from different sources. The He was sourced predominantly from extraterrestrial grains such as interplanetary dust particles (IDPs), with a little from aeolian continental dust grains in the seawater. The Ar derived mainly from the air dissolved in the ambient sea water, and partly from the aeolian dust grains or formation water in the submarine sediments. While the Xe and Ne were mostly sourced from dissolved air in the sea water, and partly from the interplanetary dust particles (IDPs). (2) In the three-layered crusts, the compact layers possess quite different noble gases isotopic compositions compared with the outer and porous layers, suggesting that marine phosphatization might have greatly modified the noble gases isotopic compositions in the old crusts. resulting in dramatic increase of ⁴He concentrations and decrease of ³He/⁴He. (3) ³He/⁴He ratios in the basaltic substrates of the Cobalt-rich crusts are very low, varying between 0.0095Ra to 0.074Ra, which are similar to that of the phosphorite substrates (0.087Ra), but much lower than those of normal submarine basalts, suggesting that the basaltic substrates might have been strongly reacted with radiogenic ⁴He and P enriching upwelling marine currents or formation water in the sediments. Large amount of ore-forming elements might have been released during basalt/water interaction and which might favor growth of the Cobalt-rich crusts. The relative low ³He/⁴ He ratios in the basaltic substrates may be used as one of the important exploration criterions for the Cobalt-rich ferromanganese crusts.

Key words Noble gases, Isotopic compositions, Genesis, Cobalt-rich crusts, Seamonts, Pacific Ocean

摘 要 采用高真空气体质谱系统测定了西太平洋麦哲伦海山富钴结壳不同层圈及其基岩的惰性气体丰度和同位素组成,结果显示:(1)西太平洋富钴结壳主要是水成成因,其中惰性气体来源不同,He绝大多数来自宇宙尘(IDPs),少量来自陆源风成微粒;Ar主要来自海水溶解的大气,少量来自陆源风成微粒或沉积岩建造水;Ne和Xe主要来自海水中溶解大气,

第一作者简介:孙晓明, 男, 1963 年生, 教授, 博士导师, 从事矿床地球化学和海底矿产资源研究, E-mail: eessxm@ mail. sysu. edu. cn

^{*} 国家自然科学基金(批准号:40473024,40343019)、国际海底区域研究开发"十五"课题(编号:PY105-2-01-13,DY105-01-02-1)、高等 学校博士学科点专项科研基金(编号:20040558049)、中国科学院广州地球化学研究所南海海洋研究所边缘海地质重点实验室研究 基金课题(编号:MSCLCAS03-4)和国家教育部跨世纪优秀人才培养计划基金联合资助.

少量来自宇宙尘;(2)在具三层结构的结壳中,亮煤层(致密层)的惰性气体同位素相对外层和疏松层有较大的不同,显示 大洋磷酸岩化对早期沉积的结壳惰性气体组成有较大的影响,如导致⁴He的升高和³He/⁴He的显著降低;(3)太平洋富钴结 壳玄武岩基岩的³He/⁴He非常低,为0.0095~0.074Ra,与本区磷块岩基岩(0.087Ra)相似,而远低于正常海底玄武岩的³ He/⁴He比值,显示这些基岩曾与富含放射性成因⁴He和P的上升洋流或沉积物中建造水发生过水/岩反应,这个过程将释放 出较多的成矿元素,有利于富钴结壳的形成.海底海山玄武岩中较低的He同位素组成可作为富钴结壳的找矿标志之一。 关键词 惰性气体;同位素组成;成因;富钴结壳;海山;太平洋 中图法分类号 P597

1 引言

海底固体矿产资源主要由多金属结核和结壳组成。虽 然发现较晚,但富钴结壳已是目前世界上最重要的海底多金 属矿产资源之一,其中除 Fe、Mn 外,还含有大量 Co、铂族元 素(PGE)、稀土元素(REE)、Ni和Cu等重要的金属元素(何 高文等,2001),而洋底数以万计的海山中富钴结壳广泛分 布,因此海底铁锰结壳将是人类今后 Co、REE 和 PGE 等金属 最主要的来源之一,具有十分重要的经济价值。初步估计, 仅西太平洋地区海底富钴结壳的矿石资源量即达10亿吨, 经济价值超过1000亿美元(何高文等,2001)。前人对富钴 结壳的矿物学组成、成矿元素地球化学、围岩特征等进行了 一些研究(潘家华等,1999;朱克超等,2001;武光海等, 2001a, 2001b; 张海生等, 2001; 姚德等, 2002; Bai et al., 2002; Pan et al., 2005; Xue et al., 2005; 何高文等, 2005), 但关于其成因机制等问题一直争论很大,多数学者认为是 水生沉积成因(武光海等,2001a),但在成矿机制上有不同 的见解:张洁丽等(1998)提出了非线性震荡生长假说;李延 河等(1999)讨论了海底热水活动参与富钴结壳成矿的可能 性;武光海等(2001a)则认为生物作用在富钴结壳的成矿中 可能起到很大作用。总体来说,有关富钴结壳的研究还处于 初步阶段。

近年来,He和Ar等惰性气体同位素体系被广泛应用于 成矿过程的示踪研究,取得了许多重要的进展(Simmons et al., 1987; Stuart et al., 1995; Baptiste et al., 1996; 胡瑞忠 等,1997; Hu et al., 1999; 李延河等, 1999; Burnard et al., 1999; 侯增谦等,1999; Sun et al., 1999,2003; Zeng et al., 2000; Kendrick et al., 2001a, 2001b; Winckler et al., 2001; Zhao et al., 2002; 曹志敏等, 2002; Ballentine et al., 2002; Graham, 2002; Mao et al., 2002, 2003; 薛春纪等,2003; Moreir et al., 2003; 孙晓明等, 2006a, 2006b, 2006c; 翟伟 等, 2006),其主要原因在于: (1)惰性气体同位素体系在 水/岩反应中基本保持不变,因此可以反映成矿流体来源的 原始信息; (2)不同来源成矿流体的惰性同位素体系差异 甚大,较易区别。本文采用超高真空气相质谱系统测定了 西太平洋海底海山富钴结壳及其主要基岩的惰性气体同位 素组成,并据此初步讨论了成因机制。

2 样品和分析方法

此次测试的样品采自西太平洋麦哲伦海山区,采样区 水深一般超过 2000m。该区富钴结壳有单层、双层和三层 者,由于三层者厚度较大,一般超过7cm,因此是目前富钴 结壳勘查和研究的重点。本文所测试结壳样品均为具三层 结构者,由外到内,可明显分为较致密层(外层)、疏松层和 致密层(亮煤层),大多数情况下在可见下伏基岩(玄武岩和 磷块岩等)。X射线衍射和透射电镜等鉴定表明结壳的主要 组成矿物为纳米级的水羟锰矿(δ -MnO₂)、针铁矿(FeOOH)、 黏土矿物(如蒙脱石和伊利石等)、磷灰石和碳酸盐矿物。较 致密层(外层)具树支状和叠层状构造; 疏松层具斑杂状构 造,脉石矿物含量较多;致密层(亮煤层)具极薄的纹层状 构造, 较脆易碎, 常见白色到肉红色石英-碳酸盐细脉, 已受 到较强的磷酸盐化改造。根据 Puteanus et al。(1998)提出的 富钴结壳磷酸盐化对 Co含量的校正方法和沉积速率估算公 式,计算本次测定的结壳距今 42.5Ma 左右开始生长,生长 过程中分别在 8.0Ma 和 21.8Ma 处出现间断,相应形成外 层、疏松层和亮煤层,其各自沉积速率为2.64mm/Ma, 1.45mm/Ma 和 1.06mm/Ma(孙晓明等, 2006d)。

本文样品分析在中国科学院兰州地质研究所气体地球化 学实验室完成,测试仪器为英国 Micromass 公司生产的 MM5400 型气体质谱仪,实验条件为:发射电流 It₄ = 800Ma, It₄₀ = 200µA,高压为9.000kV。实验流程:将样品称重后用铝 箔包好置于样品台中,随后密封抽真空,当压力达1×10⁻⁵Pa 时,加热样品到130℃并烘烤10h以上,以除去样品表面吸附 和次生包裹体中的气体,后用电阻炉加热熔样坩锅中样品至 1000℃,释放出的气体被吸入超真空气体净化系统,在液氮 温度下用活性碳阱将惰性气体分离为 He + Ne 和 Ar + Kr + Xe 两部分,然后分别送进气体质谱仪测定其同位素组成。 MM5400 型气体质谱仪的最低热本底值为:⁴He = 5.0 × 10^{-12} cm³ STP/g;⁴⁰ Ar = 9.0 × 10^{-10} cm³ STP/g;⁸⁴ Kr = 4.8 × 10^{-14} cm³ STP/g;¹³² Xe = 4.0 × 10^{-16} cm³ STP/g。使用的标样 为兰州市皋兰山顶空气(AIRLZ2003),各惰性气体同位素组 成测定误差小于 10%。具体测定过程参见叶先仁等(2001)。

3 分析结果和讨论

西太平洋富钴结壳各层及其基岩的惰性气体同位素组

表1 西太平洋富钴结壳及其基岩惰性气体同位素组成 Table 1 Noble gas isotomic commonitions of Contributions

ā
D
- 5
- 5-
Ū,
تە ر
>
_
- 8
ē
. E
4
c)
C و
- 1
- 22
- 5
ģ
- 2
a,
<u>ہ</u>
12
1
1
~
6
- 22
5
- 33
- 5
ల
_
- C 3
٠Ĕ
·Ĕ
o-nic
Co-ni
Co-ni
of Co-rid
of Co-rie
is of Co-rie
ns of Co-rid
ions of Co-rid
tions of Co-rid
sitions of Co-rid
ositions of Co-rid
positions of Co-rid
apositions of Co-rid
mpositions of Co-rid
ompositions of Co-rid
compositions of Co-rid
compositions of Co-rie
ic compositions of Co-rid
pic compositions of Co-rie
opic compositions of Co-rie
otopic compositions of Co-rie
sotopic compositions of Co-rie
isotopic compositions of Co-rid
s isotopic compositions of Co-rid
as isotopic compositions of Co-rie
gas isotopic compositions of Co-rie
gas isotopic compositions of Co-rie
e gas isotopic compositions of Co-rie
ole gas isotopic compositions of Co-rid
ble gas isotopic compositions of Co-rid
Voble gas isotopic compositions of Co-rid
Noble gas isotopic compositions of Co-rid
Noble gas isotopic compositions of Co-rie
Noble gas isotopic compositions of Co-ric
1 Noble gas isotopic compositions of Co-ric
1 Noble gas isotopic compositions of Co-ric
e 1 Noble gas isotopic compositions of Co-rid
ole 1 Noble gas isotopic compositions of Co-rid

lable i tvoble gas i	sotopic com) to subtractions	o-ncn crust	s and their s	ubstrates fro	m Western P	actic							
样 号	0303 카	0303 疏	0303 亮	0321 카	0321 疏	0321 亮	0346 外	0346	0346 亮	0346	0345	0327	0364	大气
采样站位		MDD43			M27D			W	ID30		MID27	MHD56	MP5D14	
水琛(m)		2184.5			2412.5			22	275.0		1684.5	2149.5	3050.0	
样品描述	结壳外层	结壳疏松层	结壳亮煤层	结壳外层	结壳疏松层	结壳亮煤层	结壳外层	结壳疏松扂	5 结壳亮煤层	5 支武岩基岩	玄武岩基岩	玄武岩基岩	磷块岩	
4 He(10 $^{-8}$ cm ³ STP/g)	8.534(42)	7.661(30)	155.904(48)	2.016(12)	9.453(32)	16.330(59)	2.307(15)	1. 971(12)	40.768(13)	73.024(23)	35.840(12)	19.533(72)	16. 531 (69)	
3 He(10 $^{-14}$ cm 3 STP/g)	22. 683	302. 242	12.005	6.318	126.689	98.470	9. 230	16.848	1. 985	0.949	1. 075	2. 031	2.017	
$^{20}\mathrm{Ne}(10^{-8}\mathrm{cm}^{3}\mathrm{STP/g})$	1. 254(12)	0.477(41)	4.301(21)	0.556(47)	1.456(11)	1.490(74)	2.083(10)	1.676(91)	10.864(38)	0.853(58)	2.419(11)	1. 232(16)	2. 150(13)	
$^{40}{ m Ar}(10^{-6}{ m cm}^3{ m STP/g})$	8.109(24)	5.466(16)	12. 768(38)	0.858(26)	18.077(54)	1.068(32)	1.429(43)	13. 238(40)	78.624(24)	1. 758(52)	1. 142(34)	1. 492(46)	7.750(24)	
84 Kr(10 $^{-10}$ cm ³ STP/g)	7.101(28)	7.974(34)	18.435(81)	0.356(23)	40.096(15)	0.589(34)	1.861(89)	8.154(38)	88. 928(41)	1.924(96)	0.564(31)	0.652(43)	4.995(25)	
$^{132}\mathrm{Xe}(10^{-10}\mathrm{cm}^{3}\mathrm{STP/g})$	0.479(18)	0.307(11)	2.202(57)	0.016(73)	7.818(42)	0.099(35)	0.356(14)	0. 175(60)	4.883(16)	0.150(67)	0.023(13)	0.014(73)	0.125(54)	
3 He/ ⁴ He(10 ⁻⁶)(R)	2. 658(12)	39.452(12)	0.077(57)	3.134(23)	13.402(42)	6.030(41)	4.001(41)	8.548(56)	0.0487(41)	0.013(13)	0.030(50)	0.104(19)	0.122(11)	1. 399
R/Ra	1. 900	28.2	0.055	2.24	9.58	4.31	2.86	6. 11	0. 0348	0.0095	0. 021	0.074	0.087	1
$^{20}\mathrm{Ne}/^{22}\mathrm{Ne}$	9.970(69)	10.760(64)	10.500(24)	11.580(95)	11.030(48)	11.080(36)	10.810(37)	10.260(31)	9.813(50)	10.950(67)	11.080(29)	10.950(86)	11. 140(52)	9.8
21 Ne/ 22 Ne	0.026(30)	0.029(36)	0.027(97)	0.0286(38)	0.030(26)	0.028(12)	0.028(12)	0.031(13)	0.029(23)	0.029(32)	0.029(10)	0.026(30)	0.028(14)	0. 029
³⁸ Ar/ ³⁶ Ar	0.190(12)	0. 191 (74)	0.197(12)	0. 193(16)	0. 185(99)	0.193(12)	0.189(18)	0.188(75)	0.189(18)	0.187(22)	0.186(22)	0.190(19)	0. 183(57)	0.188
⁴⁰ Ar/ ³⁶ Ar	345.0(12)	310.1(27)	305.1(44)	349.5(16)	300.9(32)	349. 5(16)	324.6(15)	302.0(31)	299.2(6)	454.6(33)	356.2(16)	389.1(22)	364.4(43)	295. 5
$^{82}{ m Kr}{ m /}^{84}{ m Kr}$	0.196(81)	0.184(64)	0.194(53)	0.214(23)	0.206(50)	0.207(13)	0.188(11)	0.203(91)	0.201(68)	0.217(51)	0.207(13)	0.216(24)	0.204(82)	0. 2022
$^{83}{ m Kr}/^{84}{ m Kr}$	0. 195(45)	0.194(92)	0. 196(52)	0. 222(14)	0.202(44)	0. 194(16)	0.200(11)	0. 207(77)	0. 199(64)	0.219(10)	0.210(10)	0.223(18)	0.200(54)	0. 2014
$^{86}{ m Kr}/^{84}{ m Kr}$	0.317(14)	0.298(15)	0.304(13)	0. 337(17)	0.310(10)	0.293(31)	0.295(14)	0.306(81)	0.308(12)	0.312(10)	0.307(13)	0.386(26)	0.309(13)	0. 3052
128 Xe/ 132 Xe(10 $^{-2}$)	7.450(43)	7.460(38)	6. 930(17)	6. 900(12)	7. 190(11)	8.010(47)	7.420(45)	7.020(63)	6.980(32)	7.350(38)	5.980(81)	5. 800(12)	7.660(53)	7.14
¹²⁹ Xe/ ¹³² Xe	0.974(15)	1.013(17)	0.974(12)	0.917(38)	0. 983 (57)	1. 025(16)	1.005(13)	0.975(24)	0.969(35)	1.028(24)	0.950(42)	0.976(39)	1.002(18)	0. 9832
¹³⁰ Xe/ ¹³² Xe	0.152(60)	0. 157(37)	0. 151 (25)	0.135(20)	0.155(10)	0.164(96)	0. 153(34)	0. 156(33)	0.150(59)	0. 155(65)	0.150(14)	0. 136(25)	0. 147(30)	0. 1514
¹³¹ Xe/ ¹³² Xe	0.786(19)	0.812(10)	0.772(82)	0.783(60)	0.787(33)	0. 801 (17)	0.791(11)	0.794(18)	0.776(19)	0.814(15)	0.808(25)	0.806(58)	0.787(14)	0. 789
¹³⁴ Xe/ ¹³² Xe	0.374(16)	0.392(97)	0.401(76)	0.367(10)	0.391(23)	0.390(17)	0. 386(91)	0.388(15)	0.345(46)	0.404(11)	0.382(15)	0.378(21)	0.394(11)	0. 3879
¹³⁶ Xe/ ¹³² Xe	0.334(77)	0.324(68)	0.337(87)	0.311(98)	0.333(37)	0.340(72)	0.318(79)	0.330(10)	0.344(54)	0.333(72)	0.323(24)	0.346(27)	0.362(84)	0. 3294
F^4He	21. 939	26. 262	225.102	49.620	9.508	322. 897	31.664	2.717	9.374	1140.980	675. 457	307.796	46. 965	
40 Ar * $(10^{-6} \text{cm}^3 \text{STP/g})$	1. 163	0. 257	0.402	0. 133	0.324	0. 165	0.128	0. 285	0.972	0.615	0. 195	0.359	1.465	
40 Ar * (%)	14.35	4. 71	3. 15	15.45	1. 79	15.45	8, 97	2. 15	1. 24	35.00	17.04	24.06	18.91	
³ He _{et} / ³ He _m	99.48	99.97	81.82	99.56	99.90	99. 77	99.66	99.84	71.27					
$^{20}\mathrm{Ne}_{\mathrm{et}}/^{20}\mathrm{Ne}_{\mathrm{m}}$	6. 22	32. 55	24.32	56.08	40.69	42. 15	34.09	16.36	0.48					
$^{134} \mathrm{Xe}_{\mathrm{et}} / ^{134} \mathrm{Xe}_{\mathrm{m}}$	25.53	15.98	0.00	0, 00	9.37	48.31	9. 29	18.49	71. 38					
注:数据后括号中数	牧值为最后位	「数字的 1σ 偏	l差;⁺³He _{el} /	${}^{3}\text{He}_{m} = ((1 - 1))$	- (³ He⁄ ⁴ He),	_n)/(1 - (³ He	$\sqrt{^4}$ He) _{ter} /(³	He/ ⁴ He) et)) × 100					
${}^{40}Ar^* = ({}^{40}Ar)$	$\times (1 - \frac{(40)A_I}{1})$	$\frac{\sqrt{36}Ar}{4\pi}$												
	~ (*0 Ar	-/ ³⁶ Ar) _{样品} /'												

2333

成的分析结果列于表1。结果表明:(1)在富钴结壳的三层 结构中,特征惰性气体丰度(以下单位均为 cm³(STP/g))出 现有规律的变化,其中致密层(亮煤层)的⁴He 最高,为 (16.33~155.904)×10⁻⁸, 疏松层次之, 为(1.971~9.453) ×10⁻⁸,外层为(2.016~8.534)×10⁻⁸,而疏松层的³He最 高,为(16.848~302.242)×10⁻¹⁴,因此在富钴结壳中疏松 层具有最高的³He/⁴He 比值, $R/Ra(R \to Ra \oplus R)$ 为样品和 大气的³ He/⁴ He 比值,后者取 1.39 × 10⁻⁶)介于 6.11 ~ 28.2, 平均为14.63, 较致密层(外层)次之, 为1.90~2.86, 平均 2.33, 而亮煤层最低, 且变化最大, 为 0.0348~4.31, 平均1.47;(2)不同结壳样品的惰性气体同位素组成相差 较大,即使是三层结壳的对应层位之间也是如此;(3)玄武 岩基岩的⁴He为(19.533~73.024)×10⁻⁸,³He为(0.949~ 2.031) × 10⁻¹⁴, 磷块岩⁴ He 为 16.531 × 10⁻⁸, 而³ He 为 2.017×10⁻¹⁴,因此所有基岩的³He/⁴He 均很低, 玄武岩 R/ Ra为0.0095~0.074, 而磷块岩为0.087, 显示磷酸盐化和 玄武岩与海水间的水/岩反应将导致基岩³He/⁴He 的显著降 低;(4)所有富钴结壳和基岩样品的40 Ar/36 Ar 均不高,为 292.2~454.6, 略高于大气⁴⁰ Ar/³⁶ Ar(295.5); (5) 本区玄 武岩和磷块岩基岩的惰性气体同位素组成与结壳亮煤层较 为相似,显示它们已基本达到同位素平衡。

3.1 He-Ar 同位素体系

海洋沉积物中的 He 主要有 4 种来源, 原始 He、地幔 He、大气 He 和地壳 He, 原始 He 主要指来自地外物质如宇 宙尘(IDPs)的 He, 其³He/⁴He 比值约为 2.4×10⁻⁴(172*Ra*) (Nier et al., 1992)。沉积物中宇宙尘的 He 同位素组成可以 保存相当长时间,至少可达 65Ma(Farley et al., 1995); 地 幔 He 一般指上地幔或深源地幔排气所释放的 He, 其典型³ He/⁴He 一般为 6~9*Ra*; 大气 He 主要来自溶解于海水中的 空气,其典型³He/⁴He 比值约为 1.39×10⁻⁶; 地壳 He 一般 来自悬浮在海水中的大陆风化和剥蚀形成的微粒,它们一 般通过河流或风力搬运到海洋。对中西太平洋等远离陆地 地区, 地壳 He 主要来自风成微粒,但局部也可来自海洋沉 积物中的建造水。其典型³He/⁴He 比值为 2×10⁻⁸(Farley et al., 1995)。

惰性气体在水中的溶解度随质量的增加而升高,He 在 水溶液中的溶解度最低,且在空气中的含量也低,故大气饱 和水中 He 的含量很低,He/Ar≈1×10⁻⁴,因此海水沉积物中 的大气 He 一般可以忽略不计(Schlosser *et al.*,2002)。用于 估计地质流体中大气 He 贡献率的参数 F⁴ He 值(定义为样 品⁴He/³⁶ Ar 相对于大气中⁴He/³⁶ Ar = 0.1655 的比值)的计算 也显示富钴结壳样品中 F⁴He 为 2.717~1140.98(表1),远 高于大气饱和水的 F⁴He 值(0.18~0.28),也说明样品中含 有的大气 He 基本可忽略。

本次测定结壳样品主要采自水深 2000m 以下的海山, 远离大洋中脊,因此估计不会有大量的深源地幔 He 参与成 矿。铂族元素(PGE)地球化学研究也显示本区结壳主要是 水成成因,基本与海底热液活动无关(孙晓明等, 2006d)。

由图1可见,本次所测富钴结壳疏松层的落点主要在地 幔 He 和原始 He 之间,而外层主要落在地幔 He 和大气 He 之间,亮煤层样品主要落在地壳 He 附近,个别靠近地幔 He 附近,而几乎所有基岩样品落在地壳 He 的附近。

图 1 富钴结壳及其基岩⁴ He - ³ He 图(据 Mamyrin B A et al., 1984 改编)。

图中:▲为富钴结壳外层;★为富钴结壳疏松层;△为富钴结壳 亮煤层;■为玄武岩基岩;○为磷块岩基岩

Fig. 1 4 He $-{}^{3}$ He diagram of Co-rich crusts and their substrates.

在不考虑大气 He 和地幔 He 的情况下,本区结壳样品 均落在原始 He 和地壳 He 之间。

根据同位素二元混合模型, 假设本区结壳中 He 主要来 自宇宙尘(IDPs)(He_{et})和大陆地壳风化尘,则 He_{et}所占比例 可用下式估算(Schlosser *et al.*, 2002):

 ${}^{3}\text{He}_{et}/{}^{3}\text{He}_{m} = ((1 - ({}^{3}\text{He}/{}^{4}\text{He})_{ter}/({}^{3}\text{He}/{}^{4}\text{He})_{m})/$

 $(1 - ({}^{3}\text{He}/{}^{4}\text{He})_{\text{ter}}/({}^{3}\text{He}/{}^{4}\text{He})_{\text{et}})) \times 100$

式中下标 m 指实测值, ter 指地壳物质, et 指地外物质。 (³He/⁴ He) et 和(³He/⁴ He)_{ter} 的极端值分别取 172*Ra* 和 0.01*Ra*,可见结壳外层和疏松层中超过 99% 的³He 来自宇宙尘,而亮煤层中³He_{et} 变化较大,为 71.27~99.77% (表1)。

正如前文所述,本区结壳的玄武岩基岩均显示了很低 的³He/⁴He, 玄武岩 R/Ra 平均为 0.105, 远低于正常大洋洋 中脊玄武岩的 8.75 ± 2.14 和海底海山玄武岩的 3~43 (Graham., 2002), 接近地壳 He³He/⁴He 组成的极限。要造 成玄武岩基岩³He/⁴He 明显下降可能有两个原因: 1. 磷酸 岩化的影响。磷酸岩化所形成的磷块岩³He/⁴He 相当低,为 0.087Ra,显示与其有关的携带深层富磷储库上升洋流可能 是非常富集⁴He 而贫³He 的, 这种富 P 的洋流与玄武岩基岩 之间的水/岩反应将导致 He 同位素交换和 R/Ra 明显下降。 本区玄武岩中常见到磷灰石(CFA),且全岩分析显示玄武 岩中 P,O,和 CaO 普遍较高,分别最高达 8% 和 23.36%,说 明这些基岩已受到磷酸盐化影响;富钴结壳亮煤层中较低 的 R/Ra 显然也是与海底磷酸盐化事件有关; 2. 海底沉积岩 中建造水的影响。Schlosser et al. (2002)的研究显示:海底 沉积岩会局部释放出富放射性⁴He 的沉积建造水,它们与玄 武岩之间的水/岩反应也会改变 He 同位素组成。玄武岩与 海水间的水/岩反应将释放出较多的成矿元素,有利于磷酸 岩化事件后结壳的生长。

不同来源成矿流体的³ He/⁴ He 和⁴⁰ Ar/³⁶ Ar 有较大的区 别,如:(1)大气饱和水(ASW),主要包括大气降水和海水, 其标准³ He/⁴ He 和⁴⁰ Ar/³⁶ Ar 同位素组成分别为 1R_a和 295.5;(2)深源地幔流体,其典型³ He/⁴ He 和⁴⁰ Ar/³⁶ Ar值分 别应为6~9R_a和>40000,但后者变化范围较大;(3)地壳 流体,包括建造水或盆地热卤水等,其特征性³ He/⁴ He 和 ⁴⁰ Ar/³⁶ Ar组成分别应为 0.01~0.05R_a和>295.5(Burnard *et al.*,1999);4.现代海底热水,其典型³ He/⁴ He 和⁴⁰ Ar/³⁶ Ar 大致为 2.2~13.3*Ra*和 287~359(Zeng *et al.*,2000; Winckler *et al.*,2001)。

图2可见,富钴结壳疏松层和外层主要落在大气饱和水 (ASW)(正常海水)之间和现代海底热水范围,远离地幔流 体(M),其中一个样品 R/Ra超出了地幔流体的上限,在排 除海底热水参与结壳沉积的前提下,可以认为其中 He 主要 来自沉积过程中的地外物质如陨石或宇宙尘等,而不大可能 来自具有较高 R/Ra值的地幔流体,原因在于深源地幔流体 具有很高的⁴⁰ Ar/³⁶ Ar(>40000),即使少量加入也会导致结 壳⁴⁰ Ar/³⁶ Ar 明显升高。而宇宙尘中的⁴⁰ Ar/³⁶ Ar 为 < 1 (Swindle, 2002),少量加入不会显著影响结壳的⁴⁰ Ar/³⁶ Ar 比值。亮煤层和基岩由于 R/Ra大多较低,除一个样品外, 均低于大气饱和水(ASW)的 R/Ra 值,主要落在地壳流体的 附近,也表明玄武岩基岩和亮煤层沉积以后中受到富含⁴He 的流体(如海底沉积物中的建造水或富含 P 的上升洋流等) 的改造。

与 He 不同的是, Ar 在水中有较高的溶解度, 且大气中

图2 富钴结壳及其基岩⁴⁰Ar/³⁶Ar-R/Ra图。

图中: ASW 为大气饱和水; A 为红海和大西洋中脊 TAG 地区海底 热水范围(据 Winckler et al, 2001; Zeng et al., 2001); M 为地幔 流体范围; C 为地壳流体范围。样品符号与图1 同。

Fig. 2 ⁴⁰ Ar/³⁶ Ar vs. R/Ra diagram of Co-rich crusts and their substrates. ASW-air saturated water; A-submarine hydrothermal fluids of Rea Sea and TAG in Mid-Atlantic ridge (after Winckler *et al*, 2001; Zeng *et al.*, 2001); M-mantle-derived fluids; C-crustal fluids.

Ar的含量也相当高,接近 1%,故大气饱和水,包括海水, 具有与大气类似的 Ar 同位素组成。海底热水的⁴⁰ Ar/³⁶ Ar 也 与大气近似(Burnard *et al.*, 1999)。深海沉积物多数情况下 会继承海水的 Ar 同位素特征。由表 1 可见,太平洋富钴结 壳和基岩样品的⁴⁰ Ar/³⁶ Ar 变化不大,为 292.2~454.6,略高 于大气⁴⁰ Ar/³⁶ Ar (295.5),显示 即中 Ar 主要来自大气 Ar, 但含有少量放射性成因的⁴⁰ A*。

地质样品中放射性成因的⁴⁰ Ar[•]可由下式确定 (Ballentine *et al.*, 2002):

$${}^{40}Ar^* \% = \frac{\left({}^{40}Ar/{}^{36}Ar\right)_{\#_{\rm H}} - 295.5}{\left({}^{40}Ar/{}^{36}Ar\right)_{\#_{\rm H}}} \times 100$$

表1可见,富钴结壳及其基岩中放射性成因⁴⁰Ar^{*}的含量为1.24~35.0%,大气⁴⁰Ar的贡献可达65~98.76%,说明 结壳中的Ar确实主要来自海水中溶解的大气Ar,但有不同 比例的放射性成因⁴⁰Ar^{*}加入,它们可能主要来自富含⁴He 的 地壳流体或/和海水中风成大陆微粒。在结壳中,疏松层具 有最低的⁴⁰Ar^{*},均小于5%,平均2.88%,外层⁴⁰Ar^{*}为 8.97~15.45%,平均12.92%,亮煤层⁴⁰Ar^{*}变化最大,为 1.24~15.45%,平均6.61%,而玄武岩和磷块岩基岩的 ⁴⁰Ar^{*}均高于17%。

3.2 Ne 同位素体系

据研究,大气中²⁰ Ne/²² Ne 为 9.8, ²¹ Ne/²² Ne 为 0.029; 原始(太阳风) Ne 的²⁰ Ne/²² Ne 和²¹ Ne/²² Ne 分别为 13.5 ~ 14.0 和 0.0305 ~ 0.034, 地幔 Ne 的同位素组成与原始 Ne 相 似; 地幔流体的²⁰ Ne/²² Ne 和 ²¹ Ne/²² Ne 分别为 9.8 ~ 13.2 和 0.058 ~ 0.068, 而地壳中 Ne 的²⁰ Ne/²² Ne 和²¹ Ne/²² Ne 组成 分别为 0 ~ 0.3 和 0.1 ~ 0.47 (Hilton *et al.*, 2002; Pepin *et al.*, 2002), 不同来源的 Ne 具有不同的演化规律(图 3)。

Fig. 3 21 Ne/ 22 Ne vs. 20 Ne/ 22 Ne diagram of Co-rich crusts and their substrates (modified after Hilton *et al.*, 2002).

图 3 可见,本次所测样品²⁰Ne/²²Ne变化较大,而 ²¹Ne/²²Ne变化范围很小,主要落在大气 Ne 和原始 Ne 之间, 以及 地幔 Ne 演化线的附近,不见 地壳 Ne 所特有的 ²⁰Ne/²²Ne与²¹Ne/²²Ne之间负相关性,表明其中的 Ne 不可能 主要来自海洋中的陆源风成微粒。在²⁰Ne/²²Ne-⁴⁰Ar/³⁶Ar 图 上(图4),也可见本次所测样品主要落在大气 Ne、太阳爆发 粒子(SEP)和原始 Ne 之间,而偏离大气和地幔流体混合线, 均表明太平洋富钴结壳及其基岩样品中的 Ne 应主要来源于 海水中溶解的大气 Ne 和原始 Ne,而后者最大的可能是来源 于结壳沉积时加入的地外物质如宇宙尘(IDPs)等。

与He同位素相似,根据同位素二元混合模型,假设本区结壳中Ne主要来自宇宙尘(Ne_{et})和海水中溶解的大气Ne(Ne_{at}),则Ne_{et}所占比例可用下式估算:

图 4 富钴结壳及其基岩²⁰ Ne/²² Ne-⁴⁰ Ar/³⁶ Ar 图。图中样品 符号与图 1 同(据 Hilton *et al.*, 2002 和 Pepin *et al.*, 2002 改编)。

Fig. 4 20 Ne/ 22 Ne vs. 40 Ar/ 36 Ar diagram of Co-rich crusts and their substrates (modified after Hilton *et al.*, 2002 and Pepin *et al.*, 2002).

$${}^{20} \operatorname{Ne}_{et} / {}^{20} \operatorname{Ne}_{m} = ((1 - ({}^{20} \operatorname{Ne} / {}^{22} \operatorname{Ne})_{air} / ({}^{20} \operatorname{Ne} / {}^{22} \operatorname{Ne})_{m}) / (1 - ({}^{20} \operatorname{Ne} / {}^{22} \operatorname{Ne})_{air} / ({}^{20} \operatorname{Ne} / {}^{22} \operatorname{Ne})_{et})) \times 100$$

式中下标 m 指实测值, air 指大气, et 指地外物质。 (²⁰Ne/²²Ne)_{et}和(²⁰Ne/²²Ne)_{air}的极端值分别取 13.5 和 9.8, 可见结壳中所含原始 Ne(²⁰Ne_{et})的比例变化很大,为0.48 ~ 56.08%,其中外层³⁰Ne_{et}平均为 32.13%, 疏松层平均为 29.87%, 而亮煤层平均 22.32%(表 1)。

3.3 Xe 同位素体系

不同来源的 Xe 同位素组成有较大的区别:原始 Xe 的¹²⁹ Xe/¹³⁰ Xe 和 ¹³⁴ Xe/¹³⁰ Xe 分别为 6.26 和 2.21,大气 ¹²⁹ Xe/¹³⁰ Xe为 6.5,而¹³⁴ Xe/¹³⁰ Xe 为 2.56(Swindle 2002),地 壳 Xe 的¹²⁹ Xe/¹³⁰ Xe 变化很小,多在 6.5 左右,而¹³⁴ Xe/¹³⁰ Xe 变化很大,因此在¹²⁹ Xe/¹³⁰ Xe-¹³⁴ Xe/¹³⁰ Xe 图上近乎一条竖线 (图 5),而地幔 Xe 的¹²⁹ Xe 高于地壳,¹³⁴ Xe 低于地壳, ¹²⁹ Xe/¹³⁰ Xe 和¹³⁴ Xe/¹³⁰ Xe 之间呈现正相关关系(Thomas and Claude, 1982)。图 5 可见:本文所测富钴结壳样品主要落在 大气 Xe 和原始 Xe 之间,仅个别样品落在地幔演化线附近, 显示其中 Xe 主要来自海水中溶解的大气和宇宙尘(IDPs)。 而玄武岩和磷块岩基岩主要落在地幔演化线上,显示其中 的 Xe 可能主要来自地幔。

Claude, 1982).

图 6 富钴结壳及其基岩¹²⁹ Xe/¹³⁰ Xe-¹³⁶ Xe/¹³⁰ Xe 图。 图中样品符号与图 1 同(据 Graham *et al.*, 2002 改编) Fig. 6 ¹²⁹ Xe/¹³⁰ Xe vs. ¹³⁶ Xe/¹³⁰ Xe diagram of Co-rich crusts and their substrates (modified after Graham *et al.*, 2002).

在¹²⁹ Xe/¹³⁰ Xe-¹³⁶ Xe/¹³⁰ Xe 图上(图 6),也可见本区结壳 样品主要落在大气 Xe 和原始 Xe 之间,仅个别结壳和基岩样 品落在大气 Xe 和地幔 Xe 的混合线上,同样显示其中 Xe 主 要来自海水中溶解的大气 Xe 和宇宙尘(IDPs)。

与 He 同位素相似, 假设本区结壳中 Xe 主要来自宇宙 尘(Ne_e)和海水中溶解的大气 Xe(Xe_{air}), 根据同位素二元 混合模型, 则 Ne_e所占比例可用下式估算:

式中下标 m 指 实 测 值, air 指 大 气, et 指 地 外 物 质。 (¹³⁴ Xe /¹³⁴ Xe)_{et}和(¹³⁴ Xe /¹³⁴ Xe)_{air}的极端值分别取 2.21 和 2.56,可见结壳中所含原始 Xe(¹³⁴ Xe_{et})的比例变化很大,为 0.00~71.38%,平均 22.04%(表 1)。

至于 Kr 同位素,目前人类对其了解较少,从表 1 可见, 其特征性同位素组成与大气相似,也表明结壳中的 Kr 主要 来自海水中溶解的 Kr。

4 结论

(1)西太平洋富钴结壳主要是水成成因,其中惰性气体来源不同,He绝大多数来自宇宙尘(IDPs),少量来自陆源风成微粒;Ar主要来自海水溶解大气,少量来自风成微粒或沉积岩中建造水;Ne和Xe主要来自海水中溶解大气,少量来自宇宙尘。

(2) 在具三层结构的结壳中,亮煤层(致密层)的惰性 气体同位素相对外层和疏松层有较大的不同,显示大洋磷 酸岩化会改变海洋沉积物的惰性气体同位素组成,如导致⁴ He 的升高和³He/⁴He 的显著降低。

(3)西太平洋富钴结壳玄武岩基岩普遍与富含富含放射性成因⁴He和P的上升洋流或沉积物中建造水发生过水/ 岩反应,释放出较多的成矿元素,有利于富钴结壳的形成和 生长。海底海山玄武岩中较低的He同位素组成可作为富钴 结壳的找矿标志之一。

致谢 样品采集过程中得到国土资源部广州海洋地质调 查局样品室的大力协助,同时得到中国大洋协会周宁处长和 田赤英女士、广州海洋地质调查局杨胜雄总工和黄永样总工 等的大力支持,谨致谢忱!

References

Bai ZM, Yin CQ, Jiang XX, Liu X and Wang SD. 2002. Nanometer properties of oceanic polymetallic nodules and cobalt-rich crusts. Chinese Science Bulletin, 47(15): 1308 - 1311

- Ballentine C J, Burgess R, and Marty B. 2002. Tracing fluid origin, transport and interaction in the crust. In: Porcelli et al(ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 539-614
- Baptiste PJ and Fouquet Y. 1996. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13 N. Geochim. Cosmochim. Acta, 60: 87-93
- Burnard PG, Hu RZ, Turner G and Bi XW. 1999. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta, 63: 1595 - 1604
- Cao Z M, Zheng J B, Li Y G, Ren J G, Xu S J, Wang R C, Shoji T, Kaned H and Kabayashi S. 2002. Geologic and geochemical features of the volatile-rich ore fluid and its tracing and dating in the Xuebaoding Beryl-Scheelite Vein Deposit, China. Science in China (Series D), 45 (8): 719 - 729 (in Chinese)
- Farley KA and Patterson DB. 1995. A 100-kyr periodicity in the flux of extraterrestrial 3He to the sea floor. Nature, 378: 600-603
- Graham D W. 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: characterization of mantle source reservoirs. In: Porcelli *et al*(ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 247 - 317
- He GW, Zhao ZB, Zhu KC, Chen SY, Liang DH, Zhu BD, Zeng RJ and Tao J. 2001. Cobalt-rich Crust Resources in the West Pacific. Beijing: Geological Publishing House, 1 - 92 (in Chinese with English abstract)
- He GW, Xue T, Sun XM, Zhang XH, Zhu KC and Wang SW. 2005. The elemental association characterisitics and the geological significance of Cobalt-rich nodules in the West Pacific Ocean. Bulletin of Mineralogy, Petrology and Geochemistry, 24(2): 125 – 129 (in Chinese with English abstract)
- Hilton DR, Fischer TP and Marty B. 2002. Noble gases and volatile recycling at subduction zones. In: Porcelli *et al* (ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 319-370
- Hou Z Q, Li Y H, Ai Y D, Zhang Q L and Tang S H. 1999. Mantle helium in submarine hydrothermal system in the Okinawa trough: He-Ne isotope evidence. Science in China (Series D), 29: 285 – 292 (in Chinese)
- Hu RZ, Bi XW, Turner G and Burnard P G. 1997. He-Ar isotopic systematics of fluid inclusions in pyrite from Machangqing copper deposit, Yunnan, China. Science in China (series D), 27(6): 503-508 (in Chinese)
- Hu RZ, Zhong H, Ye ZJ, Bi XW, Turner G and Burnard PG. 1998. Helium and argon isotopic geochemistry of Jinding superlarge Pb-Zn deposit. Science in China (series D), 41(4): 442 - 448
- Kendrick MA, Burgess R, Pattrick R A D, et al. 2001a. Fluid inclusion noble gas and halogen veidence on the origin of Cu-Porphyry mineralizing fluids. Geochim. Cosmochim. Acta, 65: 2651-2668
- Kendrick M A, Burgess R, Pattrick R A D, et al. 2001b. Hydrothermal fluid origins in a fluorite-rich Mississippi valley-type district: combined noble gas (He, Ar, Kr) and Halogen (Cl, Br, I) analysis of fluid inclusions from the south Pennine ore field, united Kingdom. Econ. Geol., 97: 435 - 451

- Li YH, Li JC and Song HB. 1999. A comparative study of helium isotope of polymetallic nodules and cobalt crusts. Acta Geoscientia Sinica, 20(4): 378 - 384 (in Chinese with English abstract)
- Mamyrin BA and Tolstikhin IN. 1984. Helium Isotope in Nature. Elsevier, Amsterdam.
- Mao J W, Kerrich, R and Li H Y. 2002. High ³He/⁴ He ratios in the Wangu gold deposit, Hunan province, China: Implications for mantle fluids along the Tanlu deep fault zone. Geochemical Journal, 36: 197-208
- Mao J W, Li YQ, Goldfarb, R. 2003. Fluid inclusion and nobel gas studies of the Dongping gold deposit, Hebei province: A mantle connection for mineralization? Economic Geology, 98 (3): 517 - 534
- Moreir M, Blusztajn J, Curtice J, Hart S, Dick H and Kurz M. 2003. He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth and Planetary Science Letters, 216: 635-643
- Nier AO and Schlutter DJ. 1992. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics, 27: 166 173
- Pan JH and Liu SQ. 1999. Distribution, composition and element geochemistry of Co-rich crusts in the Western Pacific. Acta Geoscientia Sinica, 20 (1): 47 - 54 (in Chinese with English abstract)
- Pan JH, Carlo EHD, Yang Y, Liu SQ and You GQ. 2005. Effect of phosphatization on element concentration of Cobalt-rich ferromanganese crusts. Acta Geologica Sinica (English edition), 79 (3): 349 - 355
- Pepin RO and Porcelli D. 2002. Origin of noble gases in the terrestrial planets. In: Porcelli et al(ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 191-246
- Puteanus D, Halbach P. 1988. Correlation of Co concentration and growth rate-a method for age determination of ferromanganese crusts. Chemical Geology, 69: 73 - 85
- Schlosser P and Winckler G. 2002. Noble gases in ocean waters and sediments. In: Porcelli et al(ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 701 - 730
- Simmons SF, Sawkins FJ and Schulutter DJ. 1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, 329: 429 -432
- Stuart FM, Burnard P, Taylor RP and Turner G. 1995. Resolving mantle and crustal contributions to ancient hydrothermal fluid: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochimica et Cosmochimica Acta, 59: 4663 - 4673
- Sun XM, Norman DI, Sun K, Chen BH and Chen JD. 1999. N₂-Ar-He systematics and source of ore-forming fluid in Changkeng Au-Ag deposit, Central Guangdong, China. Science in China (series D), 42(5): 474 - 481
- Sun XM, Wang M, Xue T, Ma MY and Li YH. 2004. He-Ar isotopic systematics of fluid inclusions in pyrites from PGE-polymetallic deposits in Lower Cambrian black rock series, South China. Acta Geologica Sinica (English Edition), 78(2): 471-475
- Sun X M, Xiong D X, Wang S W, Shi GY, Zhai W. 2006a. Noble gases isotopic composition of fluid inclusions in scheelites collected from

Daping gold mine, Yunnan Province, China, and its metallogenic significance. Acta Petrologica Sinica, 22(3); 725 - 732 (in Chinese with English abstract)

- Sun XM, Xu L, Zhai W, Tang Q, Liang YH, Liang JL and Shen K. 2006b. Noble gases isotopic composition of fluid inclusions in quartz veins and crystals collected from CCSD and Donghai HP-UHP metamorphic rocks. Acta Petrologica Sinica, 22(7): 1999 – 2008 (in Chinese with English abstract)
- Sun XM, Xu L, Liang JL, Tang Q, Liang YH, Zhai W and Shen K. 2006c. Nobel gases isotopic compositions of HP-UHP rocks in Chinese Continental Scientific Drilling (CCSD) project and their constraints on exhumation process. Acta Petrologica Sinica (in press)
- Sun XM, Xue T, He GW, Zhang M, Shi GY, Wang SW and Lu HF. 2006d. Platinum group elements (PGE) and Os isotopic geochemistry of ferromanganese crusts from Pacific Ocean seamounts and their constraints on genesis. Acta Petrologica Sinica (in press)
- Swindle TD. 2002. Martian noble gases. In: Porcelli et al (ed). Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy & Geochemistry, Vol. 47, Washington: 171-190
- Thomas S and Claude JA. 1982. Terrestrial xenology. Earth and Planetary Science Letters, 60; 389 - 406
- Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R and Rubel RP. 2001. Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth and Planetary Science Letters, 184: 671-683
- Wu GH, Zhou HY and Chen HL. 2001a. Progress in research of Cobaltrich crusts. Geological Journal of China Universities, 7(4): 379 389 (in Chinese with English abstract)
- Wu GH, Zhou HY, Yang SF and Chen HL. 2001b. Variation of Fe-Mn oxides minerals assemblage in Co-rich crusts during its growth. Acta Mineralogica Sinica, 21(2): 137 - 209 (in Chinese with English abstract)
- Xue CJ, Chen YC, Wang DH, Yang JM, Yang WG and Zeng R. 2003. The Jinding and Baiyangping deposits, Westnorthern Yunnan: Geological feature, He, Ne and Xe isotope compositions, and metallogenic epoch. Science in China (D), 33(4): 315 - 322(in Chinese)
- Xue T, Sun XM, He GW, Wang SW, Lu HF and Zhang M. 2005. Geochemistry of PGE and Au in ferromanganese crusts from seamounts in the west Pacific Ocean. In: Mao JW and Bierlein FP (ed). Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the Eighth Biennial SGA Meeting. Springer, 1: 207 -210
- Yao D, Zhang LJ, Wiltshire JCW, Chu FY, Du AD, Liu XZ and Yang FG. 2002. PGE and Re-Os isotope compositions and their significances of Co-rich ferromanganese crusts. Marine Geology and Quaternary Geology, 22 (3): 53 - 58 (in Chinese with English abstract)
- Ye XR, Wu MB and Sun ML. 2001. Determination of the noble gas isotopic composition in rocks and minerals by mass spectrometry. Rock and Mineral Analysis, 20(3): 174 - 178 (in Chinese with English abstract)
- Zeng ZG, Qin YS and Zhai SK. 2001. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge. Science in China

(series D). 44 (3): 221 - 228

- Zhai W, Sun X M, He X P, Su L W and Wu Y L. 2006. Noble gas isotopic geochemistry of Axi gold deposit, and Its metallogenic implications, Xinjiang, China. Acta Petrologica Sinica, 22 (10) (in press)
- Zhang HS, Zhao PD, Chen SY and Hu GD. 2001. Mineralizing characteristics of Cobalt-rich ferromanganese nodule and crust in central Pacific Ocean seamount. Earth Science, 26(2): 205 - 209 (in Chinese with English abstract)
- Zhang LJ, Yao D, Cui RY and Qi CM. 1998. A discussion on ferromanganese deposits on the sea floor. Marine Geology and Quaternary Geology. 18 (2): 75 - 80 (in Chinese with English abstract)
- Zhao KD, Jiang SY, Xiao HQ and Nie P. 2002. Origin of ore-forming fluids of the Dachang Sn-polymetallic ore deposit: evidence from helium isotopes. Chinese Science Bulletin. 47(12): 1041-1045
- Zhu KC, Zhao ZB and Li Y. 2001. Cobalt-rich ferromanganese crusts from the MA, ME and MF seamounts of the Magellan seamounts. Marine Geology and Quaternary Geology. 21 (2): 33 - 38 (in Chinese with English abstract)

附中文参考文献

- 曹志敏,李佑国,任建国,李保华,徐士进,王汝成,正路澈也,金田博 彰,小林祥一.2002.雪宝顶绿柱石-白钨矿状矿床富挥发分成 矿流体特征及其示踪与测年,中国科学(D),32(1):64-72
- 何高文,薛婷,孙晓明,张学华,朱克超,王生伟. 2005.西太平洋富 钻结壳元素组合特征及其地质意义,矿物岩石地球化学学报, 24(2):125-129
- 何高文,赵祖斌,朱克超,陈圣源,梁东红,朱本铎,曾瑞坚,陶军. 2001. 西太平洋富钴结壳资源.北京:地质出版社,1-9
- 侯增谦,李延河,艾永德,张绮玲,唐绍华.1999. 冲绳海槽海底活动 热水成矿系统中的地幔氦:氦-氖同位素证据.中国科学,29: 285-292
- 胡瑞忠, 毕献武, Turner G, Burnard PG. 1997. 云南马厂箐铜矿黄铁 矿流体包裹体 He-Ar 同位素体系. 中国科学(D辑), 27(6): 503-508
- 李延河,李金城,宋鹤彬. 1999. 海底多金属结核和富钴结壳的 He 同 位素对比研究. 地球学报, 20(4): 378 - 384
- 潘家华,刘淑琴. 1999. 西太平洋富钴结壳的分布、组分及元素地球 化学. 地球学报, 20(1): 47-54
- 孙晓明,熊德信,王生伟,石贵勇,翟伟. 2006a. 云南大坪金矿白钨 矿惰性气体同位素组成及其成矿意义. 岩石学报,22(3):725 -732
- 孙晓明,徐莉,翟伟,汤倩,梁业恒,梁金龙,沈昆. 2006b. CCSD HP-UHP 变质岩中石英脉和东海水晶流体包裹体惰性气体同位 素组成及其成因指示意义,岩石学报,22(7):1999-2008
- 孙晓明,徐莉,梁金龙,汤倩,梁业恒,翟伟,沈昆.2006c. CCSD中 HP-UHP 岩石稀有气体同位素地球化学及其对板块折返过程的 示踪意义.岩石学报(待刊)

孙晓明,薛婷,何高文,张美,石贵勇,王生伟,陆红锋. 2006d. 太

平洋海山富钴结壳铂族元素(PGE)和 Os 同位素地球化学及其成因意义. 岩石学报(待刊)

- 武光海,周怀阳,陈汉林. 2001a. 大洋富钴结壳研究现状与进展. 高校地质学报,7(4):379-389
- 武光海,周怀阳,杨树峰,陈汉林. 2001b. 富钴结壳生长过程中铁锰 氧化物矿物组合的变化. 矿物学报,21(2):137-209
- 薛春纪,陈毓川,王登红,杨建民,杨伟光,曾荣. 2003. 滇西北金 顶和白秧坪矿床:地质和 He, Ne, Xe 同位素组成及成矿时代. 中国科学(D辑),33(4):315-322
- 姚德,张洁丽,Wiltshire JCW,初凤友,杜安道,刘心中,杨富贵. 2002. 富 Co铁锰结壳铂族元素与铼-锇同位素组成及其意义.海洋地

质与第四纪地质, 22(3)53-58

- 叶先仁,吴茂炳,孙明良. 2001. 岩矿样品中稀有气体同位素组成的 质谱分析. 岩矿测试, 20(3): 174-180
- 张海生,赵鹏大,陈守余,胡光道. 2001. 中太平洋海山多金属结壳 的成矿特征. 地球科学, 26(2): 205 – 209
- 张丽洁,姚德,崔汝勇, 戚长谋. 1998. 海底沉积铁锰矿床形成机制 讨论. 海洋地质与第四纪地质, 18(2): 75-80
- 朱克超,赵祖斌,李扬. 2001. 麦哲伦海山区 MD, ME, MF 海山富钴 结壳特征. 海洋地质与第四纪地质, 21(1): 33 38
- 翟伟,孙晓明,贺小平等. 2006. 新疆阿希低硫型金矿稀有气体同位 素地球化学及其成矿意义. 岩石学报,22(10)(待刊)

2340