新疆鄯善康古尔塔格蛇绿岩及其大地构造意义

李文铅^{1,3} 夏斌¹ 吴国干^{1,2} 王核¹ 王冉¹

LI WenQian^{1,3}, XIA Bin^1 , WU GuoQan^{1,2}, WANG He¹ and WANG Ran¹

1. 中国科学院广州地球化学研究所与南海海洋研究所 边缘海地质重点实验室,广州 510640

2. 中国石油天然气股份公司勘探公司,北京 100724,

3. 中国科学院研究生院,北京 100864

1. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry and South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, China

2. China National Oil and Gas Exploration and Development Corporation, Beijing 100724, China

3. Graduate School of the Chinese Academy of Sciences, Beijing 100864, China

2004-10-10 收稿, 2005-08-26 改回.

Li WQ, Xia B, Wu GG, Wang H and Wang R. 2005. Kangguertage ophiolite and tectornic significance, Shanshan, Xinjiang China. Acta Petrologica Sinica, 21(6):1617-1632

Abstract The rock association of Kangguertage ophiolite includes metaperidotite-cumulus peridotite-gabbro-plagiogranite-diabasebasalt. The characters of harzburgite (ophite), ophipyroxenite and erosive gabbro are similar to the type of Troodos. The low-K (for all rocks), MgO/(MgO + TFeO) = 0.834 ~ 0.866 and TiO₂(wt%) = 0.02% (for metaperidotite) show the metaperidotite belongs to the type of SSZ ophiolite. In the light of tectonic discrimination diagrams of basalt, the SSZ ophiolite is formed in subduction plate margin of ocean basin. The average Al₂O₃/(Al₂O₃ + Fe₂O₃) = 0.047, average MnO/TiO₂ = 0.93, Ce negative anomaly, Ce/Ce * = 0.548 and La_n/Ce_n = 1.661(all for radiolarian silicalite), show that the formation of radiolarian silicalite bear affinitive relation on the ocean ridge or opened ocean. The ophiolite lies to the suture line of Talimu plate and Kazakhstan-Aibi Lake in Zhungeer plate-Kangguertage, which represents out-of-order formed relict fragments of ancient north Tianshan ocean lithosphere on late palaeozoic Key words Kangguertage, SSZ ophiolite, Suture line

摘要 康古尔塔格蛇绿岩的岩石组合为变质橄榄岩-堆晶橄榄岩-辉长岩-斜长花岗岩-辉绿岩-玄武岩。方辉橄榄岩(蛇纹岩)、蛇纹石化辉石岩、蚀变辉长岩与特罗多斯蛇绿岩中同类型岩石类似,岩石总体低钾。变质橄榄岩 MgO/(MgO + TFeO)为0.834~0.866,TiO₂(wt%)为0.02%,为SSZ型蛇绿岩的变质橄榄岩。玄武岩的构造环境判别显示其形成于边缘海盆。放射虫硅质岩的 Al₂O₃/(Al₂O₃ + Fe₂O₃)值平均为0.047,MnO/TiO₂比值平均为0.93,Ce 具负异常,Ce/Ce * =0.548,La_n/Ce_n =1.661,表明放射虫硅质岩的形成环境与洋中脊有密切关系。该蛇绿岩位于塔里木板块和哈萨克斯坦一准噶尔板块的艾比湖一康古尔塔格缝合线上,为一套无序产出的古生代北天山洋在该区的古洋壳残片。

关键词 康古尔塔格; SSZ 型蛇绿岩; 缝合线 中图法分类号 P588.125

1 引言

新疆东天山北起哈尔里克,南至觉罗塔格-星星峡,处于 西伯利亚南构造带与塔里木地块结合部位,区内赋存着丰富 的矿产资源,是新一轮国土资源大调查资源评价的重点地 区。随着土屋一延东铜矿等一批矿产地的发现,掀起了新的 研究热潮并出了一批新的研究成果。然而该区的大地构造 属性在地学界一直存在争论,主体存在3种看法:①整个新 疆东天山(含博格达、哈尔里克、觉罗塔格以及星星峡带)内

^{*} 基金项目:国家重点基础研究发展规划项目(2001CB409805)资助与中科院创新重要方向性项目(KZCX3-SW-137)联合资助。 第一作者简介:李文铅,男,1962年生,博士研究生,大地构造与成矿专业,E-mail:gzwqli@gig.ac.cn

Acta Petrologica Sinica 岩石学报 2005, 21(6)

无俯冲带(马瑞士等,1990、1993; 芮宗瑶等,2002; 冯益民 等,2002; 郭召杰等,1993)。②存在缝合线或碰撞带,但具体 位置说法不一(刘德权等,1992、1999; 张良臣等,1990; 张良 臣,1995; Xiao et al, 2004)。③东天山整体为哈萨克斯坦-准 噶尔板块,北界为卡拉麦里缝合带,南界为库米什-红柳河深 断裂(汤耀庆等,1993; 方国庆,1994)。由于大地构造背景 的不确定性已引起对该区成矿背景的争论(芮宗瑶等,2002; 刘德权等,2003)。上述争论反映出解决该地区大地构造属 性的复杂性和重要性。

争议的焦点在于土屋以西的康古尔塔格基性超基性岩 属什么性质? 是否蛇绿岩? 它和红柳河-库米什蛇绿岩关系 如何? 是否可和黄山基性超基性岩对比? 它们之间有没有 关系? 本文针对上述问题展开研究。

李文铅等(2000)曾初步报道了鄯善康古尔塔格的蛇绿

岩,本次研究工作,对N42°12′05.6″,E90°53′12.9″至N42°12′15.2″,E90°53′09.4.9″前人(李文铅等,2000)剖面重 新观察并复取了样品(剖面Ⅰ);并在N42°11′56.9″, E90°51′23.6″处新测剖面(剖面Ⅱ)—条;对康古尔塔格南部 N42°11′55.3″,E91°13′15.3″-N42°11′57.8″,E91°12′59.8″处 的玄武岩及放射虫硅质岩亦进行了取样。本文旨在根据新 得资料,对鄯善康古尔塔格蛇绿岩进行系统的研究工作。

2 野外地质特征

康古尔塔格蛇绿岩呈带状分布于康古尔塔格大断裂两 侧(图1),呈构造岩片分布于石炭系的凝灰质砂岩、凝灰质 粉砂岩夹灰岩及安山岩中。

图1 康古尔塔格地质略图

1. 新生界; 2. 中石炭统碎屑岩; 3. 下石炭统火山岩; 4. 下石炭统碎屑岩; 5. 超基性岩-基性岩; 6. 玄武岩及放射虫硅质岩; 7. 花岗岩; 8. 糜棱岩; 9. 深断裂; 10. 采样剖面(点)位置; 11. 研究区在新疆的位置。

Fig. 1 Geological sketch map of Kangguertage area

剖面 I(图 2)为:含铬铁矿蛇纹岩(03Q-10)、角闪石化 碎裂石英辉长岩(03Q - 7/1 ~ 7/4)、变辉绿岩、变玄武岩 (03Q - 6/3 ~ 6/4)、变斜长花岗岩(03Q - 5/1 ~ 5/3)、千糜化 英云闪长岩(03Q - 4/1 ~ 4/3)、角斑岩(03Q - 8/1 ~ 8/2)、铁 质放射虫硅质岩(03Q - 9/1 ~ 9/2)。各岩石呈独立的构造透 镜体镶嵌于变砂岩、千糜岩、绢云母千枚岩、变凝灰岩之中, 被断层分隔。

在剖面 II (图3)为:方辉橄榄岩(03Q-2/4~2/6)(蛇纹 岩)、蚀变含辉斜长岩(03Q-2/2及03Q-3)二者亦呈构造 透镜体夹持于凝灰岩中。另,在剖面西 70 米处取方辉橄榄 岩样为03Q-1/1~1/3,在康古尔塔格南部(后称康南) N42°11′55.3", E91°13′15.3" - N42°11′57.8", E91°12′59.8"处 主要为一套兰绿色闪石化榍石球颗粒玄岩(03K - 11/1)、兰 绿色闪石化辉绿岩(03K - 11/2 ~ 11/3)及放射虫硅质岩 (03K - 1/2 ~ 2/9)组合,其北部被二叠纪花岗岩体侵入,南部 与晚石炭世的凝灰岩与粉砂岩为断层接触(图1)。

从上述剖面看,虽经强烈构造作用,但仍显示出蛇绿岩 基本单元齐全:为(已蛇纹石化)变质橄榄岩(主要由尖晶石 方辉橄榄岩)、含铬铁矿蛇纹岩及尖晶石辉石岩、阳起石一绿 帘石化辉长岩、斜长岩、辉绿岩、斜长花岗岩及英云闪长岩、 玄武岩,还见有角斑岩和放射虫硅质岩。

图 2 康古尔塔格西南蛇绿岩剖面 I

Fig. 2 I Geological section of Kangguertage ophiolite

1. 变砂岩; 2. 阳起石化玄武质凝灰岩; 3. 浅闪石一绿帘石化石英辉长岩; 4. 变质中粒角闪石英辉长岩; 5. 石英绢云母千枚岩; 6. 糜棱角斑 岩; 7. 放射虫硅质岩; 8. 糜棱角斑岩; 9. 含铬铁矿蛇纹岩; 10 - 11. 阳起石一绿帘石化石英辉长岩; 12. 绿泥一绿帘石化辉绿岩; 13. 阳起 石-绿泥石化玄武岩; 14. 凝灰质砂岩; 15. 磁铁矿绿泥石石英岩; 16. 凝灰质砂岩; 17. 灰绿色糜棱斜长花岗岩; 18. 灰绿色初糜棱凝灰质长 石岩屑砂岩; 19. 灰绿色糜棱英云闪长岩。

图 3 康古尔塔格西南蛇绿岩剖面 Ⅱ 1.硬绿泥石石英片岩; 2. 晶屑凝灰岩; 3. 蚀变含辉斜长岩; 4. 蛇纹岩(尖晶石方辉橄榄岩); 5. 尖晶石方橄榄岩; 6. 蚀变含辉 斜长岩; 7. 晶屑凝灰岩。

Fig. 3 II Geological section of Kangguertage ophiolite

3 岩石学特征

3.1 岩相学

3.1.1 变质橄榄岩

变质橄榄岩主要由剖面 I 的铬铁矿蛇纹岩及剖面 II 的 尖晶石方辉橄榄岩组成。

剖面 II 尖晶石方辉橄榄岩已蛇纹石化成蛇纹岩,局部可 见橄榄石蛇纹石化后的筛孔状假象。铬尖晶石被碎裂-暗 化。斜方辉石呈绢石假象。局部见辉石横切面中叶蛇纹石 片交成格状假象。大量被扭裂-拆离的辉石变成的绢石碎片 和有阶步式扭折而未拆离的绢石均显示构造组构,暗示铬尖 晶石方辉橄榄岩具地幔岩特征(Colemen,1977)。岩石强烈 碎裂,后蛇纹石化,最后为碳酸盐化及滑石化。还可见一些 胶状和微纤维状蛇纹石脉切过滑石-碳酸盐化蛇纹岩。

剖面 I 的铬铁矿蛇纹岩主要由交织状排列的短纤维束 状蛇纹石及铬铁矿组成,看不出原硅酸盐矿物假象。铬铁矿 呈自形晶散布于短纤维状蛇纹石中,周围多有一圈暗褐色菱 铁矿,有的铬铁矿外围尚见有菱铁矿-绿泥石,且二者成分及 蚀变程度不均匀。 3.1.2 深成岩

有含辉斜长岩和石英辉长岩,从野外及镜下均反映出Ⅱ 剖面(图3)上的含辉斜长岩比Ⅰ剖面(图2)上的石英辉长 岩蚀变更强烈。

剖面 【石英辉长岩:原岩为粗粒辉长岩,已碎裂成碎斑-碎基,但碎基少。辉石被闪石化,大的闪石中有残留辉石。 角闪石相对新鲜,具兰绿色-黄色多色性。也见有角闪石在 碎裂斜长石裂隙中生成的,并包围斜长石碎基碎粒。斜长石 局部帘石化呈雾状,局部有一钠长石亮边,但有新鲜斜长石 残留。可见少量石英和角闪石中磷灰石柱状晶体包体。金 属矿物有的有薄的水榍石边,可能是钛铁矿。

剖面Ⅱ蚀变含辉斜长岩;蚀变后辉石呈被撕裂和弯曲了 的绢石或绢石-绿泥石假象。斜长石为宽板状,双晶纹宽,局 部残留有新鲜斜长石。斜长石主要为帘石化+绢云母化,局 部有碳酸盐化,新生帘石多具异常兰干涉色。蚀变后的辉 石、斜长石均成碎屑,说明蚀变后岩石还经过了碎裂作用。

有些含辉斜长岩,斜长石先被帘石化,后来在强烈剪切 作用下在黝帘石外缘形成有呈镶边状或放射状的硬绿泥石 (见图版1、2)。

3.1.3 斜长花岗岩类

斜长花岗岩类包括斜长花岗岩及英云闪长岩。它们现 在均为断层所夹的板片,原始产状不清。

英云闪长岩受高强糜棱岩化-重结晶作用,斜长石呈碎 斑、碎基。碎基已经重结晶并片理化变成一些长条形绿泥 石、帘石、碳酸盐和细微长石碎粒,一致定向,显示很好的糜 棱片理。在岩石裂隙中广泛生成硬绿泥石板状单晶体或集 合体,但集合体中个体不多。硬绿泥石淡黄或淡灰绿色,干 涉色 I级灰-白,有双晶,靠裂缝中晶体较清亮,晶形较好。 在帘石的集合体裂缝中的个体较大,但为他形。所有硬绿泥 石板片长向大致一致,指示片理。帘石呈雾状,有的呈黄绿 色。

斜长花岗岩也经受了强糜棱岩化作用,长石、石英均已 碎裂成碎斑-碎基。有的碎斑呈眼球状,有变形现象,波状消

1619

Acta Petrologica Sinica 岩石学报 2005, 21(6)

图版1 正交10X10 蚀变辉长岩中黝帘石外围呈镶边状的硬绿泥石

图版 2 正交 10X10 蚀变辉长岩中黝帘石外围呈放射状 的硬绿泥石

光,还显压力影;有的形成旋转碎斑且定向。碎基中有不同 程度的重结晶。局部重结晶的石英碎基呈蜂窝状,蜂窝形石 英粒后被压扁拉长,这表明糜棱岩化-剪切挤压作用不止一 次发生。沿糜棱片理斜长石有强烈的帘石化,但不均匀。 3.1.4 辉绿岩

辉绿岩为兰绿色闪石化辉绿岩:辉石蚀变为兰绿色角闪 石,但残留很多。而且辉石彼此呈补堆晶样,以120°的直边 拼接成连斑式的宽晶。每一个辉石颗粒都含若干个斜长石, 具典型的含长结构。岩石中也有斜长石小斑晶。

3.1.5 喷出岩

喷出岩单元主要为变玄武岩、兰绿色闪石化榍石球颗粒 玄岩及少量角斑岩。

兰绿色闪石化榍石球颗粒玄岩:由兰绿色角闪石与斜长 石组成球颗结构,但见不到辉石,推测兰绿色角闪石是辉石 变成的。球形颗粒中心小向外变大。球颗之间见闪石含长, 或斜长石间填角闪石,从结构上看似乎和辉绿岩有演化关 系。由角闪石的兰绿-黄绿色多色性与钛铁矿全变为榍石, 说明这种变化是在较高的压力下进行的。由于受到后期剪 切作用的影响,角闪石已发生绿泥石+帘石化蚀变。

变玄武岩:斑状结构,斜长石斑晶有碳酸盐化,少量为绿 帘石化。辉石已全变为兰色角闪石。基质斜长石微晶交织 状排列,显交织状结构。基质中有些次生针状角闪石和大量 的绿泥石、帘石和铁矿物微粒及少数较大的碳酸盐。晚期生 成的磁铁矿、钛铁矿周围新生的绿泥石显示压力影,表明岩 石后来曾被剪切,显弱片理化。

角斑岩:主要由斜长石和黑云母、铁矿物组成。斜长石 长条状,呈放射状-束状排列,但大小不一。黑云母片可退变 成白云母。有少数斜长石有碳酸盐化,粒间也有碳酸盐。未 见石英。

3.1.6 硅质岩

硅质岩有3种:红色铁碧玉放射虫硅质岩、黑灰色微层 放射虫硅质岩及磁铁矿绿泥石石英岩。按这个次序,还原程 度增高。

红色铁质放射虫硅质岩:岩石主要为铁碧玉硅质岩,由 于强烈破碎-重结晶,岩石已形成大量石英和大小不一的红 色自形六角-三角形赤铁矿晶体。在重结晶不强的红色碧玉 硅质岩碎块中可以见到众多园圈,可能是放射虫遗迹。这些 园圈有园,椭园,有的不太园,都有一个薄的硅质壁,内核也 是硅质,核与壁间是铁质,但在不同个体中它们三部分成分 的比例和宽窄是不同的,也许是薄片切过不同部位所致。还 有一些微裂隙切过这些放射虫化石个体。

黑灰色微层放射虫硅质岩:微层发育,层理平行,微层基 本上都由硅质和铁质以不同比例组成。铁质物较大者成方 形自形,推测为磁铁矿;但微小尘状者多。硅质物显均质 性,在硅质背最上,可以看到一些园形切面,估计是放射虫化 石。一些坑洞中出现一些次生绿帘石。微石英脉中部分地 段呈阿尔卑斯型的透镜状,可被碳酸盐微脉切过。

磁铁矿绿泥石石英岩:铁质已重结晶成磁铁矿,泥质结 晶成少量绿泥石,绿泥石呈暗黄绿色。硅质已全结晶为多边 形石英集合体,但磁铁矿和绿泥石呈条形分布,这些断断续 续的条,也大致相互平行,石英多边形集合体的扇长方向也 指示同一方向,所有这些方向大致指示出原岩层理。

3.2 岩石化学分类

由于岩石遭受变质,为了排除蚀变和变质因素的影响, 我们没有采用 TAS 分类图对岩石进行化学分类,而是用抗蚀 变元素的 Nb/Y-Zr/Ti 图解(图4)为熔岩分类命名。投影结 果,玄武岩都落人玄武岩范畴,角斑岩落人安山岩区。按照 Pearce(1996)的研究工作,堆晶岩是不能用 Nb/Y-Zr/Ti 岩石 分类图来进行。

图 4 新疆康古尔塔格蛇绿岩的岩石 Nb/Y -Zr/Ti 分类 图(Pearce 根据 Winchester-Floyd(1977)修改,1996)

1. 1 剖面辉长岩; 2. II 剖面辉长岩; 3. 辉绿岩; 4. 康南玄武岩; 5. 1 剖面玄武岩; 6. 斜长花岗岩; 7. 英云闪长岩; 8. 角斑岩判 别,如果把辉长岩和斜长花岗岩类看作与相应成分熔岩的同质 异相地下岩体,投入图中,3 个辉长岩落人玄武岩区,3 个斜长花 岗岩则落人英安岩区,3 个英云闪长岩中一个落人玄武岩区,另 2 个在玄武岩和安山岩过渡区,与镜下鉴定基本一致; 而另外 1 个含辉斜长岩,2 个石英辉长岩(03Q-3,03Q-7/1,03Q-7/2)落人 玄武-安山岩向安山岩过渡区。可见,斜长花岗岩和英云闪长岩 成分和成因都可能不同。

Fig. 4 Nb/Y-Zr/Ti discrimination diagram for Kangguertage ophiolite (after Pearce, 1996)

3.3 岩石化学

在 MgO-(MgO + FeO)、Ho-Y、Nb-Ta、La-Sm、MgO-Ni、Zr-Nb、Cr-Ni、MgO-Cr 几个二元图(图5)中,除 MgO-Ni、MgO-Cr 图外,蛇绿岩各岩石单元彼此具有较好的线性关系,且几乎 在一条直线上。变质橄榄岩和其余各单元分别在该直线两端,仅个别样品偏离较远,各元素对直线的斜率稍有差异而 已。这些暗示它们有成因关系:洋壳岩石似乎是源自对应的 地幔岩的熔融物,壳层岩好像具有分异作用。MgO-Ni 和 MgO-Cr 图相似,和其它图不同,地幔岩和壳层岩不成线性关系。地幔岩中 MgO 是稳定的 Ni 和 Cr 同步近乎直线升高,可 能是地幔逐步熔融增强;壳层岩本身似乎仍呈线性关系,可能还是分异作用的表现。这在 Ni-Cr 图中有同样表现。

将主元素分析数据扣除烧失量作归一划处理后(表1) 与同样处理的特罗多斯蛇绿岩相比(Colemen,1977),变质橄 榄岩的 MgO、MnO 较低,而 Al₂O₃与 TiO₂略高; MgO/(MgO + TFeO)为0.834~0.866,与特罗多斯蛇绿岩中的方辉橄榄岩 一致。含辉斜长岩 MgO/(MgO + FeO^{*})=0.81-0.78,石英 辉长岩 MgO/(MgO + FeO^{*})=0.45-0.36,似乎是分 异的结果。剖面Ⅱ上蚀变强的含辉斜长岩与特罗多斯蛇绿 岩中辉长岩相比 CaO、TiO, 略低, MgO、Na, O、K2 O 较高。而 剖面【上的蚀变较弱的石英辉长岩、斜长花岗岩和玄武岩 (除贫 K₂O 外)特征与特罗多斯蛇绿岩相同岩性的特征基本 —致。在 ACM 图(图 6A)及 AFM 图(图 6B)中,方辉橄榄岩 均落入变质橄榄岩区。而基性岩大多落入基性岩区,并表现 出向富铝方向演化的趋势。英云闪长岩、斜长花岗岩及角斑 岩在 ACM 图和 AFM 图上呈直线并平行拉斑玄武岩演化趋 势线。在AFM 图中整个蛇绿岩岩石显钙碱性趋势,这种不 一致暗示岩浆演化过程中 FeO 早就迅速减少了,后来 Al₂O₃、CaO、Na₂O、K₂O 显著增加,这暗示,早期有大量结晶 分异的堆晶超镁铁质岩,只是在剖面断片中我们不曾见到。 含辉斜长岩、石英辉长岩和斜长花岗岩也可能是岩浆分异结 果。在以 SiO₂和 K_2O 为轴的半对数座标图(图7)中,所有岩 石显示出低钾特征,多数岩石 K₂O < 1。基性岩蚀变弱者落 人次碱性大洋玄武岩和辉长岩区,斜长花岗岩则落人大洋斜 长花岗岩区,英云闪长岩落在堆晶岩和大洋斜长花岗岩之 间,靠近康南玄武岩。角斑岩落在大陆花斑岩的边界上,偏向 大洋斜长花岗岩一侧,说明英云闪长岩和角斑岩与斜长花岗 岩成因不同,但角斑岩比英云闪长岩和斜长花岗岩更相关。

样品 03Q-2/3 和 03Q-3(蚀变含辉斜长岩)中 Al₂O₃含量 均大于 20(wt%)。Pearce(1966)指出,这是有斜长石堆积的 堆晶岩。实际上它们是含辉斜长岩,显堆晶结构。

Pearce 等(1984)按产出的构造背景将蛇绿岩分为俯冲 带之上的 SSZ 型和 MORB 洋中脊型,并指出两者的变质橄榄 岩有明显不同的地球化学特征,SSZ 型较 MORB 型明显地亏 损高场强元素,SSZ 型蛇绿岩中变质橄榄岩 TiO₂ wt%)为0. 01~0.04%。这里的变质橄榄岩 TiO₂ (wt%)为0.02%,指示 该变质橄榄岩为 SSZ 型蛇绿岩的变质橄榄岩。

放射虫硅质岩(表 2)12 个样的 Al₂O₃/(Al₂O₃ + Fe₂O₃) 值为 0.006 - 0.158,平均为 0.047,明显地低于大洋盆地 (0.4~0.7)和大陆边缘(0.5~0.9)硅质岩,而与洋中脊 (<0.40 = 硅质岩相当(Murray,1994)。MnO(wt%)/TiO₂ (wt%)比值是判断硅质岩沉积环境的重要指标(Adachi et al.,1986; K. Boström et al.,1973),MnO 主要作为来自大洋 深部的标志,而 TiO₂则认为多与陆源物质的介入相关,离陆 较近的大陆坡和边缘海沉积的硅质岩,MnO/TiO₂比值较低, 一般均小于 0.5;而开阔大洋中的硅质沉积物,MnO(wt%)/ TiO₂(wt%)比值则较高,一般大于 0.5。本研究硅质岩 MnO/ TiO₂比值多在 0.5 - 1之间,平均为 0.93,只有一个为 0.33。 因此,从 Al₂O₃/(Al₂O₃ + Fe₂O₃)和 MnO(wt%)/TiO₂(wt%) 特征可以看出,区本放射虫硅质岩样品的形成环境均与洋中 脊或开阔大洋有密切关系。

图 5 新疆康古尔塔格蛇绿岩 MgO-(MgO + FeO)、Ho-Y、Nb-Ta、La-Sm、MgO-Ni、Zr-Nb、Cr-Ni、MgO-Cr 二元关系图 Fig. 5 the MgO-(MgO + FeO)、Ho-Y、Nb-Ta、La-Sm、MgO-Ni、Zr-Nb、Cr-Ni、MgO-Cr diagrams for the Kangguertage ophiolite complex in Xinjiang

4 地球化学

4.1 分析方法和结果

主量元素在中国科学院广州地球化学研究所由刘颖用 XRF分析。微量元素在中国科学院广州地球化学研究所由 涂湘林用电感偶合等离子体-质谱(ICP – MS)仪分析。样品 的熔解分两类,经 XRF 检测可用碱熔法的则用碱熔方法进 行熔样,然后在 PE Elan 型 ICP-MS 上分析微量元素,详细的 实验方法见李献华等(2002);不适用碱熔方法进行熔样则 用酸熔方法分解样品,即准确称取 100mg 样品置于 Teflon 密 闭溶样器中,加入 1ml 浓 HF 和 0.3ml1: 1HNO₃,用超声波振 荡后置于 150℃电热板上将样品蒸干,再次加入相同量的 HF 和 HNO₃,密闭加热(~100℃)7d,蒸干后用 2ml1: 1HNO₃溶 解,加入 Rh 内标,稀释至 2000 倍,在 PE Elan 型 ICP-MS 上分 析微量元素,分析精度优于 5%。详细的实验方法见刘颖等 (1996)。主、微量元素分析结果列于表 1、2、3、4,其中表 1 为 参考 Colemen(1977)从分析中扣除烧失量后标准化的数据。

٠
8
M
<u>ب</u>
■未
峾
忻
÷
ШA
, LD
15
ΗH.
狁
绿
留
-90
μ
44
S.
끮
长

Table1 The	major elements abundances o	of the Kan	gguertage	e ophioliti	c in Xinj	jiang										
样号	岩石名称	SiO_2	TiO ₂	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K20	P205	Cr ₂ 0 ₃	NiO	Total	Mg0/(Mg0 + Fe0 *)
03Q-8/1	角斑岩	63.32	0.96	16.67	3.19	3.66	0.11	1.55	3.26	4.89	2.09	0.29			100	0.19
03Q-8/2	角斑岩	62.59	0.98	16.97	2.70	4.15	0.11	1.55	3.68	4.92	2.06	0. 29			100	0.19
03Q - 5/3	斜长花岗岩	76.90	0.29	11.56	1.08	1.89	0.05	1.02	1.73	5.33	0.12	0.02			100	0.24
03Q - 5/1	斜长花岗岩	75.69	0.30	11.99	1.37	2.01	0.06	1.02	2.28	4.95	0.30	0.02			100	0.30
03Q - 5/2	斜长花岗岩	75.78	0.31	11.47	0.41	2.49	0.05	1.22	2.84	5.17	0.23	0.02			100	0.26
03Q - 4/1	英云闪长岩	57.42	0.39	16.98	3.24	5.32	0.15	5.01	8.10	3.32	0.05	0.04			100	0.38
03Q-4/3	英云闪长岩	57.75	0.31	16.52	3.06	3.57	0.12	3.65	10.97	3.99	0.04	0.02			100	0.31
03Q-4/2	英云闪长岩	55.39	0.35	16.72	5.65	3.07	0.14	3.65	12.62	2.35	0.04	0.03			100	0.37
03Q - 6/3	变玄武岩	56.96	1.17	14.97	6.10	5.26	0.16	3.47	9.45	2.15	0.13	0.18			100	0.24
03Q -6/4	变玄武岩	56.28	1.20	14.61	5.90	5.36	0.15	6.40	8.65	1.24	0.06	0.16			100	0.38
03K - 1/11	兰绿色闪石化球颗粒玄岩	49.46	1.41	15.52	2.46	9.64	0.16	6.76	12. 15	2.23	0.13	0.07			100	0.36
03K - 1/13	兰绿色闪石化辉绿岩	50.89	1.33	14.03	2.39	9.37	0.16	8.29	9.87	3.51	0.09	0.06			100	0.42
03K - 1/12	兰绿色闪石化辉绿岩	50.02	1.30	15.46	2.23	9.41	0.18	7.21	10.55	3.49	0.08	0.06			100	0.39
03Q - 7/1	石英辉长岩	55.53	0.15	14.17	1.78	6.04	0.17	8.17	10.22	3.57	0.17	0.01			100	0.52
03Q - 7/2	石英辉长岩	55.06	0.32	11.61	1.49	9.05	0.21	9.94	9.71	2.40	0.22	0.00			100	0.49
03Q -7/4	石英辉长岩	51.30	0.68	16.66	3.31	8.12	0.19	6.25	11.69	1.55	0.20	0.04			100	0.36
03Q - 7/3	石英辉长岩	50.84	0.37	16.79	2.31	8.02	0.21	8.17	10.70	2.42	0.16	0.02			100	0.45
03Q - 3	含辉斜长岩	46.85	0.04	24.53	1.73	2.00	0.05	12.78	7.87	3.71	0.43	0.00			100	0.78
03Q-2/3	含辉斜长岩	46.36	0.02	22.92	0.74	2.18	0.05	11.99	10.94	3.87	0.92	0.00			100	0.81
03Q-2/4	尖晶石方辉橄榄岩	52.49	0.01	0.5	5.02	2.59	0.06	38.63	0.09	0.00	0.00	0.00	0.47	0.21	100	0.84
03Q - 2/5	尖晶石方辉橄榄岩	47.48	0.02	0.61	5.77	2.82	0.10	42.23	0.12	0.00	0.00	0.00	0.53	0.30	100	0.84
03Q-2/6	尖晶石方辉橄榄岩	48.96	0.02	0.69	3.94	3.04	0.09	42.66	0.08	0.05	0.00	0.00	0.26	0.22	001	0.87
03Q-1/3	铬尖晶石方辉橄榄岩	47.33	0.02	0.69	5.32	2.80	0.09	42.11	0.93	0.00	0.01	0.00	0.40	0.31	100	0.85
03Q - 10	铬铁矿蛇纹岩	46.35	0.02	0.71	5.69	2.52	0.06	42.63	1.25	0.00	0.00	0.00	0.46	0.31	100	0.85
03Q - 1/1	铬尖晶石方辉橄榄岩	46.38	0.02	0.70	5.34	3.03	0.09	41.56	2.15	0.00	0.00	0.00	0.44	0.29	100	0.84
03Q - 1/2	铬尖晶石方辉橄榄岩	45.45	0.02	0.74	6.15	2.74	0.10	41.47	2.59	0.00	0.00	0.00	0.46	0.28	001	0.83
*从分析中	切除烧失量,然后标准化															

1623

图 6 康古尔塔格南蛇绿岩 ACM 图(图 6A)和 AFM 图 (图 6B)(仿 Coleann, 1977)

1. 方辉橄榄岩; 2. 剖面 1 辉长岩; 3. 剖面 II 辉长岩; 4. 康南辉 绿岩; 5. 康南玄武岩; 6. 【剖面玄武岩; 7. 斜长花岗岩; 8. 英 云闪长岩;9.角斑岩。

Fig. 6 ACM diagram (5A) and AFM diagram (5B) for south Kangguertage ophiolite (after Coleamn, 1977)

图 7 以 SiO₂ 和 K, O 为轴的半对数座标图(仿 Coleann, 1977)

1. 剖面 1 辉长岩; 2. 剖面 II 辉长岩; 3. 康南辉绿岩; 4. 康南 玄武岩; 5. 1 剖面玄武岩; 6. 斜长花岗岩; 7. 英云闪长岩; 8. 角斑岩

Fig. 7 The logK₂ O vs SiO₂ diagram for Kangguertage ophiolite (after Coleamn, 1977)

4.2 稀土元素地球化学

本蛇绿岩岩石的稀土元素及微量元素分析结果见 表3、4。

康古尔塔格蛇绿岩中硅质岩的主量元素分析结果(Wt%)

表 7

Lab

剖面Ⅱ上的方辉橄榄岩与辉长岩球粒陨石标准化的 REE 分布形式见图 8。总体上,几个变质橄榄岩 REE 分布型 式相似, REE 总量低于球粒陨石, 即相对亏损, 在球粒陨石标 准化值 0.04~0.8 倍之间; LREE 轻微富集、具 Eu 正异常, REE 分布型式与 Coleman(1977) 所列的"W"形 REE 分布型 式相似,但不同样品之间的绝对量是渐变的,而且 Eu 正异常 比 Coleman 的值高。这种现象有两种可能解释:其一岩石为

able 2 The	major elements abundances o	of the silice	sous rock	s trom Ka	ngguertagi	e ophiolit	ic in Xin	liang							
样号	岩石名称	SiO_2	TiO_2	Al_2O_3	Fe_2O_3	FeO	MnO	MgO	CaO	Na_2O	$K_2 0$	P_2O_5	101	Total	$Al_2O_3/(Al_2O_3 + Fe_2O_3)$
03K -1/9	红色铁碧玉放射虫硅质岩	93.82	0.02	0. 15	2.92	1.28	0.05	0.1	0.7	0	0.03	0.01	0.61	69 .66	0.05
03K - 1/5	红色铁碧玉放射虫硅质岩	90.8	0.03	0.16	4.78	1.44	0.01	0.15	1.1	0.22	0.04	0	0.89	99.63	0.033
03K - 1/8	红色铁碧玉放射虫硅质岩	90.15	0.02	0.11	7.35	1.17	0.01	0.11	0.25	0.1	0.03	0.03	0.26	99.59	0.015
03K - 1/4	红色铁质放射虫硅质岩	86.12	0.02	0.20	9.74	1.07	0.01	0.16	1.21	0	0.04	0.01	1.06	99.65	0.021
03K - 1/3	红色铁质放射虫硅质岩	81.25	0.02	0.14	8.26	0.61	0.02	0.12	5.05	0.07	0.04	0	4.31	06 .66	0.017
03K - 1/2	红色铁质放射虫硅质岩	76.76	0.02	0.11	18.12	3.8	0.01	0.12	0.23	0.03	0.03	0.07	0.29	99.59	0.006
03K - 1/7	黑灰色微层放射虫硅质岩	86.56	0.05	0.75	4.31	2.34	0.03	0.53	2.73	0	0.03	0.14	2.41	99.88	0. 149
03K - 1/6	黑灰色微层放射虫硅质岩	83.93	0.08	1.24	6.61	3.23	0.04	1.02	1.52	0.12	0.04	0.58	1.33	99.75	0.158
03Q - 9/1	放射虫硅质岩	88.5	0.02	0.25	6.92	2.53	0.02	0.16	0.68	0.35	0.06	0	0.57	100.06	0.034
03Q - 9/2	放射虫硅质岩	76.84	0.03	0.28	19.79	2.3	0.06	0.16	0.02	0.12	0.05	0	0.07	99.72	0.014
03Q - 11/1	石英岩	85	0.03	0.39	6.87	6.45	0.03	0.23	0.2	0.07	0.13	0.01	0.32	99.73	0.053
03Q - 11/2	石英岩	74.16	0.03	0.19	20.11	4.06	0.02	0.15	0.33	0.04	0.04	0.04	0.54	99.72	0.01

\sim	
E	
Ъ	
果	
戨	
Ψ.	
*	
K	
藼	
1 H	
1	
漢	
ЪĘ	
п¥	
140	
÷.	
₩.	
翘	
R	
\sim	
+μ	
康	
-	
3	
iib/	
111	

Xinjiang
.Е
ophiolitic
Kangguertage
of
abundances
REE
The
Fable 3

样品	世代文教	<u>-</u>	Ċ	-											
030-071	4.1.4.%	1 g	e V	2	PN	Ë	Eu	ઝ	đ	Dy	θH	Er	Tm	Yb	Lu
	灰沙马柱灰石	0.41/	0.693	0.108	0.455	0.108	0.025	0.096	0.018	0.097	0.020	0.059	0.008	0.068	0.012
776 - yeu	以 別 虫 硅 庾 岩	0.415	0.903	0. 125	0.515	0.124	0.031	0.121	0.023	0.141	0.027	0.071	0.010	0.065	0.010
03K - 1/2	红色铁质放射虫硅质岩	0.427	0.384	0.111	0.533	0.103	0.032	0.120	0.018	0.102	0.023	0.064	0 008	0 044	0.006
03K - 1/3	红色铁质放射虫硅质岩	0.265	0.461	0.080	0.338	0.072	0.022	0.092	0.018	0.109	0.024	0.069	0 011	0.077	0.010
03K - 1/4	红色铁质放射虫硅质岩	0.313	0.475	0.112	0.460	0.143	0.040	0.151	0.034	0.230	0.047	0.130	0.004	0.170	0,000
03K - 1/5	红色铁碧玉放射虫硅质岩	0.331	0.571	0.101	0.436	0.111	0.027	0.131	0.022	0.147	0.032	0.008	0.018	0.105	0.010
03K - 1/6	黑灰色微层放射虫硅质岩	12.780	17.170	3.755	15.370	3.351	0.924	3.289	0.598	3.415	0 677	0.070	010.0	101.0	0.010
03K - 1/7	黑灰色微层放射虫硅质岩	6.645	7.909	1.992	8.260	1.856	0.488	1 855	0.343	1 050	0.306	1 170	+/7.0	17/1	0.273
03K - 1/8	红色铁碧玉放射虫硅质岩	0.147	0.227	0.055	0.254	0.074	0 019	0 103		404.1 0 122	0.00	0.000	0.172	1. U/8	0. 171
03K - 1/9	红色铁碧玉放射虫硅质岩	0.169	0.306	0.047	0.198	0 048	0 012	0.051	0.010	CC1.0	100.0	060.0	0.014	0. II3 2. 2.5	0.019
03Q - 11/1	有英岩	0.479	1 103	0 148	0.614	0.147	710.0		0.010	000/	0.014	0.041	0,007	0.05	0.01
030 - 11/2	石準法	1 135	2 007	0.310	1 200	0.14/		0.142	0.024	0. 155	0.027	0.073	0.010	0.067	0.010
030 - 8/1	また。	14 500	21 450	410.0	060.1	175.0	0.0//	0.3/3	0.064	0.379	0.077	0.202	0.030	0.198	0.031
030-8/2	白色白色	1007.41	01.4JU	4.022	19.410	4. 561	1.186	4.500	0.872	5.305	1.162	3.482	0.575	3.872	0.611
030-5/3	伍然在 盈内#出品	10C.01	080.96	20.902	25.250	5.731	1.605	5.689	1.043	6.252	1.333	3.843	0.606	3.947	0.605
030 - 571	<u><u><u></u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u></u>	167.0	14.490	2.130	9.537	2.546	0.527	3.261	0.630	3.881	0.863	2.606	0.407	3.060	0.477
	华区化区台 图 4 年 11 11	6.620	15. 150	2.182	9.733	2.667	0.587	3.400	0.675	4.072	0.874	2.778	0.422	2.928	0.479
7/6 - Aco	学大名因之	5.922	14.790	2.036	9.190	2.551	0.491	3.238	0.627	3.923	0.868	2.617	0.402	2.795	0.453
030 1 10	英云内长岩 ::	3. 539	7. 151	1.028	4.658	1.216	0.475	1.489	0.283	1.755	0.387	1.106	0.172	1.195	0 185
03Q -4/3	英云闪长岩	3. 035	6. 111	0.868	3.913	1.094	0.436	1.309	0.239	1.542	0.333	0.949	0.151	0 995	0 164
$0.5 \sqrt{-4/2}$	英国国际	3.069	6.497	0.941	4.096	1.136	0.443	1.325	0.254	1.606	0.354	1.029	0.163	1.075	0 177
03Q - 6/3	变玄武岩	7.628	18.780	2.755	13.750	3.853	l. 455	4.886	0.806	4.904	0.975	2.679	0.401	21212	0.440
03V - 6/4	变玄武岩	6.476	15.580	2.354	11.540	3.046	1.125	3.889	0.675	3.845	0.782	2.309	0.331	2 240	0 336
03K - 1/11	兰绿色闪石化球颗粒玄岩	1.466	5.207	1.165	7.425	2.950	1.259	4.539	0.919	6.033	1.346	3.761	0.620	3 947	0.675
03K - 1/13	性绿色闪石化辉绿岩	1.345	4.882	1.077	6.748	2.726	0.957	4.027	0.828	5.365	1, 172	3. 237	0.518	3 321	0.573
03 K - 1/12	兰绿色闪石化辉绿岩	1.368	4.963	1.090	6.623	2.668	1.097	4.075	0.816	5.259	1.167	3 235	0 407	3 215	0 406
03Q - 7/1	辉大岩	2.314	5.519	0.840	4.265	1.443	0.481	2.249	0.443	2.734	0.582	1.703	0 251	CI7.0	0 767
1/1 – Usu	石英辉长岩	2.745	7.549	1.311	7.475	2.641	0. 593	4.098	0.823	4,878	1 086	3 143	CLV 0	2 704	0.500
03Q - 7/4	石英辉长岩	3.170	7.259	1.049	4.993	1.479	0.516	1.962	0.350	2 239	0.478	1 481	2/1-0 LCC 0	CI3 1	0.767
03Q-7/3	石英辉长岩	2.214	5.777	0.884	4.665	1.658	0.608	2. 639	0.492	3.063	0.674	107.1	0 306		002.0
03Q - 3	含辉斜长岩	0.198	0.336	0.062	0.290	0.093	0.055	0.123	0.023	0 161	0.037	0 113	0.000		0.320
03Q-2/3	含辉斜长岩	0.993	1.345	0.188	0.654	0.111	0.298	0.111	0.014	0 072	0.014	0.030	0.006	0.042	020.0
U3Q - 2/4	尖晶石方辉橄榄岩	0.367	0.707	0.081	0.265	0.053	0.126	0.043	0 008	0 047		0.075	0.005		0.00/
03Q - 2/5	尖晶石方辉橄榄岩	0.017	0.027	0.003	0.013	0.008	0 131	0.010	0.000	0.016	0.001		CO0 0	0.0.0	0.004
03Q-2/6	尖晶石方辉橄榄岩	0.191	0.379	0.048	0. 161	0 038	0 076	0.054				000 0	0.002	0.019	cuu .u
03Q-1/3	铬尖晶石方辉橄榄岩	0.088	0 179	0 074	0 083	200 O	0.051		00.00	0.042	0.009	0.029	c00.0	0.045	0.008
03Q - 10	格铁矿蛇公式	0.061		0.015	0.065	0.010	1 cu .u	0.022	0.004	0.027	0.006	0.018	0.003	0.039	0.010
030 - 1/1	格全晶石 古猴栖栖 堂	0.081	0 150		ccu.u	0.012	0.006	0.009	0.002	0.014	0.003	0.009	0.002	0.011	0.002
030 - 1/2	日へ出しる生気的合数を見たりたい。彼人はどう物理事業で	0.001	0.1.0	0. UZU ^ ^ ^ ^	0. 099 202	0.041	0.164	0.037	0.007	0.053	0.011	0.034	0.008	0.057	0.011
	臣大昭ユノ戸寅四石	0.00	0.072	0.011	0.037	0.016	0.024	0.016	0.002	0.016	0.003	0.009	0.002	0.012	0.0003

表4 康古尔	塔格蛇绿岩微量元素分析结 	果(bpm)		:													
Table 4 The	trace abundances of Kangguer	tage ophiol	utic in X	Injiang													
样号	岩石名称	Sc	٨	Rb	Sr	Y	Zr	Nb	Ba	JH	Та	Тh	ï	Cr	Co	Ni	Си
03Q - 9/1	放射虫硅质岩	0.019	22.32	0.512	8.889	0.557	2.15	0.298	9.966	0.052	0.017	0.032	45.38	15.94	2.07	8.637	10.42
03Q - 9/2	放射虫硅质岩	0.09	34.03	0.548	4.768	0.653	1.511	0.57	5.745	0.041	0.031	0.084	60.32	32.02	2.388	10.08	13.78
03K - 1/2	红色铁质放射虫硅质岩	0.185	60.09	0.094	8.812	1.145	0.341	0.241	4.032	0.01	0.015	0.039	15.81	16.61	2.155	6.916	11.65
03K - 1/3	红色铁质放射虫硅质岩	0. 15	4.416	0.437	10.45	0.777	0.933	0.258	8.984	0.022	0.016	0.075	23.44	16.75	0.919	4.333	4.462
03K - 1/4	红色铁质放射虫硅质岩	0.065	6.91	0.419	9.167	1.349	1.384	0.099	7.083	0.032	0.008	0.062	25.46	18.38	1.697	5.31	7. 154
03K - 1/5	红色铁碧玉放射虫硅质岩	0.236	4.275	0.728	5.598	1.021	1.102	0.29	4.842	0.027	0.023	0.059	61.56	16.92	1.73	6.455	14.25
03 K - 1/6	黑灰色微层放射虫硅质岩	1.527	27.74	0.342	11.41	21.59	20.03	2.597	6.785	0.457	0.152	0.839	330.3	22.43	2.296	15.37	22.42
03K - 1/7	黑灰色微层放射虫硅质岩	0.87	14.99	0. 225	16.76	12.93	12.16	0.572	4.156	0.325	0.045	0.506	175.5	18.65	1.727	11.01	19.25
03K - 1/8	红色铁碧玉放射虫硅质岩	0.003	12.28	0. 221	3.068	0.962	1.598	0.156	4.227	0.037	0.01	0.033	44.12	22.73	1.658	5.931	8.546
03K - 1/9	红色铁碧玉放射虫硅质岩	0.08	7.559	0.213	7.681	0.46	0.671	0.215	8.213	0.016	0.012	0.066	16.53	24.77	1.729	6.04	11.48
03Q - 11/1	石英岩	0.189	28.72	1.662	18.87	0.82	4.44	0.928	27.83	0.117	0.063	0.089	100.6	19.27	2.838	12.67	20.77
03Q - 11/2	石英岩	0.071	57.87	0.397	4.283	2.44	4.258	0.87	8.387	0.109	0.054	0.035	50.56	25.49	2.839	15.33	23. 25
03Q - 8/1	角斑岩	11.11	64.66	31.68	273.4	34.61	290.1	6.749	558.1	6.256	0. 531	4.885	5753.6	9.831	13.66	5.9	31.33
03Q-8/2	角斑岩	10.88	62.11	32.72	294.2	39.5	286.4	6.467	539.3	6.021	0.524	4.849	5637.3	16.91	13.04	7.072	12.79
03Q - 5/3	斜长花岗岩	10.22	33.85	1.373	93.05	22.83	117.3	3.482	103.5	3.361	0.192	0.848	2737.2	13.25	5.145	7.132	47.22
03Q - 5/1	斜长花岗岩	9.918	35.49	5.989	85.7	25.78	110.6	3.695	58.49	3.059	0.213	0.882	2695.8	16.1	5.548	8.258	21.18
03Q - 5/2	斜长花岗岩	15.27	37.1	3.987	69.6	24.94	112.9	3.492	45.48	3.249	0.194	0.848	3146.4	11.41	5.43	6.941	27.01
03Q - 4/1	英云闪长岩	33.48	174.6	0.374	306.7	11.96	21.61	1.171	70.76	0.573	0.076	0.519	1790.4	67.43	30.34	29.19	13.69
03Q-4/3	英云闪长岩	28.07	182.8	0.336	296.8	9.692	19.11	4.635	55.97	0.547	0.061	0.442	1473.2	60.77	22.31	27.49	144.9
03Q - 4/2	英云闪长岩	31.38	188.3	0.403	519.4	10.52	26.73	0.902	40.52	0.618	0.59	0.511	1673.6	64.89	30.35	31.86	29.37
03Q - 6/3	变玄武岩	22.28	309.9	2.364	561.8	26.84	73.57	3.194	42.36	2.077	0.175	0.367	7776.1	33.16	28.86	24.09	136.2
03Q - 6/4	变玄武岩	24.63	381.9	0.916	559.9	21.27	62.58	2.284	24	1.774	0.126	0.316	7868.5	6.698	33.66	13.03	97.59
03K - 1/11	兰绿色闪石化球颗粒玄岩	61.89	382.1	1.634	132	40.13	77.29	0.92	25.81	16.1	0.065	0.104	8622.5	99.23	66.05	70.65	122.3
03K - 1/13	兰绿色闪石化辉绿岩	58.97	332.3	0.83	196.6	32.94	74.8	0.987	36.75	1.91	0.071	0.091	7988.7	241.8	56.5	78.42	178.9
03K - 1/12	兰绿色闪石化辉绿岩	54.88	355.2	0.831	272.6	35.37	56.91	0.893	29.79	1.457	0.061	0.11	7552.4	211.8	37.25	68.89	75.41
03Q - 7/1	石英辉长岩	31.86	115.2	0.673	177.7	15.06	26.18	0.808	57.95	0.781	0.046	0. 236	2073.2	241.4	33.33	67.29	40.37
03Q - 7/2	石英辉长岩	55.28	161.5	1.511	119.6	28.19	41.69	1.879	49.04	1.28	0.109	0.267	2867.5	374.8	44.59	79.93	19.79
03Q -7/4	石英辉长岩	32.89	382.4	2.256	305.1	12.69	29.05	4.603	61.79	0.964	0.241	0.257	4354.1	43.42	37.91	27.72	111.7
03Q - 7/3	石英辉长岩	35.11	151.6	1.29	198.1	16.99	16.74	0.757	61.44	0.551	0.045	0. 151	2799.1	141	38.56	59.23	54.51
03Q - 3	含辉斜长岩	4.561	27.49	4.06	695.4	0.907	4.65	0.061	899.5	0.106	0.003	0.051	187.2	123.3	41.82	351.8	190.3
03Q - 2/3	含辉斜长岩	1.756	8.017	9.426	1001.8	0.37	0.824	0.05	2748.3	0.016	0.002	0.008	61.03	85.93	33.9	411.8	0.302
03Q - 2/4	尖晶石方辉橄榄岩	6.164	60.69	0.639	30.57	0.29	1.689	0.528	2.829	0.045	0.027	0.059	90.42	3794.2	123.4	3227.3	12.67
03Q-2/5	尖晶石方辉橄榄岩	9.116	36.64	0.023	9.013	0.079	0.089	0.025	0.837	0.002	0.001	0.001	21.18	3597.7	103.8	2237.6	44.42
03Q - 2/6	尖晶石方辉橄榄岩	10.49	51.51	0.417	15.49	0.305	2. 181	0.079	4.517	0.067	0.005	0.033	76.82	3545.9	135.5	3045	15.16
03Q - 1/3	铬尖晶石方辉橄榄岩	14.94	82.61	0.312	48.49	0.179	0.488	0.056	8.34	0.013	0.003	0.015	37.89	5245	183.9	4048.7	72.34
03Q - 10	铬铁矿蛇纹岩	7.085	30.34	0.109	13.97	0.079	0.118	0.052	1.699	0.003	0.002	0.008	23.83	3006.7	86.88	2195.7	15.62
03Q - 1/1	铬尖晶石方辉橄榄岩	15.58	58.2	0.092	93.84	0.34	0.38	0.084	2.278	0.011	0.004	0.013	75.5	5985.2	179.4	3928.7	69.48
03Q - 1/2	铬尖晶石方辉橄榄岩	2.923	6.183	0.101	26.04	0.098	0.287	0.02	2.182	0.009	0.001	0.004	14.9	1303	39.03	709.6	12.04

图 8 康古尔塔格蛇绿岩 II 剖面蛇纹岩与辉长岩的稀 土配分曲线(球粒陨石的 REE 值引自 Boynton,1984) 1. 辉长岩; 2. 蛇纹石化方辉橄榄岩

Fig. 8 Chondrite-normalized REE distribution patterns of serpentinites and gabbros from II section of Kangguertage ophiolite (The REE composition of chondritic meteorites from Boynton., 1984)

斜长石地幔橄榄岩相;其二岩石经过碳酸盐化蚀变。据岩 相学特征,这儿的变质橄榄岩正 Eu 异常可能与碳酸盐化有 关,随着 Ca 的带入,也可能带来了 Eu。

剖面Ⅱ上的含辉斜长岩 REE 分布型式明显有两类:一 类平缓,Eu 正异常较低;另一类 Eu 正异常明显,LREE 富 集,MREE-HREE 下凹,总体呈右倾,斜率较陡。

剖面丨及康古尔塔格南各岩石平均值的球粒陨石标准 化 REE 分布形式见图 9。图 9a 是各辉长岩类和玄武岩类的 REE 分布型式;图 9b 是斜长花岗岩-英云闪长岩-角斑岩类 的 REE 分布型式。从左侧两图可以看出,同类岩石不仅具 有相同分布型式,而且较紧密地集中在一起,说明这些岩石, 尽管在剖面上被断层分隔成岩片,但基本是同一种岩石,因 此可以把它们的平均值放在一起,如图 9c,以便于对比,看看 这些岩石间是否具有某种演化关系。图 9c 中方辉橄榄岩的 稀土特征与剖面Ⅱ相似。而剖面Ⅰ石英辉长岩则表现为 LREE 略亏损、Eu 为略具负异常的平坦型分布型式,和一些 MORB 型蛇绿岩的辉长岩相同,但和剖面Ⅱ的含辉斜长岩 REE 分布型式明显不同。这些特征和主元素特征完全一致, 说明它们是不同的两类岩石。最明显地是,剖面ⅡEu为强 正异常,有斜长石堆积; 剖面 I Eu 为弱负异常,似乎分离出 了斜长石。玄武岩有两类:一类为 LREE 亏损型,具 N-MORB 特征; 另一类为 LREE 弱富集型, 具 E-MORB 特征。两类的 ∑REE 均为球粒陨石标准化值 10 倍左右,两者均具 MORB 特征,说明都源自一个亏损地幔。E-MORB 可能是稍晚的又 一次熔融产物,这次熔融可能是在俯冲组分加入下亏损地幔 的熔融。斜长花岗岩、英云闪长岩和角斑岩的分布曲线各自

比较集中,都是 LREE 轻微富集型,HREE 平坦型,而且彼此 平行。但彼此绝对量高低不同,角斑岩最高,斜长花岗岩其 次,斜长花岗岩和英云闪长岩ΣREE 为球粒陨石标准化值 15-20 倍左右;其中斜长花岗岩具明显的 Eu 负异常,英云 闪长岩有极弱的 Eu 正异常,角斑岩弱的 Eu 负异常不明显。 这些再一次说明斜长花岗岩、英云闪长岩和角斑岩成因不 同,斜长花岗岩和角斑岩更相关。李武显等(2003)把与蛇绿 岩有关的花岗岩类岩石分成岩浆分异型、剪切熔融型、俯冲 型和仰冲型四种。按 REE 分布型式对比,康古尔塔格的斜 长花岗岩相当于岩浆分异型,这与斜长花岗岩岩相学和岩石 化学地球化学是完全一致的。康古尔塔格的英云闪长岩则 与俯冲型(李武显等,2003)相当,即有可能是俯冲洋壳再熔 融产物。角斑岩与斜长花岗岩更接近,可能为斜长花岗岩岩 浆的喷出相。

几种放射虫硅质岩和硅质岩变质重结晶的石英岩的北 美页岩(NASC)标准化的 REE 曲线形式(图 10A)基本一致, 全为 LREE 略亏损的缓左倾曲线, Ce 具负异常, Ce/Ce^{*} = 0.548, La_n/Ce_n = 1.661, 明显不同于大陆边缘硅质岩, 而与大 洋盆地硅质岩(Murray, 1994; Murray *et al.*, 1991)的 Ce/Ce^{*} = 0.60 ± 0.13, Lan/Cen = 1.0 - 2.5 -致(图 10B)。

4.3 微量元素地球化学

蛇绿岩各单元岩石的微量元素分析数据见表 3,表中显示出方辉橄榄岩及辉长岩均亏损高场强元素(HFSE),而大离子亲石元素(LILE)相对富集的特征,其中锆、铪的亏损相对明显。玄武岩、辉绿岩及角斑岩的微量元素蛛网如图 11。

与 Pearce(1996)的玄武岩微量元素蛛网图相比,康南玄 武岩及辉绿岩蛛网图形态相当边缘盆地过渡型玄武岩 MORB/VAB,低的标准化丰度,小的 Nb 负异常。Pearce (1996)认为可以用含不同量俯冲组分的 MORB 地幔的浅位 熔融或 MORB 地幔与受俯冲组分改造的地幔楔混合来解释。 剖面 I 玄武岩蛛网图形态相当大洋岛弧钙碱性玄武岩 VAB, 明显的 Nb 负异常, Nb、Zr、Ti、Y 相对低于 Th、Ce, Pearce et al (1995)解释为俯冲洋壳脱水和部分熔融期间,Th、Ce转移进 弧下熔体,Nb、Zr、Ti、Y保留在俯冲板片及其上地幔楔中的 角闪石和微量矿物如屑石、金红石中。Ti/Y值低,也说明是 在有水加入下的浅位熔融。两类玄武岩各自具有一致性,康 南玄武岩及辉绿岩在图 11 中自左向右随元素不相容性的降 低,富集度逐渐增高,Zr、Ti、Y等相容性较强的元素相对于 Nb、Ce 等不相容性稍强的元素略呈富集状态。角斑岩的曲 线形态则与分离结晶的拉斑玄武岩系列的英安岩相似,仅 Ti 的负异常更强一些。从康南玄武岩、辉绿岩经剖面 I 玄武岩 至角斑岩,它们的共同点是,都有明显的 Nb 负异常,不相容 性高的元素分布型式相似,但其量逐步增高; 高场强元素 Zr、Ti、Y,稍有回落。总的来说,俯冲作用使边缘盆地叠加了 洋内岛弧的特征。这和主量元素的指示是一致的。

图 9 (a)康古尔塔格蛇绿岩辉长岩、辉绿岩及玄武岩稀土配分曲线,(b)康古尔塔格蛇绿岩斜长花岗岩、英云闪长岩及角 斑岩稀土配分曲线,(c)康古尔塔格蛇绿岩各岩石 REE 平均值的稀土配分曲线(球粒陨石的 REE 值引自 Boynton,1984) 1. 蛇纹石化方辉橄榄岩; 2. 石英辉长岩; 3. 斜长花岗岩; 4. 英云闪长岩; 5. 角斑岩; 6. 玄武岩; 7. 康南玄武岩; 8. 康南辉绿岩; 9. 剖面 II 含 辉斜长岩。

Fig. 9 (a) Chondrite-normalized REE distribution patterns of gabbros, diabases and basalts from Kangguertage ophiolite; (b) Chondrite-normalized REE distribution patterns of plagiogranites, tonalites and keratophyles from Kangguertage ophiolite; (c) Chondrite-normalized REE distribution patterns of average REEs of respective rock from Kangguertage ophiolite. (The REE composition of chondrite from Boynton, 1984)

图 10 (A) 康古尔塔格硅质岩北美页岩(NASC) 标准化的 REE 分布形式, (B) 不同环境形成的硅质岩 REE 分布形式(北美页岩 REE 值引自 Gromet *et al.*, 1984)

Fig. 10 (A) NASC-normalized REE distribution patterns of radiolarian cherts and quartzite from Kangguertage; (B) NASC-normalized REE distribution patterns of different settings. (The REE composition of NASC from Gromet *et al.*, 1984)

5 构造环境判别

在 Pearce et al(1975)的 TiO2-K2O-P2O5的环境判别图 12

中,辉绿岩和玄武岩全部落人大洋的范围,表明它们是生成 于大洋环境。在 Zr/4-2×Nb-Y(图 13)图中玄武岩及辉绿岩 落入正常洋中脊 MORB + VAB 范围;在 Ti/100 - Zr - 3Y (图 14)图中玄武岩及辉绿岩多落入正常洋中脊 MORB + Acta Petrologica Sinica 岩石学报

图 11 新疆康古尔塔格南蛇绿混杂岩中熔岩玄武岩、辉绿岩和角斑岩微量元素蛛网图(仿 Pearce,1996)

Fig. 11 MORB-normalized trace element distribution patterns of basalts , diabases and keratophyres of Kangguertage ophiolite complex in Xinjiang (after Pearce, 1996)

图 12 基性熔岩 TiO₂-K₂O-P₂O₅的环境判别图(据 Pearce, 1975)

1. 剖面 I 玄武岩; 2. 康南玄武岩; 3. 康南辉绿岩。

Fig. 12 $TiO_2 - K_2 O - P_2 O_5$ discrimination diagram for basaltic lava (after Pearce, 1975)

VAB+钙碱性玄武岩范围,仅一个点落在区外;用 Ti-Zr(图 15)图判别,则几乎全部落在为 MORB + VAB 叠加范围。在 Hf-Th-Ta 图(图 16)中,康古尔塔格南玄武岩和辉绿岩落入 MORB 区,剖面 I 玄武岩落入 MORB + VTB(岛弧拉斑玄武 岩)过渡区,属消减的板缘和边缘海盆环境。而角斑岩则落 入 VAB 钙碱性火山岩区,可能属弧-陆碰撞带内 VAB/WPB

图 13 基性熔岩的 Zr-Nb-Y 判别图(仿 Meschede, 1986) A I 区为板内碱性玄武岩; A II 区为板内碱性玄武岩和板内拉斑 玄武岩; B 区为 E 型 MORB; C 区是板内拉斑玄武岩和火山弧玄 武岩; D 区为 N 型 MORB 和火山弧玄武岩。

1. 剖面 I 玄武岩; 2. 康南玄武岩; 3. 康南辉绿岩。

Fig. 13 Zr/4-2Nb-Y discrimination diagram for basaltic lava(after Meschede, 1986)

图 14 玄武岩与辉绿岩的 Zr — Ti/100 — 3Y(仿 Pearce 和 Cann, 1973)

A - 岛弧拉斑玄武岩; B - MORB + 岛弧拉斑玄武岩 + 钙碱性玄武岩; C - 钙碱性玄武岩; D - 板内玄武岩;

1. 剖面 I 玄武岩; 2. 康南辉绿岩; 3. 康南玄武岩。

Fig. 14 Zr-Ti/100-3Y discrimination diagram for basalts and diabases(after Pearce and Cann, 1973)

过渡环境,为熔体朝着 Th 含量增高的方向演化所致(Pearce et al., 1975)。在 Ti-V 图(图 17)中,除剖面 I 的一个样品落

1629

图 15 玄武岩与辉绿岩的 Zr-Ti 判别图(仿 Pearce, 1982)

1. 剖面 1 玄武岩; 2. 康南辉绿岩; 3. 康南玄武岩。

Fig. 15 Zr-Ti discrimination diagram for basalts and diabases(after Pearce, 1982)

图 16 新疆康古尔塔格南蛇绿岩熔岩的 Th-Hf/3-Ta 图 (Pearce 根据 Wood et al., 1979 修改, 1996)

A—为 N 型 MORB; B—为 E 型 MORB 和板内拉斑玄武岩; C— 为碱性板内玄武岩; D—为火山弧火山岩。

 康南辉绿岩; 2. 剖面I玄武岩; 3. 康南玄武岩; 4. 剖面I角斑岩
Fig. 16 Th-Hf/3-Ta discrimination diagram for Kangguertage ophiolite lava in Xinjiang (after Wood *et al* 1979 and Pearce, 1996)

人岛弧拉斑玄武岩区外,其余均落入 MORB + BAB(弧后盘 片玄武岩)区。上述特征显示出该蛇绿岩可能为离洋内弧较 近的 SSZ 型弧后盆地蛇绿岩。

6 康古尔塔格蛇绿岩大地构造意义

综合以上事实,证明存在于康古尔塔格一带,沿康古尔 塔格断裂带分布的:从变质橄榄岩-堆晶橄榄岩-辉长岩-斜长

图 17 玄武岩与辉绿岩的 Ti-V 判别图(仿 Shervais, 1982)。BAB 表示弧后盘片玄武岩。

Fig. 17 Ti-V discrimination diagram for basalts and diabases(after Shervais, 1982)

花岗岩-辉绿岩-玄武岩-角斑岩-放射虫硅质岩的岩石组合, 为一较为完整的蛇绿岩,玄武岩的岩石化学和地球化学均显 示其具有洋内岛弧/弧后盆地环境; 与玄武岩紧密共生的放 射虫硅质岩、硅质岩也显示为大洋盆地产物,表明康古尔塔 格蛇绿岩确为古洋壳残片。现有的研究表明,康古尔塔格断 裂带既是重要的构造变形带,又是重要的生物古地理界线, 也是明显的岩浆活动的分界线。沿康古尔塔格大断裂带发 育有著名的秋格明塔什-黄山韧性剪切带。该带的构造变形 为早期以南北向共轴挤压为主(徐兴旺等,1988),伴随有向 南的逆冲,晚期为近东西向的右行走滑。代表汇聚型边界的 强应变构造域;该断裂带北侧发育有奥陶系至石炭系地层, 而南侧仅分布有石炭系地层;在生物组合方面,该断裂带是 奥陶一石炭纪我国华南和西伯利亚两大生物区系,晚古生代 安加拉和华夏两大植物区系的分界线,石炭一二叠纪安加拉 植物群没有越过康古尔塔格深断裂带,仅在其北分布(吴绍 祖,1993);在北侧目前已有确切同位素年龄的有泥盆纪和 石炭纪岛弧侵入岩(宋彪等,2002),而南仅有石炭纪侵入岩, 且偏离断裂带分布。结合康古尔塔格蛇绿岩综合分析,认为 康古尔塔格断裂构造带代表了康古尔塔格古洋盆闭合后的 缝合带,该缝合带相当于张良臣(1995)所划的塔里木与哈萨 克斯坦两大板块的艾比湖一康古尔塔格缝合带。对东天山 地区的大地构造环境姬金生等(1994)和周济元等(1996)的 认识基本相近,认为东天山地区石炭纪时存在着沟弧盆体系 和双向俯冲(杨兴科等,1999)或向北的俯冲(Xiao et al, 2004),康古尔塔格蛇绿岩的确证为其提供了有力的佐证。

李锦轶等(2002)根据秋格明塔什以南、康古尔塔格以 南、南北大沟和雅满苏东大沟等地变质基性熔岩和硅质岩的 岩石化学成分,以及其产出状态(呈构造岩片)和伴生深水复 理石沉积等特征,推测康古尔塔格构造带前身的古海洋盆是 一个颇具规模的大洋盆地;硅质岩中的放射虫表明该洋盆 在泥盆纪就存在,而不是石炭纪才形成的。康古尔塔格弧后 盆地蛇绿岩的确定表明吐哈地块南缘曾演化为完整的板块 俯冲消减的沟-弧-盆体系,暗示康古尔塔格古洋盆具有相当 大的规模。与李锦轶等(2002)的推测的结论相一致。否认 了前人弧间盆地(马瑞士等,1990、1993)、石炭纪裂谷或裂陷 槽(冯益民等,2002)的认识。

关于康古尔塔格蛇绿岩的形成时代,目前尚未有同位素 证据,区域资料表明其北部晚石炭纪(底格尔组)已为残余海 盆环境,而在早石炭纪为岛弧环境(小热泉子组),表明康古 尔塔格古洋盆在早石炭纪未已随洋壳板块的俯冲消减而消 失,结合与硅质岩中放射虫资料(李锦轶等,2002),初步认为 康古尔塔格蛇绿岩形成于前石炭纪。俯冲消减作用结束于 早石炭纪未,晚石炭纪转入演化阶段。

致谢 在本文完成过程中,周国庆教授鉴定了岩石薄片, 同时审阅了全文并提出了许多宝贵意见,在此深表谢意!

References

- Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their Geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2), 125 - 148
- Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P(ed.). Rare earth element geochemistry. Elservier, pp. 63-114
- Colemen R. G. 1977. Ophiolites: Ancient Oceanic Lithosphere Berlin: Springer.
- Fang Guoqing, 1994, Paleozoic plate tectonics of Eastern Tianshan mountains Xinjiang, China. Acta Geologica Gansu. 3, 1, 34 - 40 (in Chinese with English abstract)
- Feng Yi-min, Zhu Bao-qing, Yang Jun-lu, Zhang Kai-chun. 2002, Tectonics and evolution of the eastern Tianahan mountains — A brief introduction" Tectonic map (1:500 000) of the eastern Tianahan mountains of Xinjiang . Xinjiang Geology, 20, 4, 309 - 314. (in Chinese with English abstract)
- Gromet L. P, Dymek R. F, Haskin L. A, et al. 1984. The "North American shale composite": Its compilation, major and trace element characteristics. Geochim Cosmochim Acta, 48, 2469 – 2482
- Guo zhaojie, Wang chao. 1993, The determination of TAKEZALE-MAIQINWULA fossil collision suture in east zhungaer, Xin jiang. J Mineral Petrol., 13, 1, 96 - 102 (in Chinese with English abstract)
- Ji Jinsheng, Tao Hongxiang, Zeng Zhangren, Yang Xingke et al. 1994. Geology and Metalogeny of Kanggurtag Gold Mineralization belt, Eastern Tianshan Mountains. Geological Publishing House Beijing. 1 -204(in Chinese with English abstract)
- K. Boström, T. Kraemer and S. Gartner Bostrom K., 1973. Provenance and accumulation rates of opaline silica, Al, Fe, Ti, Mn, Cu, Ni, and Co in pacific pelagic sediments. Chemical Geology, 11(1-2), 123-148
- Li Jinyi, Wang Kezhou, Li Wenqian, Guo Huachun, Song Biao, Wang

Yu, Mo Shenguo, Zhao Ziran, Zhu Zixin, Pan Chengze. 2002. Tectonic evolution since the late Paleozoic and mineral prospecting in Eastern Tianshan mountains, NW China. Xinjiang Geology, 20(4); 295 - 301) (in Chinese with English abstract)

- Li Wenqian, Domg Furong, Zhou Ruhong, 2000. Ophiolite discovered in KANGURTAG regiaon and its characteristics. Xinjiang Geology., 18, 2, 121 – 128 (in Chinese with English abstract)
- Li Wuxian, Li Xianhua, 2003, Rock types and tectonics ignificance of the granitoids rocks within ophiolites. Advance Earth Sciences ,18, 3, 392 - 397 (in Chinese with English abstract)
- Li Xianhua, Liu Ying, Tu Xianglin, Hu Guangqian, Zeng Wen, 2002, Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: Acomparative study of sample digestion techniques of alkali fusion snd dissoluteion. Geochimica. 31, 3, 289 - 294 (in Chinese with English abstract)
- , iu Dequan, ChenYu-chuan, Wang Deng-hong, Tang Yan-ling, Zhou Ru-hong, Wang Jin-liang, Li Hua-qin and Chen Fu-wen. 2003, A Discussion on Problems Related to Mineralization of Tuwu-Yandong Cu-Mo Orefield in Hami, Xinjiang Mineral Deposits, 22, 4, 234 – 244 (in Chinese with English abstract)
- Liu Dequan, Tang Yanling, Zhou Ruhong, 1999, Evolutionand Mineralize of the Tianshan Paleozoic Orogenic Belt. Cheng Yuchuan. Theory and Methods of Modern Mineral Resources Exploration and Appraisement (in Chinese). Seismological Publishing House, Beijing, 549 – 560 (in Chinese with English abstract)
- Liu Dequan, Tang Yanling, Zhou Ruhong. 1992. Evolution of Paleozoic Crust and Metallogenic Series Northern Xinjiang. Mineral Depsits. 11, 4, 307-314 (in Chinese with English abstract)
- Liu Ying, Liu Haichen, Li Xianhua, 1996, Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP – MS. Geochimica, 25, 6, 552 – 558 (in Chinese with English abstract)
- Ma Rui-shi Ye Shang-fu Wang Ci-yin et all., 1993, Tectonics Framework and Evolution of the East Tianshan. Nanjing, Nanjing University Publ. House. 11 - 114 (in Chinese with English abstract)
- Ma Ruishi, Ye Shangfu, Wang Ciyin and Liu Guanbang, 1990, Framework and evolution of the East Tianshan orogenic belt. Geoscience of Xin jiang. No. 2, 21 - 36 (in Chinese with English abstract)
- Meschede, M., 1986, A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol,. 56, 207 - 218
- Murray R W. Buchholtz Ten Brink M R ,Gerlach D C . et al. Rare earth ,major , and trace elements in chert from the Franciscan Complex and Monterey Group: Assessing REE sources to fine-grained marine sediments . Geochim Cosmochim Acta, 1991. 55, 1875 - 1895
- Murray, R. W., 1994, Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol. 90, 213 - 232
- Pearce G. H., Gorman B. E. and Birkett T. C., 1975, The TiO₂-K₂O-P₂O₅ diagram; a method of discrimenatinf between oceanic and nonoceanic basalts. Earth Planet. Sci. Lett., 24, 419-426
- Pearce, J. A., Lippard S. J., Roberts S., 1984, Characteristics and tectonic significance of suprasubduction zone ophiolites. In: Kokelaar B P, Howells M F. Marginal Basin Geology. Oxford : Blackwell, Geol. Soc. Spec. Publ., 16,77 - 94
- Pearce, J. A. and Cann, J. R., 1973, Tectonic seting of basic volcanic rocks determined using trace element analyses; Earh Planet. Sci. Lett., 19, 290 - 300
- Pearce, J. A. and Peate, D. W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earh Planetary Sciences, vol. 23, 251 - 285
- Pearce, J. A., 1982, Trace element characteristics of lavas from destructive plate boundaries, in Thorpe, R. S., ED., Andesites: J. Wiley and Sons, Chichester, p. 525 - 547
- Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams, in Wyman, D. A., ed., Trace Element Geochemistry of Volcanic

Rocks: Applications for Massive Sulphide Exploration; Geological of Canada, Short Course Notes, Winniped, Manitoba, 12, 79 - 113

- Rui Zhongyao, Liu Yulin, Wang Longsheng, Wang Yitian. 2002. The Eastern Tianshan Porphyry Copper Belt in Xinjing and Its Tectonic Framework. Acta Geologica Sinica. Vol. 76 No. 1: 83 – 93 (in Chinese with English abstract)
- Shervais J. W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett., 59, 101-118
- Song Biao, Li Jinyi, Li Wenqian, Wang Kezhuo, Wang Yu. 2002. SHRIMP dating of zircons from Dananhu and Kezirkalasayi granitoid batholith in southern margin of Tuha basin and their geological implication. Xinjiang Geology. 2002,20(4):342-345 (in Chinese with English abstract)
- Tang Yaoqing, Xiao Xuchang, Zhao Min, Li Jinyi, Feng Yimin and Zhu Baoqing, 1993, Some advances in tectonic researches of the North Xinjiang, China. Geoscience of Xinjiang. Geological Publishing House, Beijing, No.4:1-12 (in Chinese with English abstract)
- Wu Shaozu. 1993. Formation and evolution of floristic provinces of Carboniferous and Permian in Xinjiang. Xinjiang Geology. 11(1): 13-21.) (in Chinese with English abstract)
- Xiao Wenjiao, Zhang Lianchang, Qin Kezhang, Sun Shu and Li Jiliang. 2004. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. American Journal of Science. 304: 370 - 395
- Xu Xingwang, Ma Tianlin, Sun Liqian, Li Guishu, Zhang Xueqin, Xu Xiankang and Wu Jixiu. 1998. Characteristice and dynamic significance of the dctilecompressed zone inEastern Tianshan Mt. In Jiaoluotage area in Xinjiang province. Scientia Geologica Sinica, 33 (2): 147-157.) (in Chinese with English abstract)
- Yang Xingke, Cheng Hongbin, Ji Jinsheng, Chen Qiang and Luo Guichang. 1999. Analysis on gold copper ore-forming system with collision orogeny of Eastern Tianshan. Geotectonica et Metallogenia. 23(4): 315-322 (in Chinese with English abstract)
- Zhang liangcheng, Liu De-quan, Tang Yanlin,. 1990, Mineral resources in Xinjiang. Xinjiang People's Publishing House and Educational and Cultural Press Ltd., Hong Kong (in Chinese with English abstract)
- Zhang Liang-cheng, Plate Tectonics and its Dynamic Characteristics of Xinjiang. 3th Tianshan Geology and Mine Symposium congress Paper Collection, Xinjiang People's Press, 1995, 1-13 (in Chinese with English abstract)
- Zhou Jiyuan, Zhang Bin, Zhang Chaowen, Wei Guangyi, Lu Yan, Xia Jun, Cui Bingfang, Wang Chongyun and Li Baohua. 1996. Geology of the Silver, Rhenium-Molybdenum, Gold and Copper Deposits in the Eastern Tianshan and Its Adjacent Regions. Geological Publishing House Beijing. 1 – 191 (in Chinese with English abstract)

附中文参考文献

- 方国庆,1994,东天山古生代板块构造特点及其演化模式.甘肃地质 学报,3,1,34-40
- 冯益民,朱宝清,杨军录,张开春,2002,东天山大地构造及演化——1:50万东天山大地构造图简要说明,新疆地质,20,4,309-314
- 郭召杰,王超,1993,新疆东准噶尔塔克札勒-麦钦乌拉古缝合线的确定.矿物岩石,13,1,96-102
- 姬金生,陶洪祥,曾章仁等,东天山康古尔塔格金矿带地质与成矿.

北京:地质出版社,1994,1-204

- 李锦轶,王克卓,李文铅,等.东天山早古生代以来大地构造与矿产勘 查.新疆地质,2002,20(4):295-301
- 李文铅,董富荣,周汝洪,2000,新疆鄯善康古尔塔格蛇绿杂岩的发现及其特征.新疆地质,18,2,121-128
- 李武显,李献华,2003,蛇绿岩中的花岗质岩石成因类型与构造意 义.地球科学进展,2003,18(3),392-397
- 李献华,刘颖,涂湘林,胡光黔,曾文,2002, 硅酸盐岩石化学组成的 ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对 比.地球化学.31,3,289-294
- 刘德权,陈毓川,王登红等,2003,新疆哈密土屋-延东超大型铜钼矿 田成矿有关问题讨论.矿床地质,22,4,234-244
- 刘德权,唐延龄,周汝洪,1992,新疆北部古生代地壳演化及成矿系 列.矿床地质,11,4,307-314
- 刘德权,唐延龄,周汝洪,1999,天山古生代造山带的演化与成矿.见 陈毓川主编《当代矿产资源勘查评价的理论与方法》.北京,地 震出版社,549-560
- 刘颖,刘海臣,李献华, 1996,用 ICP-MS 准确测定岩石样品中的 40 余种微量元素. 地球化学. 25, 6, 552 558
- 马瑞士,叶尚夫,王赐银等,1990,东天山造山带构造格架和演化.新 疆地质科学,第二辑,北京,地质出版社,21-36
- 马瑞士,叶尚夫,王赐银等,1993,东天山构造格架和演化.南京,南 京大学出版社,11-114
- 芮宗瑶,刘玉林,王龙生,王义天,2002,东天山斑岩型铜矿带及其大 地构造格局.地质学报,76,1,83-93
- 宋彪,李锦轶,李文铅等. 2002. 吐哈盆地南缘克孜尔卡拉萨依和大 南湖花岗质岩基锆石 SHRIMP 定年及其地质意义。新疆地质, 20(4):342-345
- 汤耀庆,肖序常,赵民等,1993,新疆北部大地构造研究的新进展.新 疆地质科学,第四辑.北京,地质出版社,1-12
- 吴绍祖. 新疆石炭-二叠纪植物地理区的形成与演变. 新疆地质, 1993,11(1):13-21
- 徐兴旺,马天林,孙立情,李贵书,张学勤,徐湘康,吴继修. 1998. 新 疆东天山觉罗塔格韧性挤压带基本特征及动力学意义. 地质科 学,33(2):147-157
- 杨兴科,程宏宾,姬金生等。1999.东天山碰撞造山与金铜成矿系统 分析。大地构造与成矿学。23(4):315-322
- 张良臣,1995,中国新疆板块构造与动力学特征.新疆第三届天山地 质矿产学术讨论会论文选集.乌鲁木齐,新疆人民出版社,1-13
- 张良臣,刘德权,唐延龄等,1990,新疆的宝藏.新疆人民出版社,香 港文化教育出版社
- 周济元,张斌,张朝文,等,1996,东天山古大陆及其边缘银、铼钼、金 和铜矿地质。北京:地质出版社,1-191