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Abstract

Purpose — In many scientific and engineering fields, large-scale heat transfer problems with
temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer
from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of
this paper is to develop and present a new combined methodology to solve large-scale heat transfer
problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales.

Design/methodology/approach — The theoretical approach is used to determine the thickness and
the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some
important information can be provided accurately for establishing a numerical model of the crustal
scale. The numerical approach is then used to simulate the detailed structures and complicated
geometries of the continental crust on the crustal scale. The main advantage in using the proposed
combination method of the theoretical and numerical approaches is that if the thermal distribution in
the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can
result in a significant reduction in computer efforts.

Emerald Findings - From the ore body formation and mineralization points of view, the present analytical
and numerical solutions have demonstrated that the conductive-and-advective lithosphere with
variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest

mg:zgxﬁgm‘t‘]“f‘;‘r‘“‘ lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the
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shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant
effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials
from the mantle may further reduce the thickness of the lithosphere.

Originality/value - The present analytical solutions can be used to: validate numerical methods for
solving large-scale heat transfer problems; provide correct thermal boundary conditions for
numerically solving ore body formation and mineralization problems on the crustal scale; and
investigate the fundamental issues related to thermal distributions within the lithosphere. The
proposed finite element analysis can be effectively used to consider the geometrical and material
complexities of large-scale heat transfer problems with temperature-dependent fluid densities.

Keywords Numerical analysis, Boundary layers, Heat transfer
Paper type Research paper

1. Introduction

Over the past several decades, computer methods have been found more and more
applications to geological problems. For example, on the mantle scale, numerical
methods were widely used to simulate convective flow and heat transfer in the mantle
of the Earth (Richter, 1973; Buck and Parmentier, 1986; Doin ef al., 1997). On the crustal
scale, numerical methods were developed and extensively used to solve ore body
formation and mineralization problems within the upper crust of the Earth (Yeh and
Tripathi, 1989; Phillips, 1991; Nield and Bejan, 1992; Raffensperger and Garven, 1995a,
b; Zhao et al., 1997, 1998, 1999, 2000, 2001, 2002, 2003). Since the ore body forming
process is strictly associated with material deformation, pore-fluid flow, heat transfer,
mass transport and related chemical reactions, sophisticated numerical methods were
developed to solve the fully coupled problem between the material deformation,
pore-fluid flow, heat transfer, mass transport and related chemical reactions in
hydrothermal systems within the crust of the Earth. Since the thickness of the mantle
(i.e. a few thousands of kilometers) is much greater than that of the crust (L.e. only a few
tens of kilometers), the crust acts as the skin of a huge body in the whole crust-mantle
system. From the computational science point of view, the large differences in
thickness between the mantle and the crust create a severe difficulty, when the whole
crust-mantle system is modeled simultaneously in a computer simulation. For instance,
the finite element mesh designed to produce a useful solution for the mantle cannot
give any meaningful solution to the crust, because the mesh scale is too large to model
the crustal details. On the other hand, the finite element mesh designed to simulate the
detailed phenomena within the crust may become computationally impractical because
a huge number of degree-of-freedom are created to model the mantle.

To overcome this difficulty, the current numerical practice is to simulate the crust
and mantle separately. If the behavior of the mantle is of interest, an effective mesh is
used to model the mantle, while the crust is treated as an up boundary in the numerical
model. However, if the detailed phenomenon within the crust is of interest, an effective
mesh is used to model the crust, while the crust-mantle interface is treated as a bottom
boundary in the numerical analysis. Since the crust-mantle interface (i.e. the Moho) 1s
located in the lithosphere of the Earth, it is important to understand the detailed
thermal structure within the lithosphere so that the boundary condition at the
crust-mantle interface can be reasonably determined for a numerical model of the
crustal scale. For this reason, the scientific questions we need to answer are: given a
conductive heat flux from the sub-lithospheric mantle, what is the fundamental
mechanism of mass and heat transport from the continental mantle into the continental
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upper crust? And if mass and heat transportation from the continental mantle to the
continental upper crust is significant, what are the stable thickness and the related
thermal structure within the continental lithosphere during the corresponding thermal
event? The answers to these questions are scientifically significant, at least, for the
following two points. First, if the mantle conductive heat flux at the bottom of the
continental lithosphere i1s known, the temperature distribution within the continental
lithosphere can be determined mathematically from the related scientific principles. As
a result, the bottom of the continental lithosphere, at which the temperature is about
1,500K by the geological definition, can be identified so that the stable lithosphere
thickness can be determined. This constraint can be used to investigate the thermal
thinning phenomenon of the continental lithosphere during a thermal event in the
mantle of the Earth. Second, if the continental lithosphere thickness is known, the
mantle conductive heat flux during the formation of the continental lithosphere can be
deduced from the relationship between the lithosphere thickness and the mantle
conductive heat flux. Therefore, the temperature at the crust-mantle interface can be
evaluated from the analytical solution on the lithospheric scale, so that both the crustal
thickness and the thermal boundary condition at the crust-mantle interface can be
determined for this particular thermal event. This provides the necessary conditions
for establishing a numerical model of the crustal scale. The resulting numerical model
of the crustal scale, with the related numerical methods such as the finite element
method and finite difference method, can be used to investigate the detailed ore body
forming processes in the upper crust of the Earth during a thermal event in the upper
part of the mantle.

Since the problem to be considered in this study can be, in essence, attributed to a
large-scale heat transfer problem in porous media with temperature-dependent
pore-fluid densities, a combination of using theoretical and numerical approaches is
proposed to solve the problem. That is to say, the theoretical approach is used to
determine the thickness and the related thermal boundary conditions of the continental
crust on the lithospheric scale, whereas the numerical approach is used to simulate the
detailed structures and complicated geometries of the continental crust on the crustal
scale. This means that we may take advantages of both analytical and numerical
approaches to deal with the large-scale heat transfer problems in porous media using
two different scales. On the large scale (ie. the lithospheric scale), the detailed
structures of relatively small scale within the whole problem domain may be neglected
so that the problem can be solved using the pure mathematical approach. The resulting
theoretical solution is then used to determine the thickness and the related thermal
boundary conditions of the continental crust, which are the necessary conditions for
establishing a numerical model of the crustal scale. However, on the relatively small
scale (Le. the crustal scale), the detailed structures and complicated geometries of the
continental crust can be simulated in the numerical model. The main advantage in
using the proposed combination method is that if the thermal structure in the crust is of
the primary interest, the use of a numerical model on the crustal scale can result in a
significant reduction in computer efforts. For this particular reason, the major purpose
of this paper is to derive analytical solutions for the relationship between the
continental lithosphere thickness and the mantle conductive heat flux on the
hthospheric scale.
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To establish the relationship between the continental lithosphere thickness and the  Theoretical and
mantle conductive heat flux at the bottom of the lithosphere during a particular numerical
thermal event is an old geological problem. The traditional geological way to find a .
solution for this problem is to use the one-dimensional heat conduction equation in the analysis
lithosphere without considering the fluid flow leaked from the lithospheric mantle of
the Earth. The solution derived by this assumption suffers many difficulties in
explaining several geological phenomena occurring in the crust of the Earth. For 235
example, without considering the upward flow through the continental crust, the
temperature distribution predicted by the pure conductive models is not enough to
explain ore deposits in some hydrothermal systems in the upper crust, although these
ore deposits have already existed. On the other hand, the extensive research during the
past decades has indicated that due to the high temperature and low strength of
the lithospheric mantle, the permeability of the lithospheric mantle is very small (i.e. in
the level of about 10 '®*m? or less) so that the pressure-gradient of the pore-fluid is
equal to the lithostatic pressure-gradient in the lower crust and lithospheric mantle of
the Earth. This requires an upward flow to exist within the continental lithosphere,
which is leaked from the lithospheric mantle and lower crust. The recent research in
the field of geochemistry has demonstrated that the amount of the pore-fluid, which is
required to maintain the pore-fluid pressure gradient to be lithostatic in the continental
lithosphere, may be generated by dehydration and devolatilization reactions occurring
in the lower crust of the Earth. As it will be addressed in Section 2 of this paper, the
recently developed porosity wave concept provides a useful tool for explaining the
possible transport process of mass and heat from the continental mantle into the upper
crust of the Earth. Therefore, it is possible to use these recent concepts to revisit the
relationship between the continental lithosphere thickness and the mantle conductive
heat flux within the continental lithosphere during a particular thermal event. Keeping
this in mind, the upward throughflow of the mantle material in the lithosphere and the
temperature-dependent density of the pore-fluid are considered to derive a new
relationship between the continental lithosphere thickness and the mantle conductive
heat flux within the lithosphere during a particular thermal event. The analytical
solutions developed can be also used to validate any numerical methods for solving
lithosphere-scale heat transfer problems with temperature-dependent pore-fluid
densities.

2. Possible mechanism for material exchange between the mantle and the
crust

Material exchange between the continental mantle and the continental crust of the
Earth may cause a significant change in the thermal structure of the continental
lithosphere. The continuous replacement of the crust material by the mantle material
can reduce the overall thickness of the lithosphere. If the heat flux generated by the
material exchange between the continental mantle and the continental crust is
transferred into the upper crust, it may create an appropriate environment for ore body
formation and mineralization to take place in the near surface of the Earth. This
process may become an efficient mechanism to generate near-surface ore deposits.
However, since the mantle material can be treated as a viscous magma and the crust
material can be treated as a porous medium, there is a mechanism question on the
material exchange between the continental mantle and the continental crust of the
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299 exchapge between the continental mantle and thgz continental crust is propose;d. The

! basic idea behind the proposed conceptual model is that the porosity wave, which was

originally proposed for dealing with both magma ascending in the lithospheric mantle

and upward pore-fluid flow in sedimentary basins (Richter and Mckenzie, 1984;

Mckenzie, 1984, 1987; Barcilon and Richter, 1986; Connolly and Podladchikov, 1998,

236 2000), can also transport materials from the continental mantle into the continental

crust through the two key processes: magma solidification and porous material

consolidation. In what follows, a conceptual model is proposed to show how the mantle

material is transported into the upper crust of the Earth through the generation and
propagation of the porosity wave in the continental lithosphere of the Earth.

As shown in Figure 1, the continental lithosphere is composed of porous materials,
although the porosity may be very small. Note that in this figure, g is the gravity
acceleration. From the structural geology point of view, the whole lithosphere can be
divided into crust and lithospheric mantle by the Moho. Since the upper aesthenosphere
of the Earth is in a partial melting state, it is possible to transport the magma within the
lithospheric mantle through the generation and propagation of the porosity wave
(Richter and Mckenzie, 1984; Mckenzie, 1984, 1987). Recent studies (refer Barnes (1997)
and the related references therein) also demonstrated that the solidification temperature
of the upward propagating magma can be significantly reduced if water exists in the
lithospheric mantle. For instance, the solidification temperature of the water-bearing
magma may be reduced to about 1,100 K in the lithosphere. This means that the upward
propagating magma may be transported to the Moho through the generation and
propagation of the porosity wave in the lithospheric mantle. As a result, the porous
material of the lithospheric mantle (i.e. between the Moho and the top of the
aesthenosphere of the Earth) may be filled with the upward propagating magma, which
originally comes from the aesthenosphere of the Earth. On the other hand, the porous
material of the crust (i.e. between the Moho and the surface of the Earth) is filled with
pore-fluids, which may be either gas or liquid, depending on the local temperature and
pressure conditions. Thus, the Moho surface may be assumed to be a relatively
impermeable thin layer due to the solidification of the upward propagating magma.
This implies that the Moho surface may be considered as a solidification surface of the
ascending magma. The initial thickness of the continental crust is Hgg, while the initial
thickness of the continental lithosphere is Hg plus Hy — ¢o. Thus, the initial thickness of
the lithospheric mantle is Hy _ ¢,. Owing to an increase of the pressure caused by the
gravity, the porosity of the porous material decreases with the depth from the surface of
the Earth. Since the strength of the porous material is temperature dependent, it also
decreases with the depth due to the existence of the downward positive temperature
gradient in the lithosphere.

At the initial stage (f = t), any perturbation of either temperature or pressure at
the bottom of the continental lithosphere due to mantle convection or mantle crust
interaction can result in magma ascending from the aesthenosphere into the
lithospheric mantle. The ascending magma moves toward the Moho surface through
the generation and propagation of the porosity wave (Richter and Mckenzie, 1984;
Mckenzie, 1984, 1987). Since the Moho surface is assumed to be a relatively
impermeable thin layer, the upward propagating magma accumulates just under it
until the increased magma pressure due to magma accumulation exceeds the material
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strength of this thin layer. Generally, the increased magma pressure due to the magma
accumulation might play two important roles in the generation of the porosity wave
near the Moho surface. First, the increased magma pressure can cause an expansion of
pores (or create pores if they do not exist) so that the porosity just underneath the Moho
surface is increased. Secondly, the increased magma pressure can cause the collapse of
the impermeable thin layer since the material strength of this layer is relatively very
low due to its location in a rather high temperature region. Once the increased magma
pressure exceeds the material strength of the impermeable thin layer, the accumulated

Theoretical and
numerical
analysis

237

Figure 1.

Sketch of transport
processes of continental
crust and mantle materials
through porosity waves
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EC magma outbursts and penetrates the thin layer. This 1s the first stage of the porosity
229 wave generation near the Moho surface (¢ = #1). The outbursted magma can travel
’ upward some distance due to the local extra pressure gradient created by the magma
accumulation at the initial stage until it becomes solidified due to heat loss to the
surrounding matrix. The solidification of the ascending outbursted magma can
generate a new upward impermeable thin layer above the initial Moho surface. This
238 consequence is equivalent to the upward movement of the initial Moho surface. Also,
the released volatiles during magma solidification can travel upward in the crust in
exactly the same form of the porosity wave as pore-fluid travels upward in
sedimentary basins (Barcilon and Richter, 1986; Mckenzie, 1987; Connolly and
Podladchikov, 2000). This implies that the mantle volatile material can also be
transported into the upper crust by the porosity waves. At the same time, the expanded
pores of the underlying material of the initial impermeable layer may become
consolidated and closed due to the release of the local pressure. As a result, a new
downward impermeable layer is generated under the initial Moho surface. This
consequence is equivalent to the downward movement of the initial crust material. The
generation of the new upward and downward impermeable layers marks the
propagation of the generated porosity wave. This may be considered as the second
stage of the generation and propagation of the porosity wave near the Moho surface
(t = t5). As these processes repeat and continuously progress (see ¢ = t3, £y and 5 in
Figure 2), the formation of the second new upward thin impermeable layer leads to the
further rise of the Moho surface, while the formation of the third new downward thin
impermeable layer results in the downward movement of more crustal materials. This
indicates that as the porosity wave travels upwards, the mantle material in the form of
either magma or volatile pore-fluid moves upwards in the continental lithosphere,
while the crust material moves downwards in the lithosphere of the Earth. This implies
that it is possible to transport mass and heat from the continental mantle to upper crust
through the generation and propagation of the porosity wave in the continental
lithosphere of the Earth.

As the downwardly moved crust material replaces the initial lithospheric mantle
material, the replaced lithospheric mantle material may cause the rest of the
lithospheric mantle material to move downwardly so that some of the lithospheric
mantle material at the bottom of the lithosphere may be melted and the whole
thickness of the continental lithosphere is gradually reduced. On the other hand, the
upward movement of the Moho surface can lead to the thinning of the continental crust
of the Earth. Clearly, the adjustment of the thermal structure in the continental
lithosphere due to the upward mass and heat fluxes carried by the porosity wave may
be an important mechanism to reduce the thickness of the continental lithosphere.
In order to understand this mechanism, theoretical solutions for the heat transfer
problem with the temperature-dependent pore-fluid density on the lithospheric scale
will be derived mathematically to investigate the effects of the upward propagating
mass and heat fluxes on the thermal structure of the continental lithosphere.

3. Derivation of analytical solutions for large-scale heat transfer problems
with temperature-dependent fluid densities

On the lithosphere scale, the problem can be treated as a one-dimensional model in the
vertical direction. Once the continental lithosphere of the Earth is in a stable state, heat
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transfer within the lithosphere reaches a thermodynamic equilibrium state, which can
be regarded as a quasisteady state. As shown in Figure 3, if the temperature-dependent
density of the pore-fluid in the lithosphere and the upward throughflow, which may
represent the mass flux from the lithospheric mantle into upper crust of the Earth, are
considered, the governing equation for the steady-state heat transfer in the continental
lithosphere can be expressed as follows.

d d /. ,dT
_—— ‘-———. — 1
3 @D = g ()\ dy) 0 (1
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Figure 2.

Sketch of transport
processes of continental
crust and mantle materials
through porosity waves
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Figure 3.
Definition of heat transfer

problem in the continental 0
lithosphere 1% Geonduwrive T = Thotionm

where pyis the density of the pore-fluid; ¢, is the specific heat of the pore-fluid; v is the
upward throughflow velocity in the lithosphere; T 1s the temperature of the lithosphere
material; and A is the thermal conductivity coefficient of the lithosphere material.

It is noted that the heat source/sink term due to heat generation within the
continental lithosphere is neglected in equation (1). In this case, equation (1) states that
for any given point in the continental lithosphere, the variation in the sum of the
advective heat flux and conductive heat flux is equal to zero.

From the continuum mechanics point of view, the temperature-dependent density of
the pore-fluid and the thermal conductive coefficient of the lithosphere material can be
written as:

pr = poll = B(T = To)] @)

A=A+ (1 — P)A° 3)

where py, and 7T, are the reference density of the pore-fluid and the reference
temperature of the medium; A and A ¢ are the thermal conductivity coefficients for the
pore-fluid and solid matrix in the lithothsphere; and ¢ and B are the porosity of the
lithosphere material and the thermal volume expansion coefficient of the pore-fluid.
Substituting equation (2) into equation (1) yields the following equation.

d [v(1 + BTy) _vB., dT| _
" 2 T 5 T = 0 4)
where D is the thermal diffusivity coefficient which is expressed as
)\E
D= )
PoCpf
Clearly, equation (4) has a solution as follows.
dT ol + BTy) B .y

where C is a constant. This constant can be determined using the heat flux continuum
condition at the bottom of the lithosphere and expressed as follows.
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C = — Gconductive v(l + BTO)
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where Geonduciive 1S the mantle conductive heat flux transferred from the
aesthenosphere to the lithosphere of the Earth; and 7T3,10m 18 the temperature at the
bottom of the lithosphere.

If the upward throughflow velocity in the lithosphere is constant, equation (6) can be
rewritten as:

v
Tbmmm + 56 Tgom)m (7)

g—aTH)TZ:Cl (8)
dy
where
vl + BTy) _vB
The homogeneous equation of equation (8) is
9T ot b7 =0 (10)
dy
A general solution to equation (10) can be derived and expressed as:
a
Tgeneral - m (11)

where C, 1s a constant to be determined.
Also, the particular solution to equation (8) can be derived and expressed as:

2 (1 —y/1+ 4b€1>
b a?
(12)

Tparticular = 2

The physical meaning of this particular solution is that if the whole lithosphere could
be in an isothermal state, then the temperature in the whole lithosphere would be equal
to the temperature expressed by this particular solution. Therefore, this particular
solution represents the extent to which the heat flux is transferred from the
aesthenosphere to the lithosphere of the Earth.

Note that the condition, under which equation (12) holds, is expressed as

4
QM = /\— {(1 + BTO)Z - 4BTb0ttom[1 - B(Tbottom - T())]} (13)
v 4DB
Figure 4 shows the constraint condition between the upward throughflow velocity and
the mantle conductive heat flux, where the unit for the velocity and heat flux is m/s and
W/m?, respectively. This condition indicates that when the density of the pore-fluid in
the lithosphere is temperature-dependent, the thermal structure cannot reach a steady
state unless this constraint condition is satisfied within the lithosphere. In this regard,
the related lithosphere is called the conditionally stable lithosphere.
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Adding equations (11) and (12) together yields the solution to equation (8) as follows.

a _ 4bC1
o 5(1 ,/1+__az>
NEY 2

From the geological definition, the temperature at the bottom of the lithosphere is
Tvottom = 1,500 K. This boundary condition (i.e. T = Tporom at ¥y = 0) can be used to
determine the second constant C,. This leads to the following result.

(14

a

Co —-b (15)

Tbottom - Tparticular

The top surface boundary condition (i.e. T = T at ¥ = Hiithosphere) 1S used to yield an
expression for the thickness of the lithosphere as follows.

1 1 a
Hy =—-In|=(=——————-09 16
lithosphere a n |:C2 <T0 — Tparticular ):| ( )
Substituting the related constants into equation (16) results in the following equation:
D (1_+ELTO - Tbottom + Tparticular) (TO - Tparticu]a:)

Hlithosphere = 17)

n
U(l * B TO) (1_+ELT0 - TO + Tpanicular)(Tbottom - Tparticular)

Since Tparticutar 18 @ function of both the pore-fluid velocity and conductive heat flux
from the aesthenosphere to the lithosphere, equation (17) expresses the relationship
between the continental lithosphere thickness and the mantle conductive heat flux
within the lithosphere during a particular thermal event. Due to the consideration of
the temperature-dependent density of the pore-fluid, the lithosphere considered is
called the heat-conductive-and-advective lithosphere with a pore-fluid of variable
density.

In the case of no upward throughflow (i.e. v = 0) within the continental lithosphere,
the relationship between the lithosphere thickness and the mantle conductive heat flux

SERRSRSSS——— e
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within the lithosphere during a particular thermal event can be derived and expressed  Theoretical and

as follows. numerical
R A (Trottom — T0) analysis
[{lithosphcre = ooom "W (18) y
Gconductive
Since heat conduction is the only heat transfer mechanism in this situation, the 243

lithosphere considered here is called the heat-conductive-only lithosphere. The
corresponding solution for the temperature distribution in this situation is:

7‘« — Tbottom _ QC()H;!.(J’CII\'C)] (19)
Another special case is when 8 is equal to zero in equation (4). This means that the
density of the pore-fluid is constant within the lithosphere. Therefore, the lithosphere
considered in this particular situation is called the heat-conductive-and-advective
lithosphere with the constant density of the pore-fluid. Under this condition, the
solution for the temperature distribution can be derived and expressed as:

- iveD :. tivel)
T=— QConjic;ve en’ + QConZ\j\c:xc + Thottom (20

The corresponding lithosphere thickness in this case is:

VAC

m(Tbt)ll()Ill - TO) +1 (21)
conductive

I-Iiithosphere = ; In

4. Numerical modeling of large-scale heat transfer problems with
temperature-dependent fluid densities
Although the analytical solutions derived in the previous section is useful for the
fundamental understanding of heat transfer in a homogenous lithosphere of the Earth,
the heterogeneity and two-dimensional nature of the lithosphere are neglected in the
process of deriving the analytical solutions so that any unexpected mathematical
difficulties can be avoided. However, for the purpose of considering the heterogeneity
and two-dimensional nature of the continental lithosphere, the numerical method such
as the finite element method is useful to generate numerical solutions. Since the finite
element method is an approximate method, the numerical solution obtained from the
finite element modeling needs to be validated when it is used to deal with large-scale
heat transfer problems with temperature-dependent fluid densities.

For a two-dimensional heat transfer problem with temperature-dependent fluid
densities, equation (1) in the previous section can be extended into the following form.

3 9 d oT d aT
3 T 9 T _ |2 e 94 . Al’ _ = O 22
Py (uprcprT) + % Wprcpr T [ax (A ax) + ay ( E)y)} =

where pyis the density of the pore-fluid; ¢,/ 1s the specific heat of the pore-fluid;  is the
horizontal pore-fluid velocity in the lithosphere; v is the upward throughflow velocity
of the pore-fluid in the lithosphere; T is the temperature of the lithosphere material; and
A ¢ is the thermal conductivity coefficient of the lithosphere material.
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oT  oT oT  oT
[p()Cpf(l + BTO)] (% a +v 5) - ZBp()Cp/’T(u 5; +v @)
(23)
92T  9°T
— |- o =
244 A [ax2+ay2} 0

It is noted that equation (23) is a non-linear equation of strong non-linearity, which is
clearly expressed by the term,

oT oT

T(u —+v —> N

ox 0
in the above equation. Due to this strong non-linearity, it is impossible to obtain an
analytical solution for equation (23). Therefore, the finite element method (Zienkiewicz,
1977) is used to solve the above equation in this study.

Following the conventional procedure of a finite element analysis, the discretized

finite element formulation of equation (23) can be expressed as follows.

where [B], [C]and [H] are global property matrices; {7} is the global vector of nodal
temperature; and {@Q} is the global vector of the nodal “load”. These global matrices
and vectors can be determined by assembling all the corresponding elemental matrices
and vectors, which are of the following definitions.

(pocpr (1 + BTOIBI — 2Bpocys[Cl + [HN{T} = {Q} (24) \

. T - T
= [ (Af NI AN pe ) am) a4 (25)
ox 0x oy ay
A
(B,) = / / (u[N]T M+ viNy”T "—[N—]> dA (26)
J. 0x oy
A
ca= | / (T,-lu[zvf SN T M) dA @
J. ax ay
A
{Qz’} = ‘/S[N]T(Chﬂx +q_\'ny)ds (28)

where [H,], [B.] and [C,] are the property matrices of a finite element; {@,} the “load”
vector of the element; [V] the shape function matrix of the element; g, and g, are the
heat flux in the x and y directions; A is the area of the element; S is the boundary of the
element; #, and #, are the direction cosines of the outward unit normal vector on the
boundary of the element.
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It is noted that in order to evaluate the elemental property matrix, [C.], the Theoretical and
temperature in the previous iteration step is required. This means that the resulting numerical
finite element equation must be solved in an iteration manner. Although many .
different kinds of iteration methods are available for solving non-linear equations, the analysis
successive substitution iteration method is used in this study due to its simplicity and
easy to be implemented in the finite element computation. However, the use of an
iteration method implies that an initial guess of the nodal temperature vector, {7y}, has 245
to be available at the beginning of the finite element computation. For the large-scale
heat transfer in the lithosphere, the geothermal temperature distribution under the pure
heat conduction condition is an ideal candidate for the initial guess of the nodal
temperature vector, {7,}. As a result, there is no hurdle to be overcome in the
forthcoming finite element analysis of large-scale heat transfer problems with
temperature-dependent fluid densities.

5. Application examples

Analytical solutions are very important for scientific and engineering problems (Zhao
and Steven, 1996). For example, an analytical solution can be used as a powerful tool to
gain an understanding of the solution scenarios under some extreme conditions for a
given problem. In addition, an analytical solution 1s often a useful or even in some
circumstances a unique measure in the assessment and validation of any numerical
methods. Therefore, the analytical solutions for different kinds of benchmark problems
often play an important role in developing standards for the assessment of the
correctness and credibility of modeling and simulation in scientific and engineering
computations. In this particular study, the present analytical solution can be used to
determine the thickness of the lithosphere if the mantle conductive heat flux at the
bottom of the lithosphere is given. Alternatively, the present analytical solution can
also be used to determine the correct thermal boundary conditions, which is crucial to
establish a numerical model of the crustal scale, at the bottom of the crust if the
thickness of the lithosphere is known.

5.1 Determination of boundary conditions of a numerical model of lithospheric scale
In order to construct a numerical model of the lithospheric scale, we need to determine
the model size in the depth direction and the related thermal boundary conditions. This
can be achieved in the following two ways. In the first way, one can prescribe the
temperature boundary condition at the bottom of the model so that the depth of the
model has to be determined using the analytical solutions derived in Section 3.
Alternatively, in the second way, one can prescribe the depth of the model so that the
temperature boundary condition at the bottom of the model has to be determined using
the analytical solutions. Thus, we need a theoretical curve to express the relationship
between the lithosphere thickness and the mantle conductive heat flux. In order to
produce such a curve, we need some basic parameters of the continental lithosphere.
For this purpose, the followmg parameters are used in the forthcommg analysis. For
pore-fluid, reference density is 1,000 kg/m® volumetric thermal expansion coefficient is
2.07 x 1074(1/°C); specific heat is 4,000 J/(kg °C). For the lithosphere material, thermal
conductivity coefficient is 2.25 W/(m °C); specific heat 1s 815]J/(kg °C). Temperature at
the top and bottom of the lithosphere is 25°C and 1,225°C, respectively.
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EC Figure 5 shows the relationship between the lithosphere thickness and the mantle

299 conductive heat flux due to four different upward throughflow velocities within the

’ lithosphere of constant pore-fluid density. It needs to be pointed out that the curve with

v = 0 represents the results for the heat-conductive-only lithosphere, while the curves

in correspondence with v =2x1072, 2x 107! and 2x 107 m/s represent the

results for the heat-conductive-and-advective lithosphere. Since the pore-fluid density

246 1s constant, the lithosphere is unconditionally thermodynamic stable. This means that

for any set of given mantle conductive heat flux and upward throughflow velocity, a

steady-state lithosphere can be maintained, from the thermodynamic point of view.

Clearly, with an increase in the upward throughflow velocity, there is a significant

decrease in the lithosphere thickness. Since the upward throughflow velocity and

the mantle conductive heat flux may be deduced from the surface geological

measurements and observations, the lithosphere thickness can be straightforwardly
determined from the curves shown in this figure.

If the pore-fluid density within the lithosphere varies strongly with temperature,
the lithosphere becomes conditionally stable. In this case, the stable lithosphere can
only be maintained when the mantle conductive heat flux and upward throughflow
velocity satisfy the constraint condition expressed in equation (13). Figure 6 shows
the relationship between the lithosphere thickness and the mantle conductive heat
flux in the case of v=2x10""'m/s within the lithosphere of constant and
temperature-dependent pore-fluid densities. It is obvious that consideration of the
temperature-dependent pore-fluid density can cause a significant reduction in
the lithosphere thickness, compared with that of the constant pore-fluid density.
This recognition may have an important geological implication for the ore body
formation and mineralization in hydrothermal systems within the upper crust of
the Earth.
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5.2 Validation and application of numerical modeling of large-scale heat transfer
problems with temperature-dependent fluid densities

In this sub-section, we first demonstrate how to use the theoretical curve of the
lithosphere thickness versus the mantle conductive heat flux to determine the depth of
a numerical model and the related thermal boundary condition. For example, for a
given conductive heat flux, we can use the theoretical curve to find the thickness of the
lithosphere, depending on the upward throughflow velocity within the lithosphere.
Then we can use the following equation to determine the temperature at the bottom of
the numerical model.

Tbottom = TO + W (29)
where H can be I_Ilith{)spherey I—IIithospheres or Hlith()sphere» depending on the upward
throughflow velocity within the lithosphere.

In order to validate the present finite element formulation of large-scale heat
transfer problems with temperature-dependent fluid densities, three different kinds of
lithospheres with different thermal regimes, namely the conductive-only lithosphere,
the conductive-and-advective lithosphere with constant pore-fluid density (i.e. cases
with v = 2% 10712 and 2x 10~ m/s) and the conductive-and-advective lithosphere
with variable (i.e. temperature-dependent) pore-fluid density, are considered in the
forthcommg finite element computations. If the mantle conductive heat flux is chosen
as 0.02 W/m? for all the three kinds of lithospheres, the depth of the numerical model
(i.e. the thickness of the lithosphere) can be determined using the procedure described
previously. The lithosphere thickness is 135km for the conductive-only lithosphere,
while it is 22.14km for the conductive-and-advective lithosphere with variable
pore-fluid density. These two lithospheres may be regarded as two extreme cases.
For the intermediate cases, namely the conductive-and-advective lithosphere
with constant pore-fluid density, the lithosphere thickness is 110.3km in the case of
v=2x10""2m/s, but it is 49.4km in the case of v = 2x 10~ " m/s.
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EC Once the depth of the numerical model is determined, the lithosphere is simulated

299 using .the finite eleme;nt method. Figure 7 shows the finite element mesh of the

’ numerical model. In this figure, 5,790 quadrilateral 6-node triangular elements are used

to represent the whole computational domain. The length of the computational domain

1s fixed to be 50 km, while the depth of the computational domain can have different

values, depending on the upward throughflow velocity within the lithosphere. The

248 basic parameters used in the finite element computation are exactly the same as those

used in the theoretical analysis of the lithosphere in Section 5.1. The temperature at the

bottom of the model is determined to be 1,225°C for all the four numerical models
considered here.

Figure 8 shows the temperature distribution due to three different kinds of
lithospheres with different thermal regimes, namely the conductive-only lithosphere,
the conductive-and-advective lithosphere with constant pore-fluid density (i.e. cases
with v = 2% 10712 and 2 x 107" m/s) and the conductive-and-advective lithosphere
with variable (i.e. temperature-dependent) pore-fluid density. In this figure, diamonds
stand for the numerical solution for the conductive-only lithosphere, while
crosses stand for the numerical solution for the conductive-and-advective
lithosphere with variable (i.e. temperature-dependent) pore-fluid density. For the
conductive-and-advective lithosphere with constant pore-fluid density (i.e. cases with
v=2%10"12 and 2x 107 m/s) in the figure, triangles and squares stand for the
numerical results in the case of v =2x 10712 and 2 x 107! m/s, respectively. The
analytical solutions for all the four cases are shown by the corresponding solid lines.
It is obvious that the numerical solutions agree very well with the analytical ones for
all the four situations. This demonstrates that the present finite element formulation is
valid for dealing with large-scale heat transfer problems with temperature-dependent
fluid densities. In addition, both the numerical and analytical solutions indicate that the
upward throughflow can significantly reduce the resulting lithosphere thickness. This
recognition may have some considerable implications in geology. Generally, for a given
thermal event of the Earth, the conductive-and-advective lithosphere with variable
pore-fluid density results in the hottest upper crust, while the conductive-only
lithosphere results in the coldest upper crust, from the thermodynamic equilibrium
point of view. Since the upward throughflow may have a significant effect on the
thermal structure in the lithosphere, great cautions must be taken when the nature of
the pore-fluid is considered within the lithosphere.
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After the present finite element formulation is validated through the above benchmark
problems, it can be used to investigate the effect of material heterogeneity on the
thermal structure of the lithosphere. For this purpose, a more thermal conductive
region representing a magma emplacement is considered in the centre bottom of the
computational model. The thermal conductivity of this particular region is ten times
that of the remaining regions of the computational model. For the sake of saving space,
only the afore-mentioned conductive-and-advective lithosphere with vanable (e
temperature-dependent) pore-fluid density is considered in this situation. The size of
the more thermal conductive region is assumed to be 10 km wide and 10 km high in the
finite element computation.

Figure 9 shows the temperature contours of the computational model including the
heterogeneity effect of material thermal conductivity. Since heat transfer proceeds
more efficiently in the region of a relatively high thermal conductivity, the temperature
in this particular region is relatively higher than that in the corresponding other region,
so that the isothermal line is no longer a horizontal line near the region of a relatively
high thermal conductivity, compared with the case of the whole lithosphere of
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homogeneous thermal conductivity. This implies that the emplacement of hot
materials from the mantle may further reduce the thickness of the lithosphere.

6. Conclusions

Some important issues related to the theoretical and numerical computations
of temperature distributions in large-scale heat transfer problems with
temperature-dependent pore-fluid densities have been addressed in this paper.
In particular, a combination method of using theoretical and numerical approaches has
been proposed to investigate the thermal structure of the continental lithosphere due to
heat transfer from the continental mantle into upper crust of the Earth, which can be, in
essence, attributed to a large-scale heat transfer problem in porous media with
temperature-dependent pore-fluid densities.

In the proposed combination method, the theoretical approach is used to determine
the thickness and the related thermal boundary conditions of the continental crust on
the lithospheric scale, whereas the numerical approach is used to simulate the detailed
structures and complicated geometries of the crust on the crustal scale. The main
advantage in using the proposed combination method is that if the thermal structure in
the crust is of the primary interest, the use of a numerical model on the crustal scale can
result in a significant reduction in computer efforts. For this particular reason,
analytical solutions for the relationship between the continental lithosphere thickness
and the mantle conductive heat flux on the lithospheric scale have been mathematically
derived in this study.

Three different kinds of lithosphere models, namely the conductive-only
lithosphere, the conductive-and-advective lithosphere with constant pore-fluid
density and the conductive-and-advective lithosphere with variable (ie.
temperature-dependent) pore-fluid density, are considered to derive such analytical
solutions. The present analytical solution can be used to determine the thermal
boundary condition, which is essential for the numerical modeling of ore body
formation and mineralization on the crust or basin scale. From the ore body formation
and mineralization points of view, the present analytical and numerical solutions have
demonstrated that the conductive-and-advective lithosphere with variable pore-fluid
density is the most favorite lithosphere because it may result in the thinnest
lithosphere so that the temperature at the near surface of the crust can be hot enough to
generate the shallow ore deposits there. In addition, the present analytical and
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numerical solutions also demonstrate that the upward throughflow (i.e. mantle mass
flux) can have a significant effect on the thermal structure within the lithosphere.

For the purpose of considering the geometrical and material complexity of the
lithosphere, the finite element formulation has been presented to deal with large-scale
heat transfer problems with temperature-dependent fluid densities. After the present
finite element formulation is well validated using several benchmark problems, it has
been used to investigate how the heterogeneity of the material thermal conductivity
can affect the temperature distribution within the lithosphere. The related numerical
results have demonstrated that the emplacement of hot materials from the mantle may
further reduce the thickness of the lithosphere.
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