王淑红,颜 文,宋海斌等. 末次盛冰期以来南海南部天然气水合物储库变化及其对环境的影响. 地球物理学报,2005,48(5): 1117~1124

Wang S H, Yan W, Song H B, et al. Change of gas hydrate reservoirs in the southern South China Sea from the Last Gacial Maximum to present and its effect on the environment. *Chinese J. Geophys.* (in Chinese), 2005, 48(5): 1117 ~ 1124

末次盛冰期以来南海南部天然气水合物储库变化 及其对环境的影响

王淑红^{1,2,4,5},颜 文^{1,2,4},宋海斌^{3,4},樊栓狮⁴

1 中国科学院南海海洋研究所,广州 510301

2 中国科学院边缘海地质重点实验室,广州 510301

3 中国科学院地质与地球物理研究所,北京 100029

4 中国科学院广州天然气水合物研究中心,广州 510640

5 中国科学院研究生院,北京 100039

摘 要 未次盛冰期以来南海南部海平面及海洋底水温度均发生了很大的变化.为了研究南海南部天然气水合物 稳定带厚度在这个过程中的变化情况及其对环境的影响,我们利用相关的计算公式,并编制了计算稳定带厚度的 程序,在南海南部的南沙海槽、曾母盆地、巴拉望盆地和苏禄海等四个重点海域选取了 35 个点进行末次盛冰期及 目前稳定带厚度的计算.计算结果表明,南海南部末次盛冰期和目前的天然气水合物稳定带厚度分别为 262m 和 233m;甲烷资源量分别为 2.69 ×10¹³ m³ 和 2.39 ×10¹³ m³;水合物资源量分别为 1.64 ×10¹¹ m³ 和 1.46 ×10¹¹ m³. 这说明 自末次盛冰期以来,南海南部稳定带厚度平均减薄了 29m,平均减薄百分比为 12 %,同时释放了大约 3.0 ×10¹² m³ 的 甲烷,这些甲烷对环境产生了较大影响,对末次冰期的结束起了较大作用.

关键词 末次盛冰期,南海南部,天然气水合物,储库,环境

文章编号 0001 - 5733 (2005) 05 - 1117 - 08 中图分类号 P584, P313 收稿日期 2004 - 07 - 06, 2005 - 04 - 16 收修定稿

Change of gas hydrate reservoirs in the southern South China Sea from the Last Glacial Maximum to present and its effect on the environment

WANG Shu-Hong^{1,2,4,5}, YAN Wen^{1,2,4}, SONG Hai-Bin^{3,4}, FAN Shuan-Shi⁴

1 South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

2 Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology & Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510301, China

3 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4 Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China

5 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

Abstract There has been a big change of the sea level and seabed water temperature since the Last Gacial Maximum (LGM) in southern South China Sea. In order to study the change of the thickness of gas hydrate stable zone and its effect on environment, 35 spots from four key areas in the southern South China Sea were

基金项目 中国科学院南海海洋研究所创新领域前沿项目(lyqy200312)、中国科学院知识创新工程重要方向项目(KZCX3-SW-224、KGCX2-SW-309)以及国家 863 计划青年基金(2004AA616090)联合资助.

作者简介 王淑红,女,1977年生,2002年毕业于沈阳农业大学土壤学专业,获硕士学位,现为中科院南海海洋研究所在读博士生,主要从事海洋天然气水合物研究. E-mail:wshhsbq @scsio.ac.cn

selected to calculate it based on relative equation and program. The results show that the thickness of the gas hydrate stable zone are 262m and 233m, the methane resource quantity are $2.69 \times 10^{13} \text{ m}^3$ and $2.39 \times 10^{13} \text{ m}^3$, and the gas hydrate resource quantity are $1.64 \times 10^{11} \text{ m}^3$ and $1.46 \times 10^{11} \text{ m}^3$ in LGM and at present, respectively, indicating the thickness of the stable zone has reduced by 29m, i.e. 12 percent on average and $3.0 \times 10^{12} \text{ m}^3$ methane was released since LGM. This released methane should have greatly affected the environment and even terminated the ice age.

Keywords Last Gacial Maximum (LGM), Southern South China Sea, Gas hydrate, Reservoir, Environment

1 引 言

目前对于气候变化的研究主要集中在大气中温 室气体的变化上. 甲烷是主要的温室气体之一, 它 的温室效应在 100 年范围内是二氧化碳的 23 倍,在 20年范围内是二氧化碳的 62 倍⁽¹⁾、如果大气中增 加1.5 ×10⁻⁶的甲烷就会使温度平均增加1.3^[2]. 最近,很多学者已经开始进行深海沉积物以及冰芯 中的地球化学相关研究,并用这些研究来解释地质 时期的快速气候变化,同时寻找与大气中温室气体 变化有关联的控制因素^[3,4].这些研究者普遍认为 冻土带和海洋沉积物中天然气水合物的形成和分解 是影响大气中温室气体变化的一个关键因素. 天然 气水合物是由天然气(主要是甲烷)和水组成的结晶 物质,它在适当的温度压力条件下可以稳定存在,温 度和压力的变化都可能引起其分解释放甲烷^[5,6]. 全球大陆边缘沉积物中的天然气水合物分解释放的 大量甲烷进入海洋后将引起海洋中的溶解碳或大气 圈中的甲烷含量的改变^[7~9].目前,海洋和陆地的 碳同位素记录表明了甲烷水合物是影响全球气候变 化的一个重要因素. Dickens et al.^[3]指出古新世末 增温事件中全球的¹³C发生了-2.5%的偏移. Jahren et al.^[10]根据下白垩系 Aptian 的陆地记录认为 甲烷水合物中释放的甲烷可以到达大气圈,而且,已 在陆地植物组织中发现¹³C发生了-5%的偏移. 还有些研究者[11] 认为从天然气水合物储库中释放 的大量甲烷可能导致了末次冰期的结束或产生了较 大影响. 陈多福等^[12]指出在全球气温快速上升的背 景下,青藏高原气温正以 0.03 /a 的速度上升,不 仅直接影响了天然气水合物稳定的温度,而且将间 接影响沉积剖面的压力,导致水合物失稳.

天然气水合物的稳定性受温度和压力等条件的 影响. 温压的变化将引起天然气水合物与天然气之 间的相互转化,这一过程是一动态过程,影响了沉积 圈-水圈-大气圈中甲烷和碳的平衡,并在地质时 期曾多次发生过,对全球气候变化及全球碳循环产 生了重要影响^[13].近年来,有关地质历史演变中的 天然气水合物演化研究很多^[14-18].因此,根据天然 气水合物形成、分解等过程开展天然气水合物演化 过程模拟,并与实际资料进行对比,明确天然气水合 物在全球碳循环中的作用,分析地质历史演变中天 然气水合物-天然气体系动态演化特征是非常有意 义的.

末次冰期是地质历史上最近的一次全球性冰 期,根据氧同位素记录可以将17~18ka作为末次冰 期最盛时期,目前已有很多学者对末次冰期结束的 原因进行了相关研究. 研究表明末次冰期的结束伴 随着大气中甲烷和二氧化碳浓度的增加^[19].最初大 气中的甲烷浓度是缓慢增加的,但在冰期结束时出 现了突然的快速增加^[20].天然气水合物分解对全球 变化的影响是在 20 年前提出的^[21,22],近期引起了广 泛讨论^[23].现已提出三种水合物分解的触发机制. 极地地区地表温度^[24] 与海洋地区底水温度的升 高^[22]均会导致天然气水合物稳定带底界的温度超 过天然气水合物的稳定条件. 在地质历史时期海平 面下降^[24]和快速沉积^[25]引起的压力变化也会使天 然气水合物不稳定. 目前的相关研究[26] 表明海底滑 塌也会引起天然气水合物分解.由于甲烷和二氧化 碳的正常排放并不会引起大气中温室气体的突然、 快速的增加,因此天然气水合物所含温室气体(主要 是甲烷)的释放及随后在大气中氧化成二氧化碳被 认为是引起地质历史时期全球尺度的气候变化 原因.

末次盛冰期(18ka)以来海平面及海洋底水温度 的变化,极大地影响了南海南部天然气水合物的稳 定性,目前国内很多研究者虽然已经对南海天然气 水合物稳定带厚度进行了估算^[27],但有关地质历史 中南海天然气水合物储库变化对环境影响的研究还 未见报道.因此,本文将对末次盛冰期以来南海南 部天然气水合物的稳定性开展研究,探讨末次盛冰 期水合物的分解对环境的影响,认识天然气水合物 在末次盛冰期 - 间冰期转化过程中形成和分解的动 态演化过程,希望能为未来的天然气水合物开发利 用以及分析其在全球气候变化、碳循环中所起的作 用提供一定的参考.

2 地质背景

南海是西太平洋最大的边缘海,面积 350 ×10⁴ km²,海底地势自边缘向中心呈阶梯状下降,平均水 深 1212m,最大水深 5377m. 南部海域(图 1)位于西 太平洋 - 东印度洋暖池(统称为西太平洋暖池)的中 间过渡区,具典型热带边缘海的海洋环境特征,周边 有巴拉巴克海峡、塞腊散海峡和马六甲海峡等与苏 禄海、爪哇海峡和印度洋相接.主要包括泰国湾盆 地群、马来盆地、西纳土纳盆地、曾母盆地、南沙海 槽、巴拉望盆地等.南海南部地貌复杂,发育台地、 高原、槽谷体系及岛礁等,适合于沉积物的堆积及有 机质的保存,沉积层厚度均大于 500m,最大达 10000m;油气资源丰富^[28,29].

极其发育的沉积盆地、有利的水深和充足的物

源供应条件以及地震剖面揭示的 BSR (Bottom Simulating Reflector,似海底反射)、泥底辟和断裂构造等综合因素显示,南海南部具有天然气水合物形成发育的有利条件^[27,30].目前普遍认为南海陆坡区蕴藏着丰富的天然气水合物资源.在南海南部,基于地震资料的分析,1984年就在我国南沙海槽发现了可能存在天然气水合物的证据 BSR^[31],主要分布于南沙海槽东南坡(水深 1500~2800 m)海底以下约300~600 m 处^[32].1998年我国学者报道在南海北部发现了 BSR^[33],随后许多学者对其分布区域、成矿条件和远景以及地球物理识别方法等作了初步分析^{[28,34~39],1)}.张光学等^[28]根据水合物成矿的地质构造背景、温压条件,以及对已有地震剖面资料的初步

判读结果,认为南沙地块断陷盆地存在 BSR. 祝有 海等^[30]认为在南沙群岛海域东南部、冲绳海槽等地 曾多次重复出现临震前的增温异常,预示着海底天 然气水合物存在的可能. 樊开意²⁾对南沙群岛海区 17000 余公里地震剖面进行了初步分析,发现一些 地方的剖面存在 BSR.

自末次盛冰期(18ka 年)以来,南海南部适于水 合物稳定存在的各种条件都发生了极大的变化.如 末次冰期与间冰期的南海古地理构架产生了明显的 变化.冰期阶段,南海海域明显缩小,特别是距今约 18ka的末次冰期鼎盛时期,南海海平面下降幅度最 大可达 100~130m^[40],由此导致南边的卡里马塔海 峡、马六甲海峡、东边的巴拉巴克海峡及北东向的台

¹⁾ 阎 贫. 南沙海区新生代地层、构造与资源. 见:周蒂主编. 南沙海区构造演化及其动力学研究报告. 中国科学院南海所,2000,50~58 2) 樊开意. 利用地震反射波特征识别天然气水合物的探讨. 见:天然气水合物调查动态、勘探方法和成果研讨会. 广州海洋地质调查局,2001

湾海峡的关闭,而巴士海峡、民都洛海峡也变浅和变 窄;同时海洋底水温度比目前低大约2^[41,42],这些 变化对海底天然气水合物的稳定产生了很大的 影响.

3 天然气水合物稳定带厚度的计算方法

3.1 稳定带厚度

用于计算南海南部天然气水合物稳定带厚度的 地温梯度是将研究区域的热流值除以热导率获得 的,而水合物稳定带深度范围内沉积物的平均热导 率公式^[43]可表示为

 $k = 1.07 + (5.86 \times 10^{-4}) Z - (3.24 \times 10^{-7}) Z^{2},$ (1)

其中 Z 是距海底的深度(m); k 是平均热导率 (W/m),海底沉积层的平均热导率一般为 1W/ m. 地温梯度的计算为

$$G = Q/k , \qquad (2)$$

其中 *G* 是地温梯度(/m); *Q* 是热流(mW/m²). 根 据已知的热流值和热导率,可以通过方程(1)、(2)计 算得到研究区的地温梯度.

稳定带厚度的计算为

$$T = T_{\rm W} + GZ, \qquad (3)$$

其中 *T* 为某一深度的温度(); *T*w 为海底温度 (); *Z* 为稳定带厚度(m). Miles^[44]提出的天然气 水合物稳定存在的温度 - 压力方程为

 $P = 2.8074023 + aT + bT^{2} + cT^{3} + dT^{4}, (4)$ 其中 $a = 1.559474 \times 10^{-1}, b = 4.8275 \times 10^{-2}, c =$ - 2.78083 ×10⁻³, $d = 1.5922 \times 10^{-4}$. 压力的计算采 用静水压力(P)^[45],公式为

$$P = P_a + s_g(H + Z) \times 10^{-6}$$
, (5)
其中 P_a 为大气压(0.101325MPa); H为水深(m); g
为重力加速度(9.8m/s²); s为平均海水密度.将方

程(3)、(4)、(5) 联立求解可以得到水合物稳定带厚度 Z.

3.2 天然气水合物及其中的天然气资源量

南海南部天然气水合物资源量用如下公式 计算:

 $V = A \quad Z \quad SR , \tag{6}$

式中 v 为天然气水合物的体积(m^3);A 为天然气水 合物分布面积(km^2); Z 为水合物稳定带平均厚度 (m); 为沉积物的平均孔隙度;S 为天然气水合物 在孔隙中的饱和度;R 是水合物可能产出区比例(聚 集率). 南海南部沉积物的孔隙度约为 50 %^[46],国 际上对已获得水合物地区估计的水合物孔隙饱和度 S 为 0. $5^{[46]}$. 南海南部天然气水合物稳定带厚度平 均为 233m,而南海南部能够满足水合物稳定存在的 面积大约为 50 ×10⁴ km²,水合物可能产出区(聚集 率) R 为 0.005^[37,46,47].

天然气水合物中甲烷资源量 Q(标准状态下天 然气水合物中天然气体积)为

$$Q = VE, \qquad (7)$$

其中 *v* 代表水合物中的甲烷量(m³); *E* 为天然气水 合物的容积倍率,取理论值 164^[46].

由于 Jeffrey et al.^[41]认为末次盛冰期时黑海的 海平面比目前低 150m,末次盛冰期时南海的海平面 下降幅度最大可达 100 ~ 130m^[40],在本文的计算过 程中取其平均值(115m)^[48]计算;末次冰期时黑海底 部水温度比目前低 2 或 5.5^[41],南海底层水温比 目前低 1 多^[42].本文在计算过程中应用末次冰期 时南海的海底水温比目前低 2 . 天然气水合物稳 定带厚度计算的地温梯度以现今的海域地温梯度测 定值计算.根据上述数据,在南海的南沙海槽、曾母 盆地、巴拉望盆地和苏禄海等 4 个海域内选取 35 个 数据点,对 4 个研究海域进行了末次盛冰期中稳定 带厚度的计算,所有相关数据及计算结果见表 1.

表 1 南海南部天然气水合物稳定带厚度计算所用相关数据

Table 1 The correlative data of calculation the thickness of gas hydrate stable zone	Table 1	ve data of calculation the thickness of gas hydrate stable zone
--	---------	---

研究 区域	经度 (纬度 (目前水深 (m)	末次冰期 水深(m)	目前海底 温度()	末次冰期 海底温度 ()	地温梯度 (/m)	目前稳定 带厚度(m)	末次盛冰 期稳定带 厚度(m)	减薄厚度 (m)	减薄 百分比(%)
*	113.850	6.583	2845	2730	2.05	0.05	0.065	289.090	316.649	27.559	8.70
Ĥ 沙海槽	114.250	6.750	2845	2730	2.01	0.01	0.056	338.319	370.563	32.244	8.70
	114.667	6.967	2888	2773	2.16	0.16	0.064	293.624	321.680	28.056	8.72
	115.117	7.133	2836	2721	2.42	0.42	0.058	318.424	349.476	31.052	8.89
	114.017	6.000	2709	2594	2.14	0.14	0.027	716.967	787.464	70.497	8.95

续表1

研究

区域

曾

母

盆

地

经度

()

111.050

111.780

110.620

110.550

纬度

()

7.120

5.670

7.080

6.350

目前水深 (m)	末次冰期 水深(m)	目前海底 温度()	末次冰期 海底温度 ()	地温梯度 (/m)	目前稳定 带厚度(m)	末次盛冰 期稳定带 厚度(m)	减薄厚度 (m)	减薄 百分比(%)
1816	1701	2.40	0.40	0.115	129.627	143.528	13.901	9.69
1088	973	3.84	1.84	0.100	96.310	109.018	12.708	11.66
1803	1688	2.41	0.41	0.103	144.710	160.302	15.592	9.73
1591	1476	2.60	0.60	0.079	177.033	197.040	20.007	10.15
1907	1792	2.38	0.38	0.046	348.478	386.331	37.853	9.80
1517	1402	2.67	0.67	0.043	331.433	370.584	39.151	10.56
2185	2070	3.16	1.16	0.113	136.861	151.661	14.800	9.76
1667	1552	3.93	1.93	0.097	131.817	148.020	16.203	10.95
1380	1265	5.02	3.02	0.078 〇	133.019	152.156	19.137	12.58

щ	111.217	7.550	1907	1792	2.38	0.38	0.046	348.478	386.331	37.853	9.80
	112.483	5.850	1517	1402	2.67	0.67	0.043	331.433	370.584	39.151	10.56
	117.150	8.850	2185	2070	3.16	1.16	0.113	136.861	151.661	14.800	9.76
	118.133	10.650	1667	1552	3.93	1.93	0.097	131.817	148.020	16.203	10.95
	118.717	10.633	1380	1265	5.02	3.02	0.078 🔿	133.019	152.156	19.137	12.58
巴	118.467	10.433	1380	1265	5.02	3.02	0.066	159.208	182.300	23.092	12.67
拉	118.567	10.667	1380	1265	5.02	3.02	0.090	114.210	130. 537	16.327	12.51
望	118.067	9.917	1640	1525	4.44	2.44	0.062	200.814	227.045	26.231	11.55
盆	116.817	8.283	1966	1851	3.53	1.53	0.075	194.116	216.422	22.306	10.31
地	118.250	10.200	1640	1525	4.44	2.44	0.031	430.034	487.787	57.753	11.84
	117.867	9.717	1373	1258	5.31	3.31	0.028	404.081	467.542	63.461	13.57
	118.317	10.250	1380	1265	5.02	3.02	0.066	159.208	182.300	23.092	12.67
	117.783	9.517	1373	1258	5.31	3.31	0.071	142.206	163.401	21.195	12.97
	119.000	3.750	3826	3711	3.54	1.54	0.065	297.406	325.745	28.339	8.70
	119.550	3.500	4159	4044	3.48	1.48	0.025	832.899	910.641	77.742	8.54
	117.983	8.267	933	818	7.67	5.67	0.039	125.442	160.083	34.641	21.64
	119.933	10.333	1318	1203	7.68	5.68	0.070	103.298	124.215	20.917	16.84
	119.650	10.083	1954	1839	7.22	5.22	0.051	213.618	247.241	33.623	13.60
苏	118.333	7.467	2350	2235	8.45	6.45	0.046	238.705	277.374	38.669	13.94
禄	120.940	8.352	4494	4379	6.73	4.73	0.096	177.857	197.073	19.216	9.75
海	119.580	7.723	4055	3940	10.05	8.05	0.109	118.452	135.173	16.721	12.37
	120.517	7.350	4521	4406	6.50	4.50	0.093	186.683	206.542	19.859	9.61
	120.150	6.683	4567	4452	5.90	3.90	0.074	244.947	270.060	25.113	9.30
	118.550	6.667	1325	1210	8.21	6.21	0.083	79.626	96.912	17.286	17.84
	118.417	6.483	1325	1210	8.21	6.21	0.083	79.626	96.912	17.286	17.84
	118.883	6.050	1110	995	8.45	6.45	0.074	67.198	84.798	17.600	20.76

结果与讨论 4

7

4.1 南海南部天然气水合物稳定带厚度

从表1可以看出,我们所选定的4个海域的35 个数据点的现今水深均大于 900m,南海南部适于水 合物形成的海域大约有 (50×10^4) km². 以现今的水 深和海底温度、地温梯度计算,整个南海南部目前的 水合物稳定带厚度变化范围大约为 67~833m.稳定 带平均厚度大约为 233m,水合物约为 1.46 ×10¹¹ m³.水合物中的甲烷资源量约为 2.39 ×10¹³ m³ (表 1). 末次盛冰期时的海平面比现今低约 115m,这就 使得沉积物中的压力条件与目前相比变小.因此, 仅从海平面降低导致的压力变小考虑,水合物稳定 带厚度与目前相比是减薄的. 但海平面下降 115m 的同时,海洋底水温度比现今下降了2 .海洋底水 温度下降造成的水合物稳定带厚度增加要比海平面 下降造成的厚度减薄的作用更强烈,同时考虑温度 和压力下降因素 ,末次盛冰期时的稳定带厚度与目 前相比是增大的,整个海域的稳定带厚度约为85~ 911m,平均厚度为 262m,水合物中的甲烷资源量和 水合物资源量分别增加到 2.69 ×10¹³ m³ 和 1.64 × 10^{11} m³ (表 1).

由于末次盛冰期时海平面下降 115m 和底水温 度降低 2 .因此目前南海南部水合物储库与末次 盛冰期时相比是减少的,各个数据点的稳定带厚度 的减薄百分比均大于 8.5%,平均减薄了大约 12%; 同时天然气水合物中的甲烷资源量和天然气水合物 资源量分别减少了 3 ×10¹² m³ 和 1.8 ×10⁹ m³.

4.2 末次盛冰期以来南海南部稳定带厚度的变化 及其对环境的影响

南海南部现今的天然气水合物稳定带平均厚度 比末次盛冰期时薄 29m,减薄了 8.54 %~21.64 %, 平均约12%,也就是说末次盛冰期以来南海南部约 12 %的水合物发生了分解. 计算结果显示从末次盛 冰期到现在的间冰期过程中释放的甲烷量大约为 3 ×10¹²m³. Jeffrey et al.^[41]认为末次冰期时黑海海平 面比现在的低 150m,海底温度比现在的低 2 或 5.5 ,他们根据这些假设计算得到黑海末次冰期时 天然气水合物储库比目前大 62 % (5.5)和 15 % (2). Mienert et al.^[49]对比了挪威大陆边缘现今水 合物稳定带与上次冰期最盛期的模型,研究表明自 末次冰期最盛期以来,有大约 8.5 %的天然气水合 物被分解了,我们的计算结果可以与他们的结果进 行对比.

由于末次盛冰期以来南海南部天然气水合物稳 定带厚度减薄了大约 29m,同时释放了大约 3 ×10¹² m³的甲烷,而格陵兰冰芯记录^[50,51]表明末次冰期时 的海水温度出现了非常快速的增加,这种快速变化 必然会引起天然气水合物的迅速分解,进而引起海 平面的升高,最终使水合物分解释放的天然气进入 海洋和大气圈. Kennett et al.^[52,53]也指出很多地质 证据表明冰期和冰退期结束时甲烷的突然增加很可 能是由甲烷水合物分解引起的,同时末次冰期时低 海平面条件下海水温度的快速变化引起的甲烷水合 物分解导致了大气中甲烷含量的增加.因此,通过 分析计算所得到的数据我们认为,末次盛冰期以来, 由于海底的火山活动等因素造成全球海洋底水温度 的增加,从而导致了天然气水合物分解释放甲烷,而 产生的甲烷进一步促使海底温度的增加,温度增加 后使冰川开始不断的融化,由于水合物分解及其他 一些因素使冰期结束^[7,9,11,24];而冰川融化又使得海 平面上升,海平面上升到一定程度后阻止了天然气 水合物的分解,最后造成了今天的情形.因此可以 认为天然气水合物分解释放的甲烷对末次冰期的结 束起了较大作用,而天然气水合物能否稳定存在与 水深、底层水的温度有极强的相关关系,而其他因素 如压力、地温梯度、孔隙水盐度、天然气成分等也与 其有关.

5 结 论

对南海南部末次盛冰期和目前的天然气水合物 稳定带厚度进行了计算,并分析了末次盛冰期以来 所发生的变化.在计算过程中假定南海南部末次盛 冰期以来海平面平均上升了115m,底水温度增加了

通过计算得出以下认识.
 南海南部目前的天然气水合物稳定带厚度变化

范围为 67~833m,平均厚度大约为 233m,甲烷资源 量和水合物资源量分别为 2.39 ×10¹³ m³和 1.46 × 10¹¹m³.

末次盛冰期时天然气水合物稳定带厚度变化范 围为 85~911m,平均厚度大约是 262m,甲烷资源量 和水合物资源量分别增加到 2.69 ×10¹³ m³和 1.64 × 10¹¹ m³.

自末次盛冰期以来南海南部天然气水合物稳定 带厚度减薄了 29m,即平均减薄了 12 %;同时天然气 水合物中释放了大约 3.0 ×10¹²m³的甲烷,这些甲烷 对末次冰期结束起了较大作用.

虽然我们已经讨论了末次盛冰期以来南海南部 天然气水合物储库的变化情况,但由于目前国内外 研究者对于天然气水合物分解释放甲烷进入水圈和 大气圈的机制还不是很清楚,所以还不能确定末次 盛冰期以来天然气水合物释放的甲烷到底有多少可 以进入水圈和大气圈,在今后的研究中,我们将会进 一步讨论天然气水合物及其分解释放的甲烷在全球 碳循环中的转变过程.

参考文献(References)

- [1] Ehhalt D, Prather M, Dentener F, et al. Atmospheric chemistry and greenhouse gases. In: Houghton J T, Ding P, Griggs D J eds. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Pannel on Climate Change. Cambridge University Press, 2001. 239 ~ 287
- [2] Donner L, Ramanathan V. Methane and nitrous oxide: Their effects on terrestrial climate. J. Atmos. Sci., 1980, 37: 119~124
- [3] Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene : simulating first-order effect of massive dissociation of oceanic methane hydrate. *Geology*, 1997, 25: 259 ~ 262
- [4] Katz M E, Pak D K, Dickens G R, et al. The source and fate of massive carbon input during the latest Paleocene thermal maximum. *Science*, 1999, 286: 1531 ~ 1533
- [5] Chen D F, Cathles L M. A kinetic model for the pattern and amounts of hydrate precipitated from a gas steam: Application to the Bush Hill vent site, Green Canyon Block 185, Gulf of Mexico. J. Geophys. Res., 2003, 108 (B1): 2058
- [6] Cathles L M, Chen D F. A compositional kinetic model of hydrate crystallization and dissolution. J. Geophys. Res., 2004, 109: B08102
- [7] Paull C K, Ussler W, Dillon W P. Is the extent of glaciation limited by marine gas-hydrates? *Geophysical Research Letters*, 1991, 18: 432~434
- [8] Dickens G R, O Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon excursion at the end of the Paleocene. *Paleoceanography*, 1995, 10: 965 ~ 971

- [9] Haq B. Cas hydrates: Greenhouse nightmare? Energy panacea, or pipedream? GSA Today, 1998, 8: 1~6
- [10] Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. *Geology*, 2001, 29: 159~162
- [11] Nisbet E G. The end of the ice age. Canadian Journal of Earth Sciences, 1990, 27: 148 ~ 157
- [12] 陈多福,王茂春,夏 斌.青藏高原冻土带天然气水合物的形成条件与分布预测.地球物理学报,2005,48(1):164~171
 Chen D F, Wang M C, Xia B. Formation condition and distribution prediction of gas hydrate in Qinghai-Tibet Plateau permafrost. *Chinese J. Geophys.* (in Chinese), 2005, 48(1):164~171
- [13] 宋海斌. 天然气水合物体系动态演化研究(): 地质历史演 变. 地球物理学进展, 2003, 18(2): 188~196
 Song H B. Researches on dynamic evolution of gas hydrate system (1): its development in geological history. *Progress in Geophysics* (in Chinese), 2003, 18(2): 188~196
- [14] Kennedy M J , Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following earth 's coldest intervals? *Geology*, 2001, 29: 443 ~ 446
- [15] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. *Nature*, 2000, 406: 392 ~ 395
- [16] Norris R D, Rähl U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. *Nature*, 1999, 401: 775 ~ 778
- [17] Bains S, Corfield R M, Norris R D. Mechanisms of climate warming at the end of the Paleocene. Science, 1999, 285: 724 ~ 727
- [18] Jacobsen S B. Gas hydrates and deglaciations. Nature , 2001 , 412 : $691 \sim 693$
- [19] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. *Nature*, 1999, **399**: 429~436
- [20] Monnin E, Inderm ühle A, Dällenbach A, et al. Atmospheric CO_2 concentrations over the last glacial termination. *Science*, 2001, **291**: 112 ~ 114
- [21] MacDonald G J. The Long-term Impacts on Increasing Atmospheric Carbon Dioxide Levels. Ballinger: Cambridge, M A, 1982
- [22] Chamberlain J W, Foley H M, MacDonald GJ, et al. Climate effects of minor atmospheric constituents. In: Clark W C ed. Carbon Dioxide Review, 1982. New York: Oxford Univ. Press, 1983. 255 ~ 277
- [23] Brewer P G. Gas hydrates and global climate change. In: Holder G
 D, Bishnoi P R eds. Gas Hydrates: Challenges for the Future. Ann.
 N. Y. Acad. Sci., 2000, 912: 195 ~ 199
- [24] MacDonald G J. Role of methane clathrates in past and future climates. Clim. Change, 1990, 16: 247 ~ 281
- [25] Kvenvolden KA, Barnard LA, Hydrates of natural gas in continental margins. In: Watkens J S, Drake CL eds. Studies in Continental Margin Geology. Am. Assoc. Pet. Geol. Mem., 1983, 34: 631 ~ 640

- [26] Katz M E, Pak D K, Dickens G R, et al. The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, 1999, 286: 1531 ~ 1533
- [27] 陈多福,李绪宣,夏 斌. 南海琼东南盆地天然气水合物稳定 域分布特征及资源预测. 地球物理学报,2004,47(3):483~ 489
 Chen D F, Li X X, Xia B. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea. *Chinese J. Geophys.* (in Chinese), 2004, 47(3):483~489
- [28] 张光学,黄永祥,祝有海等.南海天然气水合物的成矿远景. 海洋地质与第四纪地质,2002,22(1):75~81
 Zhang G X, Huang Y X, Zhu Y H, et al. Prospect of gas hydrate resources in the South China Sea. *Marine Geology and Quaternary Geology* (in Chinese), 2002, 22(1):75~81
- [29] 吴必豪,张光学,祝有海等.中国近海天然气水合物的研究进展.地学前缘,2003,10(1):177~189

Wu B H, Zhang G X, Zhu Y H, et al. Progress of gas hydrates investigation in China offshore. *Earth Science Frontiers* (in Chinese), 2003, 10(1): 177 ~ 189

- [30] 祝有海,张光学,卢振权等. 南海天然气水合物成矿条件与 找矿前景.石油学报,2001,22(5):6~10
 Zhu Y H, Zhang G X, Lu Z Q, et al. Cas hydrate in the South China Sea: background and indicators. Acta Petrolei Sinica (in Chinese),2001,22(5):6~10.
- [31] 卢振权,强祖基,吴必豪.利用卫星热红外遥感探测南海天然气水合物.地质学报,2002,76(1):100~106
 Lu Z Q, Qiang Z J, Wu B H. The detecting gas hydrate by satellite based thermal infrared scanning images in South China Sea. *Journal of Geology* (in Chinese), 2002, 76(1): 100~106
- [32] Berner U, Faber E. Hydrocarbon gases in surface sediments of the South China Sea. In: Jin X, Kudrass H R, Pautot G eds. Marine Geology and Geophysics of the South China Sea. Beijing: China Ocean Press, 1992. 199 ~ 211
- [33] 姚伯初. 南海北部陆缘天然气水合物初探. 海洋地质与第四纪地质, 1998, 18(4):11~18
 Yao B C. Crust structure of the northern margin of the South China Sea and its tectonic significance. *Marine Geology and Quaternary Geology* (in Chinese), 1998, 18(4):11~18
- [34] 宋海斌,耿建华,WONG How-Kin等.南海北部东沙海域天然气水合物初步研究.地球物理学报,2001,44(5):687~694
 Song H B, Geng J H, Wong H K, et al. A preliminary study of gas hydrates in Dongsha region north of South China Sea. *Chinese J*. *Geophys*. (in Chinese), 2001,44(5):687~694
- [35] Wu B H, Zhu Y H, Wang J Q, et al. Cas hydrate in the South China Sea: Reviews and prospect. EOS, Transactions, AGU, 2000, 81(22): 66
- [36] 陈汉宗,周蒂.天然气水合物与全球变化研究.地球科学进展,1997,12(1):37~42
 Chen H Z, Zhou D. The study of gas hydrates and its relation with global changes. Advance in Earth Sciences (in Chinese), 1997, 12 (1):37~42
- [37] 姚伯初. 南海的天然气水合物矿藏. 热带海洋学报, 2001, 20

1124

(2):20~28

Yao B C. The gas hydrate in the South China Sea. Journal of Tropical Oceanography (in Chinese), 2001, $20 (2) : 20 \sim 28$

- [38] 祝有海,吴必豪,卢振权.中国近海天然气水合物找矿前景. 矿床地质,2001,20(2):174~180
 Zhu YH, Wu BH, Lu ZQ. The prospecting for gas hydrate offshore China. *Mineral Deposits* (in Chinese), 2001,20(2):174~180
- [39] 马在田,耿建华,董良国等.海洋天然气水合物的地震识别方法研究.海洋地质与第四纪地质,2002,22(1):1~8
 Ma Z T, Geng J H, Dong L G, et al. Seismic recognition studies on marine gas hydrate. *Marine Geology and Quaternary Geology* (in Chinese),2002,22(1):1~8
- [40] 中国科学院南沙综合科学考察队.南沙群岛及其临近海区第 四纪沉积地质学.武汉:湖北科学技术出版社,1993.1~383 The Multidisciplinary Oceanographic Expedition Team of Academia Sinica to Nansha Islands. Quaternary Sedimentary Geology of Nansha Islands and Adjacent Sea Area. Wuhan: Hubei Science and Technology Press, 1993.1~383
- [41] Jeffrey P, Atanas V, Lyobomir D. Changes of the Black Sea gas hydrate reservoir from the Last Gacial Maximum to present. Proceeding of the Fourth International Conference on Gas Hydrates, Yokohama, May 2002. 19~23
- [42] Kenast M, Steinke S, Stattegger K, et al. Synchronous tropical South China Sea SST change and Greenland warming during deglaciation. *Science*, 2001, 291: 2132 ~ 2134
- [43] Davis E E, Hyndman R D, Villinger H. Rates of fluid expulsion across the northern Cascadia accretionaty prism: constraints from new heat flow and multichannel seismic reflection data. J. Geophys. Res. 1990, 95: 8869 ~ 8889
- [44] Miles P R. Potential distribution of methane hydrate beneath the European continental margins. *Geophysical Research Letters*, 1995, 22 (23): 3179 ~ 3182
- [45] 宋海斌, 江为为, 张文生等. 天然气水合物海洋地球物理研

究进展.地球物理学进展,2002,**17**(2):224~229

Song H B, Jiang W W, Zhang W S, et al. Progress on marine geophysical studies of gas hydrates. Progress in Geophysics (in Chinese), 2002, 17(2): $224 \sim 229$

- [46] 左藤干夫等.天然气水合物甲烷量及资源量的计算.李日辉 摘译.海洋地质动态,1999,15(9):5~19
 Mikio Satoh, et al. Estimation of amount of methane and resources of natural gas hydrates. Li R H translation. *Marine Geology Letters* (in Chinese),1999,15(9):5~19
- [47] 曾维平,周蒂.GIS 辅助估算南海南部天然气水合物资源 量.热带海洋学报,2003,22(6):35~45
 Zeng W P, Zhou D. GIS aided estimation of gas hydrate resources in Southern South China Sea. Journal of Tropical Oceanography (in Chinese),2003,22(6):35~45
- [48] Hantoro W S. The Sunda and Sahul continental platform: lost land of the Last Gacial continent in the S E Asia. *Quat Inter* 'l, 1995, 29/30: 129 ~ 134
- [49] Mienert J , Andreassen K, Posewang J , et al. Changes of the hydrate stability zone of the Norwegian margin from glacial to interglacial times. In: Holder GD, Bishnoi P R eds. Cas Hydrates: Challenges for the Future. Ann. N. Y. Acad. Sci., 2000, 912: 200 ~ 210
- [50] Severinghaus J P, Sowers T, Brook E J, et al. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. *Nature*, 1998, 391: 141 ~ 146
- [51] Severinghaus J P, Brook EJ. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. *Science*, 1999, 286: 930 ~ 933
- [52] Kennett J P, Cannariato K G, Hendy IL, et al. Methane hydrates in quaternary climate change. AGU, 2003. 1 ~ 217
- [53] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. *Science*, 2000, 288: 128 ~ 133