南太行山闪长岩的 SHRIMP 锆石 U-Pb 年龄及 岩石成因研究[·]

彭头平^{1,2} 王岳军^{1**} 范蔚茗¹ 郭锋¹ 彭冰霞^{1,2} PENG TouPing^{1,2}, WANG YueJun¹, GUO Feng¹ and PENG BinXia^{1,2}

1. 中国科学院广州地球化学研究所, 广州 510640

2. 中国科学院研究生院,北京 100039

1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. Graduated School of Chinese Academy of Sciences, Beijing 100039, China

2004-07-26 收稿, 2004-08-05 改回.

Peng TP, Wang YJ, Fan WM, Guo F and Peng BX. 2004. SHRIMP zircon U-Pb geochronology of the diorites for southern Taihang Mountains in the North China Interior and its petrogenesis. Acta Petrologica Sinica, 20(5):1253-1262

Abstract The geochronological and geochemical data of the Mesozoic dioritic rocks from the southern Taihang Mountains provide an insight into the understanding of the nature of the Mesozoic lithospheric mantle beneath the North China interior. The Fushan and Dongye hornblende-diorites, the representative for the Mesozoic dioritic intrusions in the region, yield the SHRIMP zircon U-Pb ages of 126.7 ± 1.1 Ma and 125.9 ± 0.9 Ma, respectively. The ages are consistent with those of the North Taihang Mountains and other areas in the North China Block interior. These dioritic rocks have SiO₂ = 54.8 ~65.8%, MgO = 1.31% ~3.89%, K₂O + Na₂O = 6.53% ~11.40%, mg-number = 0.36 ~0.58, (La/Yb)_{en} = 9.86 ~22.77, (Gd/Yb)_{en} = 1.51 ~2.00; Eu/Eu^{*} = 1.00 ~1.23. They are enriched in LILEs and LREEs, depleted in HFSEs, and are characterized by 87 Sr/ 86 Sr(t) = 0.705363 ~0.706165, $\varepsilon_{vd}(t) = -13.8$ ~ -16.8 with an affinity to EMI-like source. Such characteristics suggest that they were most likely originated from an EMI-like lithospheric mantle. Mesozoic lithospheric extension might induce the melting of the enriched lithospheric mantle in response to the asthenosphere uprising for generating these dioritic rocks in the region.

Key words Dioritic intrusions, SHRIMP zircon U-Pb dating, EMI-like mantle source, Southern Taihang Mountains

摘 要 南太行山符山和东冶角闪闪长岩岩体的精细 SHRIMP 锆石 U-Pb 定年和元素-同位素地球化学研究表明:符山角闪 闪长岩体形成于 126.7±1.1 Ma,东冶角闪闪长岩体形成于 125.9±0.9 Ma,与区内基性侵入岩和北太行地区侵入杂岩具有 相似的形成年龄,表明晚中生代(±130 Ma 左右)太行山地区经历了与华北陆块同期的重要构造岩浆事件。区内闪长质岩石 SiO₂ = 54.84%~65.75%, MgO = 1.31%~3.89%, K₂O + Na₂O = 6.53%~11.40%, mg 值 = 0.36~0.58, (La/Yb)_{cn} = 9.86~22.77, (Gd/Yb)_{cn} = 1.51~2.00; Eu/Eu^{*} = 1.00~1.23, 以富集 LREE、LILE 元素和明显亏损 Nb-Ta、Zr-Hf-Ti 等高场 强元素为特征。⁸⁷Sr/⁸⁶Sr(t) = 0.705363~0.706165, $\varepsilon_{Nd}(t) = -13.8~ -16.8$,源自于 EMI 型富集岩石圈地幔,可解释为新生 地幔底侵物质熔融后经过结晶分异作用的产物。与华北克拉通内部其他地区一样,早白垩世南太行山地区处于软流圈上涌 的岩石圈伸展构造背景。

关键词 闪长质岩体; SHRIMP U-Pb 定年; 富集岩石圈地幔; 南太行山 中图法分类号 P588.122; P597.3

^{*} 本文得到国家自然科学基金(40303005,40334039)和中国科学院知识创新项目(GIGCX-03-0,KZCX1-102)的联合资助. 第一作者简介: 彭头平, 男, 1974年生, 博士研究生, 主要从事岩石大地构造研究.

^{**} 通讯作者: 王岳军, E-mail: yjwang@ gig. ac. cn

1 前言

在有着 > 3.8 Ga 地壳年龄的古老华北克拉通地区(Liu et al., 1992),中生代时广泛发育具独特岩石地球化学特征 的岩浆作用,其源区属性及其所揭示的大地构造含义一直是 国内外研究的热点问题(Fan et al., 2000; Xu, 2001; Zhang et al., 2002, 2004; 吴福元等, 1999), 针对华北克拉通周缘 地区中生代火山岩(如南缘大别造山带基性/超基性岩;东缘 方城与胶东火山岩;北缘阜新高镁安山岩等)开展了大量的 研究工作(Jahn et al., 1999; Fan et al., 2001, 2004; Zhang et al., 2002, 2003; 2004; 陈斌等, 2002), 但对华北克拉通 内部目前的研究资料相对较为薄弱(Zhang et al., 2004; Chen and Zhai, 2003; 陈斌等, 2002)。尽管近年针对远离克 拉通周缘造山带而位于华北克拉通内部的南太行山地区中 生代中基性侵入岩也开展了一定的岩石(相)学、元素地球化 学、岩石成因等研究工作(许文良等,1991,黄福生等, 1990; 宋新宇等, 1999; 罗照华等, 1997), 但系统的年代学 及岩石地球化学研究仍很薄弱且对其岩石成因及其所揭示 的构造含义仍争论不休(许文良等, 1991; 陈斌等, 2002; 董建华等,2003; Zhang et al., 2004)。如现有年代学资料主 要为全岩或单矿物 K-Ar、40 Ar/39 Ar 和 Rb-Sr 矿物-岩石等时 线年龄,其变化范围在 63~218 Ma 之间(谭东娟等, 1994; 罗照华等, 1997); 而对其岩石成因则提出了如太平洋板块 俯冲作用弧后伸展(吴福元等, 1999)、地幔伸展作用下的陆 内伸展(Zheng et al., 2001)、地幔分层部分熔融(许文良等, 1991)等多种观点,近年更有学者认为区内中酸性岩石属 埃达克岩或埃达克质岩石,是陆壳加厚背景下地壳物质重熔 产物(张旗等,2001)。如此,区内岩浆岩精细年代学和系统 元素-同位素资料的缺乏以及对其岩石成因机制的不同理 解,已制约了对南太行山地区、乃至华北克拉通内部中生代 岩浆作用时空格局、岩石圈地幔演化及其动力学机制的深入 理解。为此,本文选择南太行山地区典型闪长岩体开展了 精细的 SHRIMP 锆石 U-Pb 年代学和元素-同位素地球化学 研究,以期为探讨南太行山地区闪长岩的岩石成因和构造 背景,并进而为约束华北克拉通中生代岩浆作用动力学机制 提供资料。

2 地质背景与岩石学特征

南太行山地处太行山背斜隆起带南端,主要包括南太行 山的邯郸-邢台及周边地区。该地区发育太古代和早元古代 基底地层(牛树银等,1994),古生代为海相盖层沉积岩系。 中生代区内经历了强烈的构造岩浆作用(Wang et al., 2003, in press),在太行山南段发育了中基性侵入岩系。该岩系主 要分布于邯郸-邢台、平顺和安阳-林县地区(河北北京天津 区域地质志, 1989)(图1),分布面积 340 km²,空间上

图1 南太行山中生代侵入岩分布地质略图

Fig. 1 Geological map of the southern Taihang Mountains with the dominant exposure of Mesozoic dioritic intrusions (HBGMR, 1989)

呈 NNE 向带状展布,多呈岩盖、岩床和岩株形式产出,代表 性闪长质岩体有固镇、符山和东冶岩体等(图1)。

区内闪长质岩体侵入于下古生界碳酸岩地层或上古生 界碎屑岩地层之中,岩石类型复杂,主要有辉长闪长岩、角闪 闪长岩、二长闪长岩和角闪石英闪长岩、二长岩等,个別闪长 岩体(如符山岩体)内发育中下地壳长英质麻粒岩和片麻岩 地壳捕虏体,也有研究者认为区内闪长岩体内还产出有纯橄 榄岩、二辉橄榄岩和角闪二辉岩等地幔包体(黄福生等, 1990;许文良等,1991)。该闪长质岩石多为中细-粗粒结构 或斑状结构,块状构造,其矿物组成主要有斜长石(30%~ 60%)、角闪石(25%~45%)、单斜辉石(5%~15%)、钾长 石(5%~10%)、石英(5%)和黑云母(1%~10%)。

3 分析方法

通过人工重砂法从新鲜的样品中分选出锆石,然后在双 目镜下挑选出无裂隙、无包体、透明干净的白形锆石颗粒,将 其与一片 RSES 参考样 SL13 及数粒标准锆石 Temrra (年龄 为417Ma)在玻璃板上用环氧树脂固定、抛光,然后进行反射 光和透射光照相,并用阴极发光扫描电镜进行图象分析以检 查锆石内部的结构。锆石 U-Pb 同位素分析在中国地质科学

院师质研究所用离子探针中心 SHRIMP-II 型离子探针测定, 详细的分析流程和原理参考宋彪等(2002)和 Williams 等 (1987)。分析时采用跳峰扫描,每7次扫描记录一次平均 值。一次离子为约4.5 nA,10 kv 的 0⁻²、靶径约25~ 30µm.。质量分辨率约5400(1%峰高)。应用 RSES 参考错 石进行元素间的分馆校正(Claoue-Long et al. 1995), Temrra (年龄为417 Ma)做二次校正。Temrra 测定重现性2%。数 据处理采用 Ludwig SQUID1.0(2001)及 ISOPLT(1999)程序。 年龄计算采用 IUGS(1977) 推荐值。主量元素在国土资源部 湖北地质实验研究所 XRF 法测试, FeO 和 Fe, O, 湿化学法单 独分析。微量元素在中国科学院广州地球化学研究所 Perkin-Elmer ELAN 6000 ICP-MS 测试,标样为 BCR-1,大部分 元素的分析精度优于3%,具体的分析流程参阅刘颖等 (1996)。Sr-Nd 同位素组成在中国科学院地质与地球物理研 究所的 VG354 质 谱仪 上完 成, NBS987 标样⁸⁷ Sr/⁸⁶ Sr = 0.710265 ±12, La Jolla¹⁴³ Nd/¹⁴⁴ Nd = 0.511862 ±10。整个过 程中Sr空白含量低于5×10⁻¹⁰g,Nd空白值低于5×10⁻¹¹g, ${}^{86}\text{Sr}/{}^{87}\text{Sr} = 0.1194$, ${}^{146}\text{Nd}/{}^{144}\text{Nd} = 0.7219$, ${}^{87}\text{Rb}/{}^{86}\text{Sr}$, 147 Sm/ 144 Nd比值用 87 Sr/ 85 Sr = 0.1194 和 146 Nd/ 144 Nd = 0.7219 进行分馏质量校正。

4 分析结果

4.1 SHRIMP 锆石 U-Pb 定年

分别选择了太行山南段代表性的符山闪长岩体(20HD-25)和东治闪长岩体(20HD-59)开展了 SHRIMP 锆石 U-Pb 年龄测定。符山岩体具中细-粗粒结构或近状结构的 20HD-25角闪闪长岩样品采自南太行山涉县符山铁矿后山采石场。 其矿物组成有斜长石(~53%)、角闪石(~33%)、石英 (~5%)、钾长石(~5%)、黑云母(~3%)及锆石、磷灰石、 楣石、磁铁矿等。东治闪长岩体具自形-半自形粒状结构的 角闪闪长岩(20HD-59)样品采自林县河顶路家垴东约500 m 处,其主要矿物组成有斜长石(~40%)、角闪石(~45%)、 黑云母(~8%)、石英(~5%)、钾长石(~3%)。两样品相 应的 SHRIMP 锆石 U-Pb 测试结果列于表 1。

符山闪长岩体代表性样品(20HD-25)和东冶闪长岩体 代表性样品(20HD-59)的锆石具有相似的形貌学特征。 在阴极发光图象上无论锆石颗粒大小(200~350 μm)都发 育典型岩浆成因韵律环带结构(图2)。前者19个分析点的 Th 含量变化于 226~939 ppm, U 变化于 199~537 ppm, Th/U比值变化于0.97~1.81, 且Th,U含量呈现较好的正相 关关系(图 3a);后者 U = 159~614ppm, Th = 110~1608 ppm, Th/U=0.71~2.70 (图3b),与典型岩浆结石特征相似。其 相应的测年结果表明:20HD-25 样品中结石的 19 个分析点 的³⁰⁶ Ph/²³⁸ U 年齡为122.3~129.1 Ma,变化范围很小,在谐 和曲线图上数据点成群分布(图3c),给出了126.7±1.1Ma (n=19, MSWD=1.42)的³⁰⁶Ph/²³⁸U年龄的加权平均值,代 表了该岩体的形成时代。东治闪长岩体代表性样品 20HD-59 的所有15个分析点在误差范围内给出了一致的U-Pb同 位素比值,²⁰⁶Pb/²³⁸U表观年龄变化于121.0~130.2 Ma,在 谐和图上位于谐和曲线上,给出了125.9±0.9 Ma(n=15, MSWD = 1.21)的³⁰⁶ Pb/²³⁸U 年龄的加权平均值(图 3d), 代表了东冶闪长岩体的形成年龄。

4.2 地球化学特征

符山、固镇和东治闪长质岩体代表性样品的主, 微量元 素和 Sr-Nd 同位素测试结果列于表 2。

图 2 南太行山符山岩体(a)和东治岩体(b)闪长岩代表性锆石的背散射电子图象 圈和数字分别表示 U-Pb 分析位置,测量编号和³⁶⁶ Pb/²³⁸ U 表观年龄 Fig. 2 BSE imaging of the representative analyzed zircons from the Fushan (a) and Dongye (b) diorites

1256

表 1 南太行山闪长岩代表性样品锆石 SHRIMP U-Pb 年龄分析结果

Table 1 SHRIMP zircon U-Pb results for diorites from the southern Taihang Mountains

	U	Th	(m) / II	²⁰⁶ Pb	204 בי 206 בי	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	Discord	²⁰⁶ Pb/ ²³⁸ U	
Spot	(ppm)	(ppm)	Th/U	(ppm)	204 Pb/200 Pb	±lσ	±lσ	±lσ	±lσ	ant (%)	±1σ(Ma)	
符山闪长岩体: 20HD-25												
B1.1	316	544	1.78	5.83	0.0048	0.0322 ± 33	0.6989 ± 1	0.0870 ± 33	0.0196 ± 2	113	125.1 ± 2.4	
B2.1	216	247	1.18	3.86	0.0015	0.0305 ± 23	0.3866 ± 2	0.0850 ± 23	0.0202 ± 2	112	129.1 ± 2.3	
B3.1	229	281	1.27	3.93	0.0011	0.0371 ± 15	0.3974 ± 2	0.1000 ± 15	0.0195 ± 2	123	124.8±2.1	
B4 .1	303	467	1.59	5.31	0.0007	0.0395 ±11	0.5176 ± 1	0.1095 ±11	0.0201 ± 2	133	128.3±2.0	
B5.1	212	252	1.23	3.63	0.0019	0.0290 ± 24	0.4103 ± 2	0.0769 ± 24	0.0192 ± 2	110	122.9 ± 2.2	
B6.1	537	939	1.81	8.93	0.0006	0.0432 ± 7	0.5765 ± 1	0.1142 ± 7	0.0192 ± 1	180	122.3 ±1.7	
B7. 1	264	263	1.03	4.51	0.0010	0.0352 ± 15	0.3298 ± 2	0.0948 ±15	0.0196 ± 2	118	124.9 ± 2.0	
B8 .1	245	320	1.35	4.26	0.0011	0.0340 ± 13	0.4348 ± 2	0.0934 ±13	0.0199 ± 2	116	127.0±2.0	
B9 .1	199	226	1.17	3.46	0.0009	0.0371 ± 13	0.3848 ± 2	0. 1015 ± 13	0.0199 ± 2	123	126.7±2.1	
B10.1	213	246	1.19	3.61	0.0007	0.0406 ± 13	0.3822 ± 2	0. 1088 ± 13	0.0195 ± 2	139	124.2 ± 2.1	
B11.1	215	249	1.20	3.75	0.0007	0.0501 ± 8	0.4117 ± 2	0.1384 ± 8	0.0200 ± 2	36	127.8 ± 2.0	
B12.1	240	274	1.18	4.02	0.0001	0.0499 ±7	0.3804 ± 2	0.1340 ± 7	0.0195 ± 2	34	124.4±1.9	
B13.1	235	272	1.19	4.17	0.0002	0.0477 ± 6	0.3754 ± 2	0.1351 ± 6	0.0205 ± 2	58	131.1 ± 2.0	
B14. 1	293	437	1.54	4.97	0.0001	0.0475 ± 5	0.4901 ± 1	0.1289 ± 5	0.0197 ± 2	66	125.6±1.9	
B15.1	275	362	1.36	4.72	0.0002	0.0473 ± 3	0.4404 ± 2	0.1296 ± 3	0.0199 ± 1	93	126.8±1.9	
B16. 1	438	527	1.24	7.58	0.0005	0.0462 ±6	0.4055 ± 1	0.1271 ± 6	0.0200 ± 1	593	127.4 ±1.8	
B17.1	202	265	1.35	3.40	0.0005	0.0456 ± 5	0.4598 ± 2	0.1219 ± 5	0.0194 ± 2	618	123.9±2.0	
B18.1	256	304	1.23	4.38	0.0007	0.0459 ± 9	0.3933 ± 2	0.1244 ± 9	0.0197 ± 2	1705	125.5 ± 2.0	
B19. 1	274	257	0. 97	4.70	0.0005	0.0590 ± 8	0.3508 ± 2	0.1611 ± 8	0.0198 ± 2	78	126.4 ± 2.2	
东冶	闪长岩	体:20H	- ID-59									
E1.1	216	280	1.34	3.53	0.0003	0.0468 ±6	0.4244 ± 2	$0.1223 \pm \pm 6$	0.0189 + 2	205	121 0 + 1 9	
E2.1	159	110	0.71	2.66	0.0004	0.0450 ± 7	0. 2444 ± 2	0.1198 + +7	0.0193 ± 2	329	121.0 ± 1.9 123.2 ± 2.0	
E3.1	377	682	1.87	6.55	0.0001	0.0493 ± 3	0.6114 ± 1	0. 1372 ± 3	0.0202 + 1	19	128.9 + 1.8	
E4.1	196	190	1.01	3.32	0.0005	0.0475 ± 6	0.3337 ± 3	0. 1282 + 6	0.0196 + 2	66	125.0 ± 2.0	
E5.1	183	160	0.90	3.16	0.0010	0.0354 ± 14	0.2891 ± 2	0.0961 + 14	0 0197 +2	119	125.6 + 2.1	
E6.1	192	209	1.13	3.32	0.0002	0.0449 ±6	0.3745 ± 2	0.1243 ± 6	0.0201 + 2	307	128 1 + 2 4	
E7.1	295	406	1.42	5.05	0.0003	0.0481 ± 6	0.4612 ± 1	0.1318 ± 6	0.0199 ± 2	24	126.9+1.9	
E8.1	273	359	1.36	4.75	0.0002	0.0475 ± 3	0.4323 ± 2	0.1320 ± 4	0.0202 ± 1	76	128.7+0.9	
E9. 1	139	144	1.07	2.28	0.0004	0.0486 ±7	0.3416 ±6	0.1268 ± 7	0.0189 ± 2	6	120.8+2.2	
E10. 1	217	249	1.18	3.75	0.0003	0.0455 ± 5	0.3828 ± 2	0. 1254 ± 5	0.0200 ± 2	543	127 5 + 2 0	
E11.1	614	1608	2.70	10.40	0.0002	0.0481 ± 3	0.8736 ± 1	0.1303 ± 3	0.0196 ± 2	19	125 4 + 2 1	
E12. 1	149	149	1.03	2.67	0.0011	0.0348 ± 16	0.3349 ± 2	0.0980 ± 17	0.0204 ± 2	118	130 2 + 2 4	
E13. 1	281	362	1.33	4. 81	0.0004	0.0460 ± 6	0.4292 ± 1	0. 1256 ± 6	0.0198 ± 2	2685	126.5 ± 2.0	
E14. 1	326	468	1.49	5.71	0.0004	0.0425 ± 5	0.4727 ± 1	0.1187 ±6	0.0203 ± 2	166	129.3 ± 2.0	
E15.1	310	443	1.48	5.30	0.0001	0.0513 ± 3	0.4736 ± 1	0. 1410 ± 3	0.01 99 ± 2	50	127.3±1.9	

表 2 南太行山闪长岩主(wt%)、微量(ppm)元素和 Sr-Nd 同位素分析测试结果

Table 2 Major, trace elemental and Sr-Nd isotopic results for the representative dioritic rocks

r 20410-14 20410-22 20410-23 20410-25 20410-59 20410-63 20410-69 S02 58.10 99.69 62.30 56.04 54.84 65.75 56.88 Pa(0) 15.68 16.58 16.26 16.26 15.74 15.28 Pa(0) 2.63 2.33 2.00 4.04 4.52 2.00 4.29 Pa(0) 3.66 2.48 1.95 3.89 3.66 2.34 3.12 G0 5.05 5.31 5.11 6.13 6.72 2.77 6.42 Na(0 5.05 5.31 5.11 6.33 6.72 2.77 6.03 Ma(0 0.67 0.68 0.44 0.23 0.30 0.36 0.75 Ma(0 0.75 0.52 0.51 0.79 0.85 0.30 0.75 IO1 0.92 1.39 0.80 1.60 1.77 0.91 1.66 Tatal 99.73 99.61	铁口		符	山岩体	东冶岩体			
SiO1 S8.10 S9.69 62.30 56.04 54.84 65.75 56.88 Al_03 15.68 15.78 16.02 16.26 15.74 10.28 Feq.0 2.63 2.93 2.00 4.07 3.80 1.43 3.07 M400 3.66 2.94 1.95 3.89 3.66 2.34 3.12 CaO 5.05 5.31 5.11 6.33 6.72 2.72 6.03 Na_0 0.52.77 4.39 6.67 3.89 4.30 7.76 4.27 K_Q 2.68 2.84 0.49 2.51 2.51 0.66 2.96 MaO 0.07 0.52 0.51 0.79 0.85 0.30 0.75 P_Q.05 0.52 0.51 0.79 0.81 0.77 0.91 1.66 Total 99.73 99.68 99.71 99.61 99.71 99.1 15.2 15.5 C- 75.3 13.3 <th>тт пр</th> <th>20HD-14</th> <th>20HD-22</th> <th>20HD-23</th> <th>20HD-25</th> <th> 20HD-59</th> <th>20HD-63</th> <th>20HD-69</th>	т т пр	20HD-14	20HD-22	20HD-23	20HD-25	 20HD-59	20HD-63	20HD-69
$ Al_{1}O_{3} = 15.68 = 16.77 = 16.02 = 16.26 = 15.74 = 16.28 \\ P_{P_{2}O_{3} = 4.56 = 3.25 = 3.47 = 4.04 = 4.52 = 2.00 = 4.29 \\ P_{CO} = 2.63 = 2.93 = 2.00 = 4.07 = 3.80 = 1.43 = 3.07 \\ M_{0}O = 3.66 = 2.48 = 1.95 = 3.89 = 3.66 = 2.34 = 3.17 \\ GaO = 5.05 = 5.31 = 5.11 = 6.33 = 6.72 = 2.72 = 6.03 \\ N_{N_{2}O} = 5.27 = 4.39 = 6.07 = 3.89 = 4.30 = 7.76 = 4.22 \\ K_{1}O = 2.68 = 2.84 = 0.49 = 2.51 = 2.51 = 0.64 = 0.06 \\ M_{0}O = 0.07 = 0.06 = 0.04 = 0.13 = 0.11 = 0.04 = 0.06 \\ TO_{1}O_{2} = 0.75 = 0.52 = 0.51 = 0.79 = 0.85 = 0.30 = 0.75 \\ M_{0}O = 0.07 = 0.66 = 0.24 = 0.23 = 0.30 = 0.38 = 0.17 = 0.91 = 1.66 \\ TO_{1}O_{2} = 0.75 = 0.52 = 0.51 = 0.79 = 0.85 = 0.30 = 0.74 \\ LO1 = 0.92 = 1.39 = 0.80 = 1.60 = 1.77 = 0.91 = 1.66 \\ Total = 99.73 = 99.68 = 99.74 = 99.61 = 99.72 = 99.81 = 99.71 \\ Sc = 14.1 = 12.1 = 10.6 = 17.7 = 16.8 = 7.37 = 15.5 \\ Gr = 75.3 = 13.3 = 8.28 = 41.6 = 28.4 = 86.4 = 24.4 \\ Co = 19.1 = 12.2 = 9.63 = 20.9 = 20.9 = 93.8 = 97.1 \\ Sc = 14.1 = 12.1 = 0.66 = 17.7 = 16.8 = 7.37 = 15.5 \\ Gr = 75.3 = 13.3 = 8.28 = 41.6 = 28.4 = 86.4 = 24.5 \\ Co = 19.1 = 12.2 = 9.63 = 20.9 = 20.9 = 93.8 = 15.2 \\ Ni = 32.6 = 5.98 = 6.44 = 20.0 = 17.1 = 38.1 = 13.7 \\ Hb = 24.0 = 29.9 = 3.92 = 39.8 = 46.6 = 10.1 = 45.0 \\ Si = 746 = 766 = 316 = 807 = 96.5 = 471 = 755 \\ Y = 13.8 = 17.8 = 14.9 = 20.7 = 19.6 = 11.0 = 19.8 \\ Zr = 80.1 = 109 = 108 = 90.4 = 80.1 = 105 = 125 \\ Nh = 8.19 = 6.33 = 7.04 = 82.6 = 5.23 = 4.92 = 5.80 \\ Cs = 0.16 = 0.23 = 0.20 = 0.32 = 0.20 = 0.07 = 0.14 \\ Ba = 984 = 1422 = 913 = 1292 = 808 = 826 = 1269 \\ Ha = 33.3 = 28.8 = 28.3 = 31.4 = 30.7 = 17.8 = 7.09 \\ Nd = 24.2 = 22.1 = 23.5 = 33.6 = 30.7 = 17.8 = 7.09 \\ Nd = 24.2 = 22.1 = 23.5 = 33.6 = 30.7 = 17.8 = 7.09 \\ Nd = 24.2 = 22.1 = 23.5 = 33.6 = 30.7 = 17.8 = 7.09 \\ Nd = 4.4 = 0.46 = 0.50 = 0.66 = 0.74 = 0.37 = 0.66 \\ Dy = 2.52 = 2.96 = 2.82 = 4.18 = 3.95 = 1.97 = 3.87 \\ Ha = 0.34 = 0.35 = 0.33 = 8.26 = 0.04 = 3.48 = 2.63 \\ Sin = 4.45 = 4.32 = 4.69 = 6.67 = 6.44 = 2.96 \\ Sin = 7.7 = 1.68 = 1.50 = 2.13 = 2.17 = 7.78 \\ Hi = 2.75 = 3.36 = 1.8 = 3.41 = 3.$	SiO ₂	58.10	59.69	62.30	56.04	54.84	65.75	56.88
F_20 , 4.56 3.25 3.47 4.04 4.52 2.00 4.29 $Fc0$ 2.63 2.93 2.00 4.07 3.80 1.43 3.07 $Mg0$ 3.66 2.48 1.95 3.89 3.66 2.34 3.12 $Ga0$ 5.05 5.31 5.11 6.33 6.72 2.72 6.03 M_{00} 0.52 0.51 0.79 0.85 0.30 0.76 2.96 $Mu0$ 0.07 0.66 0.04 0.13 0.11 0.04 0.065 $T0_3$ 0.75 0.52 0.51 0.79 0.83 0.17 0.91 1.66 Total 99.73 99.68 99.74 99.61 99.72 99.81 99.71 Sc 14.1 12.1 9.63 20.6 17.7 16.8 7.37 13.7 V 145 117 96.3 164 177 8.8 4.4 24.5 2.2 <	Al_2O_3	15.68	16.58	16.77	16.02	16.26	15.74	16.28
FeO 2.63 2.93 2.00 4.07 3.80 1.43 3.07 MgO 3.66 2.48 1.95 3.89 3.66 2.34 3.12 GaO 5.05 5.31 5.11 6.13 3.89 4.30 7.76 4.27 KpO 2.68 2.84 0.49 2.51 2.51 0.51 0.65 2.96 MaO 0.07 0.06 0.04 0.13 0.11 0.04 0.06 TOQ 0.75 0.52 0.51 0.79 0.85 0.30 0.75 PiGO 0.56 0.24 0.23 0.30 0.38 0.17 0.34 LOI 0.92 1.39 0.80 1.60 1.77 0.91 1.66 Toual 99.73 99.68 99.71 99.72 99.81 99.71 3.77 1.37 V 145 117 96.3 20.9 20.9 9.35 115.2 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7	Fe_2O_3	4.56	3.25	3.47	4.04	4.52	2.00	4.29
Me0 3.66 2.48 1.95 3.89 3.66 2.24 3.12 GaO 5.05 5.31 5.11 6.03 6.72 2.72 6.03 Na,O 5.27 4.39 6.07 3.89 4.30 7.76 4.27 kSO 2.68 2.84 0.49 2.51 2.51 0.65 2.96 MnO 0.77 0.66 0.04 0.13 0.11 0.04 0.05 TiO2 0.75 0.52 0.51 0.79 0.85 0.30 0.75 P_O3 0.36 0.24 0.23 0.30 0.38 0.17 0.34 LOU 0.92 1.39 0.80 1.66 1.77 0.51 1.66 Tatal 99.73 99.68 99.74 99.61 99.72 99.81 29.7 N 32.6 5.98 6.44 20.0 17.1 38.1 13.7 K 13.3 8.28 20.9	FeO	2.63	2.93	2.00	4.07	3.80	1.43	3,07
$ \begin{array}{c cccc} Ca0 & 5.05 & 5.31 & 5.11 & 6.33 & 6.72 & 2.72 & 6.03 \\ \mathbf{N}_{SQ} & 5.27 & 4.39 & 6.07 & 3.89 & 4.30 & 7.76 & 4.27 \\ \mathbf{K}_{2}O & 2.68 & 2.84 & 0.49 & 2.51 & 2.51 & 0.65 & 2.96 \\ \mathbf{M}_{0} & 0.07 & 0.06 & 0.04 & 0.13 & 0.11 & 0.04 & 0.06 \\ \mathbf{T}O_{0} & 0.75 & 0.52 & 0.51 & 0.79 & 0.85 & 0.30 & 0.75 \\ \mathbf{P}_{Q}O_{1} & 0.36 & 0.24 & 0.23 & 0.30 & 0.38 & 0.17 & 0.34 \\ \mathbf{L}OI & 0.92 & 1.39 & 0.80 & 1.60 & 1.77 & 0.91 & 1.66 \\ \mathbf{T}om & 99.73 & 99.68 & 99.74 & 99.61 & 99.72 & 99.81 & 99.71 \\ \mathbf{S}e & 14.1 & 12.1 & 10.6 & 17.7 & 16.8 & 7.37 & 13.7 \\ \mathbf{V} & 145 & 117 & 96.3 & 164 & 177 & 88.5 & 155 \\ \mathbf{C}e & 75.3 & 13.3 & 8.28 & 41.6 & 28.4 & 86.4 & 24.5 \\ \mathbf{C}o & 19.1 & 12.2 & 9.63 & 20.9 & 20.9 & 9.35 & 15.2 \\ \mathbf{N}i & 32.6 & 5.98 & 6.44 & 20.0 & 17.1 & 38.1 & 13.7 \\ \mathbf{R}b & 24.0 & 29.9 & 3.92 & 39.8 & 46.6 & 10.1 & 45.0 \\ \mathbf{S}r & 746 & 766 & 816 & 807 & 965 & 471 & 755 \\ \mathbf{Y} & 13.8 & 17.8 & 14.9 & 20.7 & 19.6 & 11.0 & 19.8 \\ \mathbf{Z}r & 80.1 & 109 & 108 & 90.4 & 80.1 & 105 & 125 \\ \mathbf{N}b & 8.19 & 6.33 & 7.04 & 8.26 & 5.23 & 4.92 & 5.80 \\ \mathbf{C}a & 0.16 & 0.23 & 0.20 & 0.32 & 0.20 & 0.07 & 0.14 \\ \mathbf{Ba} & 994 & 1422 & 913 & 1292 & 808 & 826 & 1269 \\ \mathbf{La} & 33.3 & 28.8 & 28.3 & 31.4 & 30.9 & 21.5 & 31.9 \\ \mathbf{C}e & 60.2 & 54.1 & 55.6 & 68.7 & 62.6 & 41.5 & 63.1 \\ \mathbf{P}r & 6.35 & 5.79 & 6.18 & 8.24 & 7.28 & 4.78 & 7.09 \\ \mathbf{M} & 24.2 & 22.1 & 23.5 & 33.6 & 30.7 & 17.8 & 28.6 \\ \mathbf{S}m & 4.45 & 4.32 & 4.69 & 6.27 & 6.44 & 2.96 & 5.76 \\ \mathbf{E}u & 1.54 & 1.44 & 1.33 & 1.86 & 2.70 & 1.08 & 1.73 \\ \mathbf{G}d & 3.24 & 3.10 & 3.21 & 4.80 & 4.70 & 2.28 & 4.90 \\ \mathbf{D}r & 0.32 & 0.20 & 0.74 & 0.36 & 0.99 \\ \mathbf{F}r & 1.27 & 1.68 & 1.50 & 2.13 & 2.10 & 1.13 & 2.03 \\ \mathbf{T}m & 0.20 & 0.23 & 0.25 & 0.32 & 0.29 & 0.17 & 0.38 \\ \mathbf{T}m & 0.30 & 0.33 & 0.80 & 0.74 & 0.36 & 0.99 \\ \mathbf{E}r & 1.27 & 1.68 & 1.50 & 2.13 & 2.10 & 1.13 & 2.03 \\ \mathbf{T}m & 0.20 & 0.33 & 0.25 & 0.32 & 0.29 & 0.17 & 0.28 \\ \mathbf{H}f & 2.75 & 3.36 & 3.18 & 3.41 & 3.06 & 3.77 & 3.87 \\ \mathbf{T}a & 0.44 & 0.45 & 0.53 & 0.61 & 0.74 & 0.36 & 0.74 \\ \mathbf{D}r & 0.7661(20) & 0.70637(112) & 0.0625(0) .51190$	MgO	3.66	2.48	1.95	3.89	3.66	2.34	3, 12
	CaO	5.05	5.31	5.11	6.33	6.72	2,72	6.03
K ₂ 0 2.68 2.84 0.49 2.51 2.51 0.65 2.96 Mo0 0.07 0.06 0.04 0.13 0.11 0.04 0.06 TiO ₂ 0.75 0.52 0.51 0.79 0.85 0.30 0.34 0.17 0.34 L01 0.92 1.39 0.80 1.66 1.77 16.8 7.37 13.7 Sc 14.1 12.1 10.6 17.7 16.8 7.37 13.7 V 145 117 96.3 164 177 18.8 1.55 Cr 75.3 13.3 8.28 41.6 28.4 86.4 24.5 Ca 19.1 12.2 9.63 20.9 9.95 15.2 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Sr 746 766 8	Na ₂ O	5.27	4.39	6.07	3.89	4.30	7.76	4, 27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K ₂ O	2.68	2.84	0.49	2.51	2.51	0.65	2.96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.07	0.06	0.04	0.13	0.11	0.04	0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0.75	0.52	0.51	0.79	0.85	0.30	0.75
	P_2O_5	0.36	0.24	0.23	0.30	0.38	0.17	0.34
Tanla 99.73 99.68 99.74 99.61 99.72 99.81 99.71 So 14.1 12.1 10.6 17.7 16.8 7.37 13.7 V 145 117 96.3 164 177 58.5 155 Gr 75.3 13.3 8.28 41.6 28.4 86.4 24.5 Go 19.1 12.2 9.63 20.9 20.9 9.35 15.2 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Rb 24.0 29.9 3.92 39.8 46.6 10.1 45.0 Sr 746 766 816 807 96.5 471 755 Y 13.8 17.8 14.9 20.7 19.6 11.00 19.8 Zr 80.1 105 125 5.80 105 125 Nb 8.19 6.33 7.04 8.26 5.23	LOI	0.92	1.39	0.80	1.60	1,77	0.91	1.66
Sc 14.1 12.1 10.6 17.7 16.8 7.37 13.7 V 145 117 96.3 164 177 58.5 155 Cr 75.3 13.3 8.28 41.6 28.4 86.4 24.5 Go 19.1 12.2 9.63 20.9 9.35 15.2 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Bb 24.0 29.9 3.92 39.8 46.6 10.1 45.0 Sr 746 766 816 807 965 471 755 Y 13.8 17.8 14.9 20.7 19.6 11.0 19.8 Zr 80.1 105 125 80 6.33 7.04 8.26 5.23 4.92 5.80 Cs 0.16 0.23 0.20 0.32 0.20 0.07 0.14 Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8	Total	99.73	99.68	99.74	99.61	99.72	99 81	99 71
V 145 117 96.3 164 177 58.5 155 Gr 75.3 13.3 8.28 41.6 28.4 86.4 24.5 Go 19.1 12.2 9.63 20.9 9.35 15.2 Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Rb 24.0 29.9 3.92 39.8 46.6 10.1 45.0 Sr 746 766 816 807 965 471 755 Y 13.8 17.8 14.9 20.7 19.6 11.0 19.8 Zr 80.1 109 108 90.4 80.1 105 125 Nb 8.19 6.33 7.04 8.26 5.23 4.92 5.80 Ge 60.2 54.1 55.6 68.7 62.6 41.5 63.1 Pr 6.35 5.79 6.18 8.24 7.28 4.	Sc	14.1	12.1	10.6	17.7	16.8	7 37	13 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v	145	117	96.3	164	177	58 5	15.7
$ \begin{array}{c cccc} C_0 & 19.1 & 12.2 & 9.63 & 20.9 & 20.9 & 9.35 & 15.2 \\ Ni & 32.6 & 5.98 & 6.44 & 20.0 & 17.1 & 38.1 & 13.7 \\ Rb & 24.0 & 29.9 & 3.92 & 39.8 & 46.6 & 10.1 & 45.0 \\ Sr & 746 & 766 & 816 & 807 & 965 & 471 & 755 \\ Y & 13.8 & 17.8 & 14.9 & 20.7 & 19.6 & 11.0 & 19.8 \\ Zr & 80.1 & 109 & 108 & 90.4 & 80.1 & 105 & 125 \\ Nb & 8.19 & 6.33 & 7.04 & 80.2 & 6.5.23 & 4.92 & 5.80 \\ Cs & 0.16 & 0.23 & 0.20 & 0.32 & 0.20 & 0.07 & 0.14 \\ Ba & 984 & 1422 & 913 & 1292 & 808 & 826 & 1269 \\ La & 33.3 & 28.8 & 28.3 & 31.4 & 9.21.5 & 31.9 \\ Ce & 60.2 & 54.1 & 55.6 & 68.7 & 62.6 & 41.5 & 63.1 \\ Pr & 6.35 & 5.79 & 6.18 & 8.24 & 7.28 & 4.78 & 7.09 \\ Nd & 24.2 & 22.1 & 23.5 & 33.6 & 30.7 & 17.8 & 28.6 \\ Sm & 4.45 & 4.32 & 4.69 & 6.27 & 6.44 & 2.96 & 5.76 \\ Eu & 1.54 & 1.44 & 1.33 & 1.86 & 2.10 & 1.08 & 1.73 \\ Gd & 3.24 & 3.10 & 3.21 & 4.80 & 4.70 & 2.28 & 4.05 \\ Tb & 0.44 & 0.46 & 0.50 & 0.66 & 0.74 & 0.37 & 0.66 \\ Dy & 2.52 & 2.96 & 2.82 & 4.18 & 3.95 & 1.97 & 3.87 \\ Ho & 0.45 & 0.53 & 0.53 & 0.80 & 0.74 & 0.36 & 0.69 \\ Fr & 1.27 & 1.68 & 1.50 & 2.13 & 2.11 & 1.13 & 2.03 \\ Tm & 0.20 & 0.23 & 0.21 & 0.24 & 0.24 & 0.17 & 0.28 \\ Hf & 2.75 & 3.36 & 3.18 & 3.41 & 3.08 & 3.27 & 3.78 \\ Ta & 0.34 & 0.35 & 0.36 & 0.40 & 0.26 & 0.28 & 0.30 \\ Pb & 5.30 & 3.98 & 3.82 & 6.04 & 3.48 & 2.35 & 3.56 \\ U & 1.63 & 1.21 & 0.82 & 0.34 & 3.06 & 3.78 & 3.56 \\ U & 1.63 & 1.21 & 0.82 & 0.34 & 0.36 & 0.74 & 0.78 & 0.37 \\ Hf & 2.75 & 3.36 & 3.18 & 3.41 & 3.08 & 3.27 & 3.78 \\ Ta & 0.34 & 0.35 & 0.36 & 0.40 & 0.26 & 0.28 & 0.30 \\ Pb & 5.30 & 3.98 & 3.82 & 6.04 & 3.48 & 2.35 & 3.56 \\ U & 1.63 & 1.21 & 0.82 & 0.86 & 1.07 & 0.88 & 1.12 \\ {}^{P}Rb^{P}8r^{P}Sr(2y) & 0.708251(13) & 0.70627(12) & 0.706276(17) & 0.70570(15) \\ {}^{P}hb^{P}hb^{P}MN(2y) & 0.511820(13) & 0.511738(8) & 0.511711(9) & 0.511792(8) & 0.51190(11) \\ {}^{P}Sr^{P}8r^{P}Sr(4) & 0.705610 & 0.706277(12) & 0.70625252 \\ {}^{P}N^{P}N^{P}N^{P}N^{P}N^{P}N^{P}N^{P$	Сг	75.3	13.3	8.28	41.6	28 4	86.4	24.5
Ni 32.6 5.98 6.44 20.0 17.1 38.1 13.7 Rb 24.0 29.9 3.92 39.8 46.6 10.1 45.0 Sr 746 766 816 807 965 471 755 Y 13.8 17.8 14.9 20.7 19.6 11.0 19.8 Zr 80.1 109 108 90.4 80.1 105 125 Nb 8.19 6.33 7.04 8.26 5.23 4.92 5.80 Ca 0.16 0.23 0.20 0.32 0.20 0.07 0.14 Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8 28.3 31.4 30.9 21.5 31.9 Ce 60.2 54.1 155.6 68.7 62.6 41.5 63.1 Pr 6.35 5.9 6.18 8.24	Со	19.1	12.2	9.63	20.9	20.9	9 35	15.2
Rb 24.0 29.9 3.92 39.8 46.6 10.1 45.0 Sr 766 766 816 807 965 471 755 Y 13.8 17.8 14.9 20.7 19.6 11.0 19.8 Zr 80.1 109 08 90.4 80.1 105 125 Nb 8.19 6.33 7.04 8.26 5.23 4.92 5.80 Cs 0.16 0.23 0.20 0.32 0.20 0.07 0.14 Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8 28.3 31.4 30.9 21.5 31.9 Ce 60.2 54.1 55.6 68.7 62.6 41.5 63.1 Pr 6.35 5.79 6.18 8.24 7.28 4.78 7.09 Nd 24.2 22.1 23.5 33.6 <td< td=""><td>Ni</td><td>32.6</td><td>5.98</td><td>6.44</td><td>20.0</td><td>17 1</td><td>38 1</td><td>13.2</td></td<>	Ni	32.6	5.98	6.44	20.0	17 1	38 1	13.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rb	24.0	29.9	3.92	39, 8	46.6	10 1	15.7
Y 13.8 17.8 14.9 20.7 19.6 11.0 19.8 Zr 80.1 109 108 90.4 80.1 105 125 Nb 8.19 6.33 7.04 8.26 5.23 4.92 5.80 Ca 0.16 0.23 0.20 0.32 0.20 0.07 0.14 Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8 28.3 31.4 30.9 21.5 31.9 Ce 60.2 54.1 55.6 68.7 62.6 41.5 63.1 Pr 6.35 5.79 6.18 8.24 7.09 7.09 Nd 24.2 22.1 23.5 33.6 30.7 7.78 28.6 Sm 4.45 4.32 4.69 6.27 6.44 2.96 5.76 Eu 1.54 1.44 1.33 1.86 2.10 1.08 1.73 Gd 3.21 4.80 0.53 0.53 <t< td=""><td>Sr</td><td>746</td><td>766</td><td>816</td><td>807</td><td>965</td><td>10.1</td><td>45.0</td></t<>	Sr	746	766	816	807	965	10.1	45.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	13.8	17.8	14.9	20.7	19.6	4/1	10.8
Nb 8. 19 6. 33 7. 04 8. 26 5. 23 4. 92 5. 80 Cs 0. 16 0. 23 0. 20 0. 32 0. 20 0. 07 0. 14 Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8 28.3 31.4 30.9 21.5 31.9 Ce 60.2 54.1 55.6 68.7 62.6 41.5 63.1 Pr 6.35 5.79 6.18 8.24 7.28 4.78 7.09 Nd 24.2 22.1 23.5 33.6 30.7 17.8 28.6 Sm 4.45 4.24 4.69 6.27 6.44 2.96 5.76 Eu 1.54 1.44 1.33 1.86 2.10 1.08 1.73 Gd 3.24 3.10 3.21 4.80 4.70 2.28 4.05 Dy 2.52 2.96 2.82	Zr	80.1	109	108	90.4	17.0 80.1	105	19.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nb	8.19	6.33	7.04	8 26	5 23	103	125
Ba 984 1422 913 1292 808 826 1269 La 33.3 28.8 28.3 31.4 30.9 21.5 31.9 Ce 60.2 54.1 55.6 68.7 62.6 41.5 63.1 Pr 6.35 5.79 6.18 8.24 7.28 4.78 7.09 Nd 24.2 22.1 23.5 33.6 30.7 17.8 28.6 Sm 4.45 4.32 4.69 6.27 6.44 2.96 5.76 Eu 1.54 1.44 1.33 1.86 2.10 1.08 1.73 Gd 3.24 3.10 3.21 4.80 4.70 2.28 4.05 Tb 0.444 0.46 0.50 0.66 0.74 0.37 0.66 Dy 2.52 2.96 2.82 4.18 3.95 1.97 3.87 Ho 0.45 0.53 0.80 0.74	Cs	0.16	0.23	0.20	0.32	0.20	4.92	5.80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba	984	1422	913	1292	808	0.07	0.14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	33.3	28.8	28.3	31.4	30.0	820 21 5	1269
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce	60.2	54.1	55.6	68 7	50.9 62.6	21.3	31.9
Nd24.222.123.533.630.717.828.6Sm4.454.324.696.276.442.965.76Eu1.541.441.331.862.101.081.73Gd3.243.103.214.804.702.284.05Tb0.440.460.500.660.740.370.66Dy2.522.962.824.183.951.973.87Ho0.450.530.530.800.740.360.69Er1.271.681.502.132.111.132.03Tm0.200.230.250.320.290.170.29Yb1.251.561.591.801.871.291.78Lu0.190.230.210.240.240.170.28Hf2.753.363.183.413.083.273.78Ta0.340.350.360.400.260.280.30Pb5.303.983.826.043.482.353.56Th3.334.553.513.343.063.783.56U1.631.210.820.861.070.881.12 $^{87} Rb/^{85} r$ 0.09310.01390.14290.06230.1728 $^{17} Sm/^{14} Nd0.11120.12070.11290.10090.1218^{87} Sr/^{85} F(i)0.$	Pr	6.35	5.79	6, 18	8 24	7 28	41.5	6 3. 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nd	24.2	22.1	23.5	33.6	30.7	4.70	7.09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm	4.45	4.32	4.69	6 27	50.7 6.44	17.0	28.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eu	1.54	1.44	1.33	1.86	2 10	2.90	5.70
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gd	3.24	3.10	3.21	4 80	2.10 4.70	1.00	1.73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ТЬ	0.44	0.46	0, 50	0.66	4.70 0.74	2.20	4.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy	2.52	2.96	2.82	4 18	3.95	1.07	0.06
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Но	0.45	0.53	0.53	0.80	0.74	1.97	3.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Er	1.27	1.68	1.50	2 13	2 11	0.50	0.69
Yb1.251.561.591.801.871.291.78Lu0.190.230.210.240.240.170.28Hf2.753.363.183.413.083.273.78Ta0.340.350.360.400.260.280.30Pb5.303.983.826.043.482.353.56Th3.334.553.513.343.063.783.56U1.631.210.820.861.070.881.12 $^{87}\text{Rb}^{86}\text{Sr}$ 0.09310.01390.14290.06230.1728 $^{147}\text{Sm}^{144}\text{Nd}$ 0.11120.12070.11290.10090.1218 $^{87}\text{Sr}^{86}\text{Sr}(2\sigma)$ 0.705835(18)0.706061(20)0.706237(12)0.706276(17)0.705670(15) $^{143}\text{Nd}^{144}\text{Nd}(2\sigma)$ 0.511820(13)0.511738(8)0.511711(9)0.511792(8)0.511900(11) $^{87}\text{Sr}^{86}\text{Sr}(i)$ 0.7056100.7060270.7058920.7061250.705252 $\epsilon_{Nd}(t)$ -14.60 -16.35 -16.75 14.0812.50	Tm	0.20	0.23	0.25	0.32	0.20	1.13	2.03
Lu0.190.230.210.240.240.170.28Hf2.753.363.183.413.083.273.78Ta0.340.350.360.400.260.280.30Pb5.303.983.826.043.482.353.56Th3.334.553.513.343.063.783.56U1.631.210.820.861.070.881.12 87 Rb/ 86 Sr0.093 10.01390.14290.06230.1728 147 Sm/ 144 Nd0.11120.12070.11290.10090.1218 87 Sr/ 86 Sr(2 σ)0.705835(18)0.706061(20)0.706237(12)0.706276(17)0.705670(15) 143 Nd/ 144 Nd(2 σ)0.511820(13)0.511738(8)0.511711(9)0.511792(8)0.511900(11) 87 Sr/ 86 Sr(i)0.7056100.7060270.7058920.7061250.705252 $\epsilon_{Nd}(t)$ -14.60 -16.35 -16.75 14.0212.21	Yb	1.25	1.56	1.59	1 80	1.87	0.17	0.29
Hf2.753.363.183.413.083.273.78Ta0.340.350.360.400.260.280.30Pb5.303.983.826.043.482.353.56Th3.334.553.513.343.063.783.56U1.631.210.820.861.070.881.12 87 Rb/ 86 Sr0.093 10.01390.14290.06230.1728 147 Sm/ 144 Nd0.11120.12070.11290.10090.1218 87 Sr/ 86 Sr(2 σ)0.705835(18)0.706061(20)0.706237(12)0.706276(17)0.705670(15) 143 Nd/ 144 Nd(2 σ)0.511820(13)0.511738(8)0.511711(9)0.511792(8)0.511900(11) 87 Sr/ 86 Sr(i)0.7056100.7060270.7058920.7061250.705252 $_{ENd}(t)$ -14.60-16.35-16.7514.0812.26	Lu	0.19	0.23	0.21	0.24	0.24	1.29	1.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hf	2.75	3.36	3, 18	3 41	2.09	0.17	0.28
Pb 5.30 3.98 3.82 6.04 0.20 0.28 0.30 Th 3.33 4.55 3.51 3.48 2.35 3.56 U 1.63 1.21 0.82 0.86 1.07 0.88 1.12 $^{87}\text{Rb}^{86}\text{Sr}$ 0.0931 0.0139 0.1429 0.0623 0.1728 $^{147}\text{Sm}^{144}\text{Nd}$ 0.1112 0.1207 0.1129 0.0623 0.1728 $^{87}\text{Sr}^{86}\text{Sr}(2\sigma)$ $0.705835(18)$ $0.706061(20)$ $0.706237(12)$ $0.706276(17)$ $0.705670(15)$ $^{143}\text{Nd}^{144}\text{Nd}(2\sigma)$ $0.511820(13)$ $0.511738(8)$ $0.511711(9)$ $0.511792(8)$ $0.511900(11)$ $^{87}\text{Sr}^{86}\text{Sr}(i)$ 0.705610 0.706027 0.705892 0.706125 0.705252 $\underline{e}_{Nd}(t)$ -14.60 -16.35 -16.75 14.08 12.57	Та	0.34	0.35	0.36	0.40	0.26	5.27	3.78
Th 3.33 4.55 3.51 3.34 3.06 3.78 2.35 3.56 U 1.63 1.21 0.82 0.64 3.06 3.78 3.56 U 1.63 1.21 0.82 0.86 1.07 0.88 1.12 87 Rb/ 86 Sr 0.0931 0.0139 0.1429 0.0623 0.1728 147 Sm/ 144 Nd 0.1112 0.1207 0.1129 0.0623 0.1728 87 Sr/ 86 Sr(2σ) $0.705835(18)$ $0.706061(20)$ $0.706237(12)$ $0.706276(17)$ $0.705670(15)$ 143 Nd/ 144 Nd(2σ) $0.511820(13)$ $0.511738(8)$ $0.511711(9)$ $0.511792(8)$ $0.511900(11)$ 87 Sr/ 86 Sr(i) 0.705610 0.706027 0.705892 0.706125 0.705252 $\underline{e}_{Nd}(t)$ -14.60 -16.35 -16.75 14.08 12.26	Рь	5.30	3, 98	3 82	6.04	2.49	0.28	0.30
U1.631.210.820.861.070.881.12 87 Rb/ 86 Sr0.093 10.01390.14290.06230.1728 147 Sm/ 144 Nd0.11120.12070.11290.10090.1218 87 Sr/ 86 Sr(2 σ)0.705835(18)0.706061(20)0.706237(12)0.706276(17)0.705670(15) 143 Nd/ 144 Nd(2 σ)0.511820(13)0.511738(8)0.511711(9)0.511792(8)0.511900(11) 87 Sr/ 86 Sr(i)0.7056100.7060270.7058920.7061250.705252 $\underline{e}_{Nd}(t)$ -14.60-16.35-16.7514.0812.55	Th	3.33	4.55	3.51	3 34	3.40	2.35	3.56
87 Rb/ 86 Sr0.093 10.01390.14290.06230.1728 147 Sm/ 144 Nd0.11120.12070.11290.10090.1218 87 Sr/ 86 Sr (2 σ)0.705835(18)0.706061(20)0.706237(12)0.706276(17)0.705670(15) 143 Nd/ 144 Nd(2 σ)0.511820(13)0.511738(8)0.511711(9)0.511792(8)0.511900(11) 87 Sr/ 86 Sr (i)0.7056100.7060270.7058920.7061250.705252 $\epsilon_{Nd}(t)$ -14.60-16.35-16.7514.0812.25	U	1.63	1.21	0.82	0.86	1.07	3.78	3.56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁸⁷ Rb⁄ ⁸⁶ Sr	0.093 1		0 0139	0.1429	1.07	0.88	1.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁴⁷ Sm⁄ ¹⁴⁴ Nd	0.1112		0 1207	0.1727		0.0623	0.1728
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁸⁷ Sr⁄ ⁸⁶ Sr(2σ)	0.705835(18)		0.706061(20)	0.1127		0.1009	0.1218
$ \frac{\epsilon_{Nd}(t)}{\epsilon_{Nd}(t)} = -14.60 $	143 Nd/ 144 Nd(2σ)	0.511820(13)		0.511738(8)	0.511711(0)		0.7062/6(17)	0.705670(15)
$ = \frac{\varepsilon_{\rm Nd}(t)}{14.60} - 14.60 - 16.35 - 16.75 - 14.09 - 12.50 - 16.75 - 14.09 - 12.50 - 16.75 - 14.09 - 12.50 - 10.50 - 1$	⁸⁷ Sr⁄ ⁸⁶ Sr(i)	0.705610		0.706027	0.511/11(3)		0.511/92(8)	0.511900(11)
	$\varepsilon_{\rm Nd}(t)$	- 14.60		- 16.35	- 16 75		14 09	0. 705252

图 3 南太行山闪长岩锆石 Th - U 图解 (a, b)和 SHRIMP 锆石 U-Pb 年龄谱(c, d)

a, c 为符山角闪闪长岩体(20HD-25), b, d 为东冶角闪闪长岩体(20HD-59)

Fig. 3 Th-U contents (a, b) and SHRIMP U-Pb Concordia (c, d) diagrams for zircons from the Fushan and Dongye diorite

从表2可以看出,南太行山闪长岩主量元素的含量变化 范围较大,SiO₂ = 54.84~65.75%,Al₂O₃ = 14.29~ 16.77%,MgO=1.31~3.89%,TiO₂ = 0.30~0.87%,K₂O +Na₂O=6.53~11.40%,mg值=0.36~0.58。在主量元素 Harker 图解上(图4a-f),MgO、FeO'(=FeO+Fe₂O₃)、CaO、 TiO₂和P₂O₅随 SiO₂的降低而降低,而Al₂O₃与 SiO₂的变化 关系不明显。为了更好地理解太行山地区中生代岩浆岩岩 石成因,在图4中也列出了区内已有闪长质岩石的岩石化学 资料,从4可以看出,总体上区内中酸性岩石有着相似的岩 浆演化趋势,表明区内中酸性岩石应是同一岩浆系列的演化 产物。

代表性 REE 元素总量为 88.54 ~ 113.20 ppm,在球粒 陨石标准化图解上(图 5a),样品表现出相似的 LREE 富集型 右倾型配分模式,轻重稀土分异明显,(La/Yb)cn = 9.86 ~ 22.77 (平均值 14.26),(Gd/Yb)cn = 1.51 ~ 2.00 (平均值 1.72);具弱的正铕异常(Eu/Eu* = 1.00 ~ 1.23,平均值 1.10)。代表性样品具有较低的相容元素含量,如 Sc = 7.4 ~ 17.7 ppm, Ni = 6.0 ~ 32.6 ppm, Cr = 13.3 ~ 86.4 ppm。 Rb 含量低(变化于 3.92 ~ 46.6 ppm),而 Sr、Ba 含量高(Sr 多

>700 ppm, Ba 多 > 1000 ppm)。不相容元素比值 Nb/La = 0.17~0.28, Nb/U = 3.74~9.57, Zr/Nb = 9.78~22.85, Th/Ta = 8.40~19.77, 在微量元素原始地幔标准化图解上(图4b),不同地点样品呈现出具岛弧特征的微量元素分布型式,以强烈富集大离子亲石元素(LILEs)和亏损 Nb-Ta、Zr-Hf和 Ti 等高场强元素(HFSEs)为特征。

五个样品的初始⁸⁷ Sr/⁸⁶ Sr 比值变化于 0.705363 ~ 0.706165, $\varepsilon_{vd}(t) = -13.20 ~ -16.75$, 与区内辉长质岩石 具相似 Sr-Nd 同位素组成(董建华等,2003; Zhang et al., 2004; Wang et al., 评审中)。在⁸⁷ Sr/⁸⁶ Sr (t) 对 $\varepsilon_{vd}(t = 125$ Ma)图解上(图 6), 区内闪长质岩石显示出具 EMI 型地幔 同位素特征,相似于华北克拉通内部太行山中生代辉长岩和 煌斑岩、济南辉长岩和济阳盆地火山岩同位素组成(Chen and Zhai, 2003; Zhang et al., 2004; 董建华等, 2003; Wang et al., 评审中); 而较华北克拉通周缘造山带地区(如大别-苏鲁造山带地区、方城地区、阜新地区等)中生代火山岩相对 高 $\varepsilon_{vd}(t)$ 值和明显低初始⁸⁷ Sr/⁸⁶ Sr 比值(Jahn et al., 1999; Fan et al., 2004; Zhang et al., 2002, 2003, 2004)。

Fig. 4 Harker variation diagrams for the diorites in the southern Taihang Mountains

图 5 南太行山中生代闪长岩的 REE 球粒陨石标准化配分图(a)和不相容元素原始地幔标准化蛛网图(b) (标准化值分别引自 Taylor & McLennan, 1985 和 Sun & McDonough, 1989; 辉长岩数据引自董建华等, 2003; Wang et al., 评审中) Fig. 5 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spidergrams (b) for the diorites in the southern Taihang Mountains.

1259

图 6 南太行山中生代闪长岩⁸⁷ Sr/⁸⁶ Sr(t) - ε_{Nd} 图解

(其中济阳盆地玄武岩数据引自 Fan et al., 2001;济南辉长岩引自 Zhang et al., 2004;大别中生代基性火山岩引自 Jahn et al., 1999; Fan et al., 2004;;方城玄武岩引自 Zhang et al., 2002;胶东地区中生代火山岩引自 Fan et al., 2001;华北下地壳和年轻上地壳数据分别引自 Jahn et al., 1999;MORB 数据引自 Sun & McDonough, 1989)

Fig. 6 87 Sr/ 86 Sr(i) vs. $\varepsilon_{Nd}(t)$ diagram of the Mesozoic diorites from the Southern Taihang Mountains.

5 讨论

5.1 岩体形成时代

南太行山已有的年代学资料多为全岩/单矿物 K-Ar 或 全岩 Rb-Sr 年龄,其年龄变化区间在63~218 Ma 之间, 其峰 期年龄变化于120~154 Ma间(谭东娟等, 1994; 罗照华等, 1997),如此不确切的年代学资料严重制约了对南太行山中 生代构造演化及其与华北内部同期构造岩浆作用时空格局 的对比和动力学讨论。而且由于 K-Ar 和 Rb-Sr 等时线测年 方法本身的局限性难以将上述年龄理解为岩体的形成年龄。 而 SHRIMP 锆石 U-Pb 同位素体系由于其有着较高的封闭温 度,且不易受后期地质事件所扰动,其年龄代表了岩体的形 成年龄。因此符山闪长岩体和东冶闪长岩体 126.7±1.1 Ma 和 125.9 ± 0.9 Ma 的 SHRIMP 锆石 U-Pb 年龄代表了南太行 山典型闪长质岩体的形成时代,该年龄也与北太行花岗闪长 岩(如房山岩体)129~137 Ma 的锆石 U-Pb 年龄相似(Davis et al., 1998; 董建华等, 2003)。上述 SHRIMP 锆石 U-Pb 年 龄在误差范围内也一致于东冶闪长岩体边缘河沟垴橄榄辉 长岩 125.1 ± 4.5 Ma 的锆石 SHRIMP 年龄(Wang et al., 评 审中),蔡剑辉等(2001)通过 Rb-Sr 矿物-全岩等时线方法也 得到北太行王安镇杂岩体中性岩形成于~133 Ma,与基性岩 (~135 Ma)近同时形成,这表明太行地区辉长岩-闪长岩有 着相似的形成时代,是同一次构造热事件的产物(黄福生等, 1990; 宋新宇等, 1999), 不支持太行山地区辉长岩早于闪长 岩形成的观点(许文良等, 1991)。

5.2 岩石成因

对与基性岩在时空上密切共生的太行山中生代中酸性 侵入岩岩石成因一直有着不同的看法(许文良等,1991;罗 照华等,1997;谭东娟等,1994;宋新宇等,1999),如有人认 为系年轻的底侵基性下地壳部分熔融而成(张旗等,2001); 有人认为系幔源基性岩浆和壳源花岗质岩浆混合而成(黄福 生等,1990;陈斌等,2002;宋新宇等,1999);也有研究者 认为是富集岩石圈地幔部分熔融的产物(董建华等,2003)。

南太行山地区闪长质岩石⁸⁷ Sr/⁸⁶ Sr(i) = 0.705363 ~ 0.706165, $\varepsilon_{Nd}(t)$ = -13.2 ~ -16.8,明显不同于华北古老 基性下地壳初始⁸⁷ Sr/⁸⁶ Sr = 0.706 ~ 0.713 和 ε_{Nd} = -32 ~ -44 (Jahn et al., 1999);而且一般认为古老下地壳玄武质 岩石部分熔融形成的中酸性熔体具有较高的 SiO₂和较低的 MgO 含量以及负 Eu 的异常的特征,而麻粒岩相下地壳的深 熔则常具有较低的 Th、U 含量;南太行山闪长岩具有较低的 SiO₂和较高的 MgO 含量以及 Eu 的正异常,并不支持区内闪 长质岩石是区内古老地壳物质或麻粒岩相下地壳的深熔作 用产物。如果区内闪长质岩石是幔源基性岩浆与壳源花岗 质岩浆混合而成的产物(黄福生等, 1990;陈斌等, 2002; 宋新宇等, 1999),那么如图 5 和图6 所示南太行山地区闪长 质岩石具有与区内同期辉长质岩石相似的稀土元素和微量 元素分布型式和近一致的 Sr-Nd 同位素组成,都有着富集的 LILE 和 LREE、亏损的 HFSE 和较高的 Sr、Ba 含量的特征。 特别是 Wang et al. (评审中)对与东冶闪长岩体相伴产出的 辉长岩具高 MgO 特征,有着与闪长岩完全一致的 SHRIMP 锆 石 U-Pb 年龄和元素-同位素地球化学特征,这些辉长岩起源 于富集岩石圈地幔。如果该辉长岩组分代表了闪长岩成因 的基性岩浆端元组分,如此则要求与之相混合的地壳成因花 岗质岩浆也具有与基性岩浆端元相似的元素和 Sr-Nd 同位 素组成,在此我们倾向于认为这种成因的可能性较小。 在 Harker图解上区内闪长岩所显示的主量元素变化趋势及 相容元素(如 Cr、Co、V)随岩浆演化而呈线性降低,表明岩浆 演化过程中存在着明显的铁镁质矿物分异结晶作用。因此 对于与起源于富集岩石圈地幔的区内基性岩石在时空上密 切共生,并有着相似年代学和元素-同位素地球化学的闪长 岩而言,我们更倾向于认为其与基性岩有着相似的富集地幔 源区(董建华等, 2003; Zhang et al., 2004),或可能直接派 生于富集岩石圈地幔部分熔融后经分异结晶而来,或可能是 新近底侵入下地壳的派生于富集地幔源区的基性岩浆再次 熔融后经一定程度分异结晶作用的产物。对其岩石成因的 进一步厘定还需要其他更多的地质资料约束。

5.3 构造意义

华北克拉通自中生代以来发生了强烈的构造-岩浆活 动。目前的岩石学、地球化学和地球物理研究资料都一致表 明,中生代以来该区发生了大规模的岩石圈减薄作用(~100 km 的岩石圈被消耗掉) (Fan et al., 2000; Xu et al., 2001)。但对华北克拉通内部岩石圈减薄的范围、时序和岩 石圈减薄的动力学机制仍有着不同的看法(Fan et al., 2000; Xu et al., 2001; Zhang et al., 2002; 吴福元等, 1999)。目前比较认可的观点是华北克拉通中生代岩浆作用 主要集中于约120~135 Ma,其岩石圈减薄的范围主要集中 在华北克拉通东部地区,如胶东、鲁西、济南等地;而太行山 地区岩石圈减薄不明显且岩浆活动时间相对较早。本次研 究表明南太行山地区岩浆作用具有与华北克拉通东部地区 岩浆作用一致的形成时代和与济南辉长岩相似的元素-同位 素地球化学组成(图4和5; Zhang et al., 2004; Chen and Zhai, 2003),这表明南太行山地区早白垩世时可能具有与华 北克拉通东部统一的构造环境和地球动力学背景,即处于强 烈的岩石圈伸展减薄构造背景,且华北克拉通的减薄范围可 能至少涵盖到南太行山地区。而对其减薄机制有的研究者 认为与岩石圈拆沉作用关系密切,也有研究者认为是岩石圈 机械热侵蚀作用的结果(Xu et al., 2001)。岩石圈拆沉作用 模型认为由于岩石圈地幔密度比下覆软流圈地幔小而岩石 圈拆沉作用发生,而这种岩石圈拆沉作用可导致软流圈界面 快速上升而导致地壳物质的增温而熔融。目前在太行山地 区广泛发育的中酸性岩石和基性岩石有着岩石圈地幔起源, 且在区内未见典型来自软流圈地幔的物质记录,因此,我们

更倾向于认为南太行地区的岩石圈减薄与岩石圈机械热侵蚀过程密切相关。

6 结论

南太行山符山和东冶角闪闪长岩体 SHRIMP 锆石 U-Pb 年龄分别为 126.7±1.1 Ma 和 125.9±0.9 Ma,这一年龄 一致于北太行山地区中酸性岩石的形成年龄,与区内基性岩 石近同时形成。区内闪长质岩石高硅、高碱含量,Mg 值 =0.38~0.56, (La/Yb)_{en} = 9.86~22.77, (Gd/Yb)_{en} = 1.51~2.00; Eu/Eu^{*} = 1.00~1.23、LILE 富集、Nb-Ta、Zr-Hf 和 Ti 亏损,⁸⁷ Sr/⁸⁶ Sr(t) = 0.705363~0.706165, $\varepsilon_{Nd}(t)$ = -13.2~ -16.8,可能是富集岩石圈地幔部分熔融后经分异 结晶而来,也可能与新近底侵入的派生于富集地幔源区基性 岩石再次熔融有关。其形成背景与软流圈地幔上隆作用下 的岩石圈伸展减薄密切相关,该研究表明早白垩世时华北 陆块具有统一的构造岩浆作用机制。

References

- Cai Jianhui. 2001. Geochemistry and Ages of the Adakitic Intermediate Rocks in Wang' an Pluton, Beijing; Seismic Press, 82 (in Chinese)
- Chen B, Zhai M G. 2003. Geochemistry of Late Mesozoic Lamprophyre dikes from the Taihang Mountains, North China and implications for the subcontinental lithospheric mantle. Geol. Mag. , 140(1); 87 93
- Chen B, Zhai M G, Shao J A. 2003. Petrogenesis and significance of the Mesozoic North Taihang complex; major and trace element evidence. Science in China (series D); 941-953
- Claoue-Long J C, Compston J, Roberts C M. Fanning, 1995. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and ⁴⁰ Ar∕³⁹ Ar analysis, in: Geochronology Time Scales and Global Stratigraphic Correlation 54, SEPM Special Publication, pp. 3 - 21
- Davis G A, Zhang Y D, Wang C. 1998. Geochemistry and geochronology of Yanshan Belt tectonics., in; Collected Works of International Symposium on Geological Science, Beijing; Science Press, 275 – 292
- Dong J H, Chen B, Zhou L. 2003. The petrogenesis of Fushan intrusion in the southern Taihang Mountains: the petrological and geochemical evidences. Progress in Natural Science, 13(7): 767 - 773 (in Chinese with English abstract)
- Fan W M, Guo F, Wang Y J, Zhang M. 2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie Orogen? Chem. Geol., 209: 27 - 48
- Fan W M, Guo F, Wang Y J. 2001. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China: Phys. Chem. Earth (A), 26(9-10); 733-746
- Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: where is the Archaean keel? J. Petrology, 41(7): 933 - 950
- HBGMR (Hebei Bureau of Geology and Mineral Resources). 1989. Regional geology of Beijing, Tianjin and Hebei province. Beijing: Geological Publishing House, p. 741 (in Chinese)
- Huang F S, Xue S Z. 1990. The discovery of the mantle-derived ultramafic xenoliths in Handan-Xingtai intrusive complex and their mineralogical-geochemical characteristics. Acta Petrologica Sinica,

(4):40-45 (in Chinese with English abstract)

- Jahn B M, Wu F Y, Lo C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust; geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, Central China: Chem. Geol., 157; 119 - 146
- Liu D Y, Nutman A P, Compston W, 1992. Remnants of 3800 Ma crust in the Chinese Part of the Sino-Korean craton. Geology, 20: 339 – 342
- Liu Yin, Liu Haicheng, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace elements using ICP-MS. Geochimica, 25 (6): 552 - 558. (in Chinese with English abstract)
- Ludwig K R. 2001. Sqiud 1. 02: A user manual. Berkeley Geochronological Center Special Publiccation, 219
- Ludwig K R. 1999. Using Isoplot/EX, version 2, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication 1a, 47
- Luo Z H, Deng J F, Zhao G C, Cao Y Q. 1997. Characteristics of magmatic activities and orogenic process of Taihangshan intraplate orogen. Earth Science – Journal of China University of Geoscience, 22(3); 279 – 284 (in Chinese with English abstract)
- Niu S Y, Chen L, Xu C S. 1994. The crustal evolution and metallogenic regularity of the Taihangshan area. Beijing: Seismological Press, p203 (in Chinese)
- Song B, Zhang Y H, Wan Y S. 2002. Mount making and procedure of the SHRIMP dating. Geological Review, 48 (suppl.): 26 - 30 (in Chinese with English abstract)
- Song X Y and Feng Z Y. 1999. Minor element geochemistry of Mesozoic magmatic intrusions of Southern Taihang Mountains. Journal and Min. Res. North China, 14(1): 1 - 17 (in Chinese with English abstract)
- Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. Magmatism in the Ocean Basin (Sauders, A D and Norry, M J, eds.), Geol. Soc. Spec. Pub., 42: 313-345
- Tan D J, Lin J Q. 1994. Mesozoic potassic rocks in the North China. Seism. Pub. House, Beijing, 1 – 184 (in Chinese)
- Taylor, S R and McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford Press, Blackwell, 312
- Wang Y J, Fan W M, Zhang H F, Peng T P. Petrogenesis of Mesozoic high-Mg gabbros in the southern Taihang Mountains of Central North China; implication for paleosubduction-modified lithospheric mantle. Lithos(in review.)
- Wang Y J, Fan W M, Zhang Y H, Guo F. 2003. Structural evolution and 40 Ar/ 39 Ar dating of the Zanhuang metamorphic domain in North China Craton: constraints on Paleoproterozoic tectonothermal overprinting. Precambrian Research, 122/1 - 4:159 - 182
- Wang Y J, Fan W M, Zhang Y H. Geochemical, ⁴⁰ Ar/³⁹ Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research (in press.)
- Williams I S, Claesson S. 1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol., 97: 205-217
- Wu F Y, Sun D Y. 1999. The Mesozoic magmatism and lithospheric thinning in eastern China. Journal of Changchun University of Science and Technology, 29 (4): 313 - 318 (in Chinese with English abstract)
- Xu W L, Lin J. 1991. The discovery and study of mantle-drived dunite inclusions in hornblende-diorite in the Handan-Xingtai area, Hebei. Acta Geologica Sinica, 65(1):33 - 41 (in Chinese with English abstract)
- Xu Y G. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean craton in North China; Evidence,

Acta Petrologica Sinica 岩石学报 2004, 20(5)

timing and mechanism. Physic. Chem. Earth (A), 26(9-10): 47 - 757

- Zhang H F, Sun M, Yin J F Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithospherebeneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 67 (22): 4373 -4387
- Zhang H F, Sun M, Zhou M F, Fan W M, Zhou X H, Zhai M G. 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton: evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geol. Mag., 141: 55-62
- Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib. Mineral. Petrol., 141: 241-253
- Zhang Q, Qian Q, Wang E Q, Wang Y, Zhao T P, Hao J, Guo G J. 2001. An east China plateau in mid-late Yanshanian period: implication from adakites. Chinese Journal of Geology, 36(2):248 -255 (in Chinese with English abstract)
- Zheng J P, O'Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J. 2001. Relict refractory mantle beneath the eastern North China Block: significance for lithosphere evolution. Lithos, 57, 43 - 66

附中文参考文献

- 蔡剑辉. 2001. 王安镇岩体埃达克质中酸性岩岩石地球化学及年代
 学. 埃达克质岩及其地球动力学意义研讨会论文摘要. 北京:
 地震出版社. 82
- 陈斌, 翟明国, 邵济安. 2002. 太行山北段岩基的成因和意义:主要和微量元素地球化学证据. 中国科学(D辑),32:896-907
- 董建华,陈斌,周凌. 2003. 太行山南段符山岩体的成因:岩石学和 地球化学证据. 自然科学进展,13(7):767-774
- 黄福生,薛绥洲. 1990. 邯邢侵入体中幔源超镁铁质包体的发现及 其矿物地质化学特征. 岩石学报,(4):40-45
- 河北地质矿产局. 1989. 河北北京天津区域地质志. 北京: 地质出版 社, 741
- 刘颖, 刘海臣, 李献华. 1996. ICP-MS 准确测定岩石样品中的 40 余 种微量元素. 地球化学, 5(6): 552 558
- 罗照华,邓晋福,赵国春. 1997. 太行山造山带岩浆活动特征及其造山过程反演. 地球科学, 22(3):279-284
- 牛树银,陈路,许传诗. 1994. 太行山区地壳演化及成矿规律. 北京:地震出版社
- 宋彪,张玉海,万渝生. 2002. 锆石 SHRIMP 样品靶制作、年龄测定 及有关现象讨论. 地质论评,48(增刊);26-30
- 宋新宇, 冯钟燕. 1999. 太行山南段中生代侵人体微量元素地球化 学及岩浆源区性质探讨. 华北地质矿产杂志, 14(1): 1-17
- 谭东娟,林景仟.1994.华北地台中生代钾质岩浆区.北京、地震地 质出版社,1-184
- 吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄.长 春科技大学学报,29(4):313-318
- 许文良. 1991. 河北邯邢地区角闪闪长岩中地幔纯橄榄岩包体的发 现与研究. 地质学报, 65(1): 33-41
- 张旗,钱青,王二七,王焰,赵太平,郝杰,郭光军.2001. 燕山中晚 期的中国东部高原:埃达克岩的启示. 地质科学、36(2):248-255