东秦岭北部富碱侵入岩岩石化学与分布特征

张正伟^{1,2} 朱炳泉¹ 常向阳¹ 谢静¹

ZHANG ZhengW ei^{1, 2}, ZHU BingQ uan¹, CHANG XiangYang¹ and X E Jing¹

1. 中国科学院广州地球化学研究所. 广州 510640

2 郑州大学 区域经济研究所,郑州 450652

1. Guangzhou Institute of Geochemistry, Chinese A cademy of Sciences, Guangzhou 510640, China

2 Institute of Regional Economy, Zhengzhou University, Zhengzhou 450052, China 2001-04-28 收稿, 2001-07-12 改回

Zhang ZW, Zhu BQ, Chang XY and Xie J. 2002 Major element characteristics of the alkali-rich intrusive rocks zone and distribution of the subzones in the northern part of east Qinling, China Acta Petrologica Sinica, 18(4): 468-474

Abstract The alkali-rich intrusive rocks are mainly located in Luonan-Lushi-Queshan area in the northern part of East Q inling, central China, and their occurrences are controlled by a regional tectonic zone Based upon systematic petrographic and geochemical studies, the intrusive rocks are divided into three types: (1) The alkaline rock type, that is syenitoid containing foid or alkaline dark minerals; (2) The alkaline granitoid including arfredsonite granite and assemblage moyite; (3) quartz syenite including quartz syenite, nordmarkite and granosyenite (porphyry), which took alkaline feldspars as the dom inate factors A ll these rocks consisted an alkali-rich magmatic rock belt in space, that can be divided into three subzones according to the features of petrochemistry from north to south: the northern subzone of alkaline rock, middle subzone of alkaline granitoid and southern subzone of quartz syenite (porphyry). The three subzones of alkali-rich intrusive rocks belong to the same category of the high-K, ALK= 10~ 15, KtO = 5% ~ 15%, KtO /N atO = 1.26~ 8.30 Key words Alkali-rich intrusive rock, M ajor element, Petrochemistry, East Q inling

摘 要 在东秦岭北部,富碱侵入岩的侵位与空间分布受同一个区域构造带(华北陆块南缘)控制,构成一个区域性的富碱 岩浆岩带。根据岩石学和岩石化学研究,岩石类型主要分为三大类:(1)碱性岩类,即含有似长石或碱性暗色矿物的正长岩类; (2)碱性花岗岩类,包括钠铁闪石花岗岩及孪生的钾长花岗岩类;(3)石英正长岩类,包括碱性长石为主的石英正长岩、英碱正 长岩和花岗正长(斑)岩类。根据富碱岩浆岩带的岩石化学特征,自北而南可以划分为三个亚带:北部碱性岩亚带,以SD2饱 和而A₁O₃不饱和出现碱性暗色矿物为特征;中部碱性花岗岩亚带,以SD2强饱和而A₁O₃不饱和出现碱性暗色矿物和大量 石英为特征;南部石英正长岩亚带,以SD2和A₁O₃都饱和但CaO强烈亏损,缺乏Ca质斜长石,出现碱性长石占长石总量的 绝对优势(一般> 95%)为特征。三个亚带富碱岩浆在化学成分方面虽有差异,但共同具有富碱高钾特征,ALK= 10~15,KaO 含量范围 5%~15%,KaO (A aO = 1.26~8.30。

关键词 富碱侵入岩, 主元素组成, 岩石化学, 东秦岭地区 中图法分类号 P588 12: P595

国内外的富碱侵入岩常产于特定的地质背景并具有重要找矿意义(Fitton and Upton, 1987)。在东秦岭北部 (图 1),沿近东西向的黑沟-栾川-确山深大断裂带(图 1, 断裂)及两侧,自西而东断续出现 30 多个富碱侵入岩岩 体, 空间上构成长约 400km 的富碱侵入岩带。邱家骧等 (1990)把秦岭北部的碱性岩带与商丹断裂(图 1, 断裂 6) 以 南的碱性岩带进行对比, 提出了两个碱性岩带的观点。关于 嵩县南部霓辉正长岩类, 曾广策等(1990) 认为它属于华北陆

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

^{*} 本文受国家自然科学基金(编号 40072003)、中科院知识创新工程重要方向项目(KZCXZ-SW -125)和国家重点基础研究发展规划项目 (编号: G19990432)资助

第一作者简介:张正伟,男,1959 年生,博士,教授,从事区域资源经济和地球化学研究

长岩和方城北部双山霞石正长岩的形成年龄(张正伟等, 2000)。本次工作重点研究了各类岩石的主元素组成、碱性程 度、钾、钠类型、化学成分空间分布变化规律。

图 1 东秦岭北部富碱侵入岩带岩体分布图

岩体编号: 1. 塔山正长岩: 2 鱼池正长岩: 3 双山角闪云霞正长岩; 4 乌烧沟霓辉正长岩; 5 岭头霓辉正长岩: 6 磨沟霓辉正长岩; 7 前河正长斑岩; 8 白土正长斑岩; 9 杜关正长斑岩; 10 冠云山正长斑岩; 11 石门正长斑岩; 12 金堆城正长斑岩; 13 张坪正长斑岩; 14 角子山钾长花岗岩; 15 张士英角闪石英正长岩; 16 太山庙钾长花岗岩; 17 龙王幢钠铁闪石花岗岩; 18 石磙河石英正长斑岩; 19 云阳石英正长斑岩; 20 留山石英正长斑岩; 21 建坪石英正长斑岩; 22 草庙石英正长斑岩; 23 栾川石英正长斑岩; 24 三合石英正长斑岩; 25 高山河石英正长斑岩。地层: A rth-太古界与下元古界太华群; Pt2+ 3-中晚元古界长城系, 蓟县系、青白口系(熊耳群, 官道口群, 栾川群及陶湾群); Pt2*中元古界宽坪群; Pt3er-上元古界与下古生界二郎坪群; Pt24

Fig 1 The distribution map of intrusive rocks of alkaline-rock zone in the northern part of the East Q in ling

1 地质背景

东秦岭地区是一个典型的古大陆边缘(Zhang et al, 2000)。以三门峡-宝丰断裂(图1,断裂)为界,北侧为华北 地块,南侧至黑沟——栾川断裂(图1,断裂)之间为华山熊 耳山陆缘带(胡受奚等,1988),区域地层主要分布太古界与 下元古界太华群(Arth)和中、上元古界熊耳群、栾川群、官道 口群、汝阳群(Pt2+3)。黑沟-栾川断裂与商南-丹凤断裂(图1, 断裂)之间为北秦岭,区域地层主要分布中、上元古界宽坪 群(Pt2k)、二郎坪群(Pt3er)和秦岭群(Pt2q)。构造主要发育横 贯全区的7条深大断裂带(图1,断裂 -)。富碱岩体一般 以不整合形式侵入围岩,方城北部地区的霞石正长岩类(岩 体编号1-3)侵入晚元古界栾川群片岩和大理岩,嵩县南部的 霓辉正长岩类(岩体编号4-6)侵入中元古界熊耳群火山岩, 舞阳南部地区的角闪石英正长岩类(岩体编号15)侵入中元 古界汝阳群, 栾川西部地区石英正长斑岩类(岩体编号 23, 24) 与晚元古界栾川群上部的大红口组火山岩共生, 南召西 部变石英正长斑岩类(岩体编号 22) 侵入晚元古界栾川群绢 云石英片岩。在岩带横向上, 自北向南按不同岩石组合类型 可进一步分为三个亚带(图 1), 即北亚带为霓辉正长岩-正长 岩(岩体编号 4-13); 中部亚带为碱性花岗岩-钾长花岗岩(岩 体编号 14-17); 南部亚带为石英正长岩-霞石正长岩(岩体编 号 1-3, 18-25)。其中北亚带与中亚带以石门-马超营断裂 (图 1, 断裂)为界, 南亚带沿黑沟栾川断裂(图 1, 断裂) 分布。

2 岩石化学特征

本研究共采集代表性样品 37 件,取样位置见图 1,对其中 1~27 号样品采用湿法进行全岩分析,收集以前全岩分析 结果 10 件(28~37 号样品,张正伟等,1989),结果列入表 1。

表1 华北陆块南缘高钾侵入岩岩石化学成分(%)

Table 1 Major element composition in high-K alkaline intrusive rocks from the southern margin of North China Landmass

序号	SiO 2	T IO 2	A 12O 3	Fe ₂ O ₃	FeO	M nO	M gO	CaO	N a2O	K ₂ O	P2O 5	H 2O ⁺	烧失量	其他	总量
1	63. 27	0 70	15.57	0 71	2 78	0.20	0 59	1.59	4.98	6 59	0.16	0.73	1.88	0.08	99.83
2	63 26	0.90	17.60	3 24	0 50	0.06	0 30	0 21	2 70	10.00	0.04	0.78	1.06	0 01	100 66
3	50 81	1.42	13.04	0 51	3 00	0.32	2 16	7.58	0 68	9.58	0.34	0 79	9.36	0 08	99.67
4	63.56	1.07	17.40	2 58	0 42	0.01	0.09	0 28	3 22	10.30	0.18	0 21	0 29	0 04	99.65
5	73.66	0 50	12 15	3. 28	0 20	0.15	0 25	0 18	0 21	6 10	0.16	1. 86	2 00	0 23	100 93
6	61.98	0.96	17.61	1. 32	0 34	0.06	0 22	0.35	4.78	8 00	0.28	0.62	0 59	0.14	99.45
7	62 04	0.98	17.13	4.45	0 36	0.15	0 54	1. 14	4 10	6 72	0.28	1. 09	1. 63	0 23	100 84
8	63 72	0.80	17.07	5. 68	0.56	0.24	1. 16	0.16	0 02	6 08	0.03	2 68	3 14	0 42	100 36
9	63.36	0 32	15.80	4.37	0 21	0. 03	0.08	0.20	1. 02	13.36	0.05	0 63	0 76	0 40	100 59
10	62 94	0 21	17.53	1. 79	0 14	0.02	0 04	0 20	0 98	15. 20	0.03	0.31	0.38	0 14	99.91
11	69.92	0.57	12 14	4.04	0 76	0.01	0 14	0 25	0 61	9.66	0.10	0 70	0.93	0 45	100 28
12	61.94	0.88	15.40	2 63	1.01	0.03	0 72	1.81	0 36	14.08	0.12	0.39	0 56	0 26	100 19
13	66 10	2 56	12 39	5.78	0 24	0.02	0 03	0.15	0 06	11.04	0.07	0.55	0 72	0 10	99.81
14	52 31	3 82	15.19	4.38	4.88	0 22	5.18	5.86	5. 20	4.94	0.78	0 40	0.93	0 23	100 32
15	59.61	0 19	21.52	0.98	0 18	0.01	0 52	0.14	0 44	14.30	0.01	1. 02	1. 28	0 02	100 22
16	56 34	0 20	20 93	2 03	0 15	0.10	0 55	1.59	0 72	12 80	0.01	1.57	2 81	0.11	99.91
17	49.40	0.66	14.02	0 48	0 82	0.26	4.21	6 74	0 32	12 00	0.01	0.23	9.81	0 06	99.02
18	55.78	0 70	13 96	7.82	0 80	0.34	0 22	5. 29	5. 20	5.84	0.03	0 47	3 13	0 10	99.68
19	55.58	0 35	19.00	5. 18	0 15	0.19	0.11	3.44	4.50	7.24	0.01	1. 29	3.38	0 21	100 63
20	58 58	0 25	21.24	1. 38	0 25	0.05	0 60	0.14	0 48	14.24	0.03	1.59	1.84	0.38	100 85
21	51.98	0 42	19.31	2 55	1. 38	0.41	0 33	5.94	1.84	10.02	0.03	2 05	5.85	0 45	100 56
22	57.90	0.60	20 84	1.71	1. 30	0.19	0 54	1.50	5.04	7.96	0.05	0.85	1. 21	0 35	100 04
23	75.48	0 20	12 95	0 82	0 25	0.06	0 20	0 29	4.25	5.10	0.02	0 50	0 54	0 11	100 77
24	66 26	0 48	15.07	2 12	0 72	0.09	0 45	1.48	4.12	5.90	0.25	1.14	2 24	0 16	100 48
25	67.12	0 50	14.85	2 22	0 75	0.05	1. 00	2 02	4.38	5. 20	0.23	0 34	0 42	0 26	99.34
26	58 09	0 75	16 20	4.12	2 25	0.13	2 58	4.80	4.46	4.46	0.78	0 62	0 97	0 29	100 50
27	67.44	0 45	15.19	1. 22	1. 20	0.05	0 82	1.96	4.48	5.30	0.20	0 40	0 58	0 16	99.45
28	75.53	0 13	12 06	0 54	1.89	0.04	0 27	0 14	3. 25	5.86	0.03	0 23	0 21	0 01	100 19
29	72 86	0 28	13 67	0 70	1.53	0.06	0 58	0.97	3 80	4.98	0.08	0 38	0 44	0 01	100 34
30	76 45	0 18	11.82	0 48	1. 08	0.04	0.15	0 57	3 81	4.68	0.02	0 27	0 42	0 01	99.98
31	73.38	0 30	12 33	1. 32	1.51	0.10	0 21	0 67	3.42	5.16	0.06	0 45	0 88	0 03	99.82
32	72 41	0 35	13.43	1. 13	1. 35	0.08	0 62	0 87	4.10	5.12	0.08	0 23	0 31	0 02	100 10
33	70 05	0 39	14.36	1.06	1.82	0.08	0 57	1.17	4.22	5.44	0.11	0 20	0 32	0 02	99.81
34	70 90	0 30	13.05	1. 28	3 35	0.08	0 07	1.52	5.40	4.08	0.05	0 33	0 60	0 01	101. 02
35	70 44	0.30	12 66	1. 29	2 78	0.12	0.17	1.49	3 99	5.50	0.02	0 59	0 95	0 01	100 31
36	70 92	0 32	14.23	1. 32	1. 05	0.06	0 35	1. 41	4.59	4.99	0.07	0.31	0 33	0 01	99.96
37	64.91	0.16	16 00	1.40	2 00	0.13	0 27	3. 20	6 53	4.99	0.03	0.46	0.53	0 01	100 62

序号: 1~4 三合石英正长斑岩体(1 粗面岩; 2 石英正长斑岩; 3 蚀变正长斑岩; 4 正长斑岩); 5~8 草庙石英正长斑岩体(5 石英绢英片岩; 6 石英正长斑岩; 7 石英正长斑岩; 8 蚀变正长斑岩); 9~14 乌烧沟霓辉正长岩体(9 黑云正长岩; 10 霓辉正长岩; 11 细粒正长岩; 12 霓辉 正长岩; 13 霓辉正长岩; 14 霓辉正长岩); 15~19 塔山正长岩体(15 绢云母化正长岩; 16 绢绿正长岩; 17 蚀变细粒正长岩; 18 霓辉正长岩; 19 绿帘正长岩); 20~23 双山角闪正长岩体(20 角闪二云正长岩; 21 蚀变角闪正长岩; 22 角闪云霞正长岩); 23~27 张士英角闪石英正长 岩体(23 细粒石英正长斑岩; 24 透闪石化正长岩; 25 透闪石化正长岩; 26 角闪黑云二长岩; 27 角闪石英正长岩); 28~33 太山庙钾长花岗岩 体(28 细粒钾长花岗岩; 29 细粒钾长花岗岩; 30 含斑钾长花岗岩; 31 粗粒钾长花岗岩; 32 斑状钾长花岗岩; 33 粗粒肉红色钾长花岗岩); 34~37.龙王幢钾长花岗岩体(34 钾长花岗岩; 35 钠铁闪石花岗岩; 36 钾长花岗岩; 37 钠铁闪石花岗岩).

2.1 主元素多元统计特征

对表 1 中的主元素 11 个变量聚类分析表明:元素 SD2 离散较强, 与其它主元素相关性很差, 反映在 SD2 含量方面 明显不同。A LO 3 和 K2O 相关性较高,表明各类岩石的主造 岩组分的钾长石系列矿物,具有共同的富 K ഹ 特征。M g、 Fe^{2+} 、Ti 三元素之间的相关系数在 0 9 左右, 表明它们作为 基性元素在岩石中分配具有类同性。在元素组合大体可分三 类:一是代表了张士英岩体、龙王幢岩体和云阳、草庙、三 合、维摩寺等岩体的中酸性岩石端员; 二是代表了磨沟、乌 烧沟、岭头等岩体的中性正长岩端员; 三是代表了几乎整个 富碱侵入岩带所有岩体的中、偏基性岩石。通过该元素组合 可以说明, 富碱岩带是一套从中、偏基性到酸性的富碱杂岩。 由此,在野外岩石学调研基础上,把分布在本区三个亚带的 霞石正长岩、霓辉正长岩、石英正长岩、石英正长斑岩和碱性 花岗岩 5 种代表性岩石种属的样本筛选分类, 计算其元素平 均值,并用标准差来度量平均值可靠性(表 2)。从计算结果来 看,岩石 SD2 含量平均值在 55% ~ 70% 范围。在不同类型岩 石之间, 霞石正长岩类 SD2 含量最低, 其次为霓辉正长岩和 石英正长斑岩,碱性花岗岩 SD 2> 70%。A LO 3 含量与 SD 2 呈反消长关系,与ALK呈正消长关系。组合指数(の在35~ 13.1 之间, 表明岩石属于碱性和过碱性系列, 尤以霞石正长 岩碱性程度最高。KAO /N aAO 一般在 1.2~8.3 之间, 属高钾 系列。全碱度统计结果显示富碱特征, A lk (N a $O + K_2O$) > 9.5,大于中国其他富碱侵入岩的全碱度(涂光炽, 1989)。岩 石化学组成在三个富碱侵入岩亚带的空间分布不均匀,南亚 带的石英正长岩-霞石正长岩(样品序号 1~ 8, 15~ 22) SD 2 含量最低(55.64%~6278%), ALK 值较高(10.54~ 12 87),组合指数较大(5.6~13.1);北亚带的霓辉正长岩-正长岩(样品序号 9~14) SD2 含量较低(62 76%), ALK 值 (12 75),组合指数(8 22)次之;中亚带的碱性花岗岩-钾长 花岗岩(样品序号 28~ 37) SD 2 含量最高(70 16%), ALK 值 最低(9.52~9.76),组合指数(3.50~3.79)。KaO (NazO 比 值在三个亚带的分布也不同,北亚带的霓辉正长岩-正长岩 K_{AO} Λa_{AO} 比值最高(8.3), 南亚带的石英正长岩-霞石正长 岩 K2O /N a2O 比值次之(3.08~4.57), 中亚带的碱性花岗 岩-钾长花岗岩 K2O /N a2O 比值最低(1.19~1.26)。

表 2 东秦岭北部富碱侵入岩主元素平均值及标准差

Table 2 The mean value and standard deviation of major element from the high-K alkaline intrusive rocks in east Q in ling

地区	南亚带方城北部	北亚带嵩县南部	中亚带栾川东部	南亚带栾川方城	中亚带舞阳南部
岩石类型	霞石正长岩(8)	霓辉正长岩(6)	碱性花岗岩(9)	正长斑岩(8)	石英正长岩(5)
(样号)	(15~ 22)	(9~ 14)	(28~ 37)	(1~ 8)	(23~ 27)
SD 2	55. 64 ± 2. 37	62 76±4 70	70 16 ± 1.53	62 78 ± 4 26	66 78±5.40
T Ю 2	$0\ 42 \pm 0\ 14$	1. 39 ± 1. 17	$0\ 28 \pm 0\ 05$	0.91 ± 0.18	0.47 ± 0.17
A 12O 3	18 85±2 16	13 07 ± 3 50	13.55 ± 0.80	15. 94 ± 1. 51	14. 85 ± 1. 03
Fe ₂ O ₃	2 76 ± 1.72	3. 83 ± 1. 13	1. 21 ± 0.27	3. 09 ± 1. 24	2 10 ± 1. 11
FeO	$0 62 \pm 0 35$	1. 20 ± 1. 46	$2 17 \pm 0 83$	1. 02 ± 0.80	1. 03 ± 0.66
M nO	$0 19 \pm 0 09$	0.05 ± 0.06	$0 \ 10 \pm 0 \ 03$	0.14 ± 0.07	$0 \ 07 \pm 0 \ 03$
M gO	0.88 ± 0.93	1. 03 ± 1. 63	$0\ 29 \pm 0\ 17$	0.66 ± 0.47	1. 01 ± 0. 81
CaO	3 09 ± 1.82	3. 07 ± 5. 03	1. 49 ± 0.50	1. 49 ± 1. 75	2 11 ± 1. 45
N a ₂ O	2 31 ± 1. 53	1. 37 ± 1. 52	4. 31 ± 0.85	2 58 ± 1. 41	4. 33 ± 0.13
K2O	$10\ 56 \pm 2\ 26$	11. 38 ± 3. 00	5. 45 ± 0.67	7. 96 ± 1. 22	5. 19 ± 0. 45
P 2O 5	$0 \ 02 \pm 0 \ 01$	0.19 ± 0.23	$0 04 \pm 0 01$	0.18 ± 0.07	0.29 ± 0.25
H_2O^+	1. 13 ± 0 42	0.49 ± 0.12	$0 50 \pm 0 09$	1. 09 ± 0.55	0.60 ± 0.28
烧失量(loss)	$3 66 \pm 2 00$	0.71 ± 0.17	0.73 ± 0.17	252 ± 202	0.95 ± 0.65
总量(Σ)	$100\ 18 \pm 0\ 67$	100 85 ± 1. 37	$100\ 32 \pm 0\ 42$	$100\ 37 \pm 0\ 46$	99. 91 ± 0. 60
赖特碱度(A.R)	3 88	8 52	4.71	4 08	3 55
组合指数(の	13 10	8 22	3 50	5. 61	3 79
K2O /N a2O	4. 57	8 30	1. 26	3 08	1. 19
全碱度(ALK)	12 87	12 75	9.76	10 54	9.52

注: 括号内数字为样品数; 主要元素之后为相应标准差; 资料来源同表 1; 栾川东部碱性花岗岩的 9 个样品见(张正伟等, 1989)

7

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

2 2 碱性程度与钾钠类型

根据表1数据计算,绝大多数样品SD₂> 52%,除了张 士英岩体分析结果采用ALK=2×NaO,其他均采用ALK = KO+=NaO。计算结果表明(表2),霓辉正长岩类为强 碱性系列,霞石正长岩类大部分为强碱性系列,碱性花岗岩 类为碱性系列,角闪石英正长岩类样品全部为碱性系列,石 英正长斑岩类为碱性与强碱性系列。采用赖特法碱度分析, 显示富碱高钾的特点。

若采用里特曼指数(の判别岩石碱性程度,依此计算,一 些岩体 σ值< 4。若按四分法计算,有少量属于碱性系列,多 数属于过碱性系列。其中三合岩体中的正长斑岩脉为过碱 性,其余为碱性; 乌烧沟岩体只有碱性辉长岩(14) æ 6 28, 显示碱性系外,其余均为过碱性岩,草庙岩体只有两个轻变 质样品显示过碱性特点; 塔山、双山岩体的样品(15~ 22)全 部属于过碱性系列: 张士英岩体除了细粒正长岩(边缘相) 为钙碱性外,其余均属于碱性系列范围。

与赖特法相比较, 里特曼法具有定量参数界线, 易于判 别岩石碱性程度的优点。但是它仅考虑岩石 SD₂和ALK 含 量因素, 没有考虑在斜长石结晶中占重要地位的 CaO 的含 量, 以致于使乌烧沟碱性辉长岩(14) 判入碱性系列, 张士英 细粒正长岩判为钙碱性系列, 还有龙王幢碱性花岗岩全部为 碱性岩系列, 而用 σ 值判别, 则波动于 3 3±, 显示钙碱性和 低碱性特点。显然这些岩石都具有高碱特点, 但由于 SD₂ 含 量较高 σ 值就相对降低, 因此对一些高碱高硅的富碱侵入岩 来说, 运用赖特法效果较好。

钾钠类型分析(表 2)表明,绝对多数以高钾为特点(钾质型)。三合岩体 K₄O 含量 6 95%~10 3%;乌烧沟岩体4 9%~15 2%;草庙岩体 6%~8%;双山岩体 7.9%~14 2%; 塔山岩体 5.8%~14 3%;张士英岩体 4 6%~5 9%。其它 样品中仅有极少数N a₄O 高于 K₄O 含量。在N a₅O 和 K₄O 相 对含量方面,属碱性岩系钾质系列。石英正长岩和碱性花岗 岩大多数落入钾质区,而霓辉正长岩和石英正长斑岩类大多 数落入高钾区,钾含量高于秦巴其它地区碱性岩(邱家骧等, 1990)。

3 岩石化学组成的空间分带性

主元素组成空间变化受岩石类型的不同所控制。岩带自 西而东、栾川、南召、云阳三地区的正长斑岩类成分基本相 同,东至方城地区,才出现一些局部的正长斑岩 SD2 含量稍 微升高的趋势(表1)。这些说明岩石化学成分的变化主要由 岩石类型变化所决定。岩石类型主要分为三大类:(1)碱性 岩类,即含有似长石或碱性暗色矿物的霞石正长岩、钾霞正 长岩、霓辉正长岩和绿闪正长岩类;(2)碱性花岗岩,包括钠 铁闪石花岗岩、霓辉花岗岩以及孪生的钾长花岗岩类; (3)石英正长岩类,包括碱性长石为主的石英正长岩、英碱正 长岩和花岗正长(斑)岩类。岩石种属常见有霓石正长岩、霓 辉正长岩钠铁闪石花岗岩、霓辉花岗岩、钾长花岗岩、霞石正 长岩、花岗正长岩类。

岩带自北而南由于岩性变化的分带性形成了三个化学 亚带(图1): (1)北部霓辉正长岩亚带(),以SD2饱和而 AlO3 不饱和出现碱性暗色矿物为特征,主要分布在卢氏-嵩 县-汝阳一带,西段受石门-马超营断裂及其与之平行的断裂 束控制,东段南距马超营断裂 30km,一般侵位于元古界熊耳 群火山岩, 少数侵入于元古界官道口群、汝阳群及洛峪群。 典 型岩体有乌烧沟、磨沟、岩性主要为碱性正长岩、正长斑岩和 云煌岩类; (2)中部碱性花岗岩亚带,以SD2强饱和而AlO3 不饱和出现碱性暗色矿物和大量石英为特征,分布于栾川-嵩县-遂平一带,由于 SD2 含量相对较高,A LO3 不饱和引起 在长石矿物组合过程中过剩的碱金属与 Si Fe Mg 等形成 SD。饱和的镁铁硅酸盐矿物,如钠铁闪石等。 典型岩体有张 士英、太山庙、龙王幢,岩性主要为碱性花岗岩和与之伴生的 钾长花岗岩类; (3) 南部石英正长岩亚带, 以 SD 2 和 A LO 3 都饱和但 CaO 强烈亏损, 缺乏 Ca 质斜长石为特征, 分布于 栾川-南召-云阳-方城-确山一带,典型岩体有草庙、三合,岩 性主要为石英正长斑岩和与之伴生的碱粗岩、石英正长岩和 花岗正长岩等长英质杂岩。另外,在南部亚带中出露一些酸 度最低、碱度最高的霞石正长岩类(岩体编号 1-3), 与长英质 杂岩(岩体编号 19-21) 有密切的空间关系, 二者在化学成分 上有一定的互补关系。

4 结论与讨论

4.1 岩石化学富碱标志

该地区富碱侵入岩分三类:即含有碱性暗色矿物(霓辉 石、钠铁闪石等)或含有似长石(霞石、钾霞石等)的正长岩 类,含有碱性暗色矿物的碱性花岗岩类,不含似长石或碱性 暗色矿物但碱性长石含量占长石量绝大多数且ALK>95 的石英正长岩类。对于前两类岩石,归属富碱侵入岩(涂光 炽,1989)争议不大,对于第三类岩石,岩石的全碱度一般在 10~15 范围,里特曼指数σ值一般4~13,属碱性、过碱性系 列,造岩矿物长石几乎全是碱性长石,具有明显的富碱特征, 因此,可以作为一种特殊的高钾富碱侵入岩类型。

富碱侵入岩在化学上共有的特点是富碱金属组分,反映 在全岩分析中ALK> 9.5。涂光炽(1989)在总结中国富碱侵 入岩特点时,曾提出其ALK> 8.5。在华北陆块南缘或秦岭 造山带北部,中酸性岩类普遍富碱,甚至一些与碱性岩或碱 性花岗岩类在成因上无关的钙碱性花岗岩类的ALK> 8.5 (张正伟等,1991)。统计表明(表 2),研究区出露的碱性系列 的富碱侵入体岩石ALK值均大于 9.5,因此建议ALK> 9.5 作为本区富碱侵入岩类化学标志之一。

4 2 主元素 SD & A loO 3 和 CaO 之间的关系

尽管富碱侵入带岩石具有共同的富碱金属组分特点,但 是,不同岩石类型反映在 SD 3 A LO 3 和 CaO 方面均有明显 差异(表 2)。在 SD 2 和 A LO 3 两组分中, 若任一组分出现不 饱和都会引起碱金属组份的过剩, 分别出现似长石类和碱性 暗色矿物; 另一方面,即使两者都饱和,但于由 CaO 组份强 烈亏损,在岩石中很难结晶出斜长石类,形成碱性长石占长 石总量的绝对优势的碱长花岗岩和石英正长岩类。所以富碱 侵入岩的岩石类型之间,在化学上有密切的主元素分配过渡 关系, 若按CIPW 标准矿物计算将出现以下情况: (1) SD2 不饱和, A LO 3 饱和, 出现标准矿物刚玉, 岩石类型为霞石正 长岩和霞霓正长岩类(南亚带); (2)SO2不饱和,ALO3不饱 和、不出现标准矿物刚玉、岩石类型为钠沸霞石正长岩类(南 亚带); (3) SD₂ 饱和时, A LO₃ 不饱和, 出现碱性暗色矿物, 岩石类型为霓辉花岗岩、钠铁闪石花岗岩类、霓石正长岩和 霓细花岗岩类(北亚带和中亚带); (4)SD2 饱和, A LO3 过饱 和,CaO 强亏损(< 0.5%),出现碱性长石占长石总量的绝对 优势(一般> 95%),岩石类型有石英正长岩和碱长花岗岩类 (南亚带)。由此可见, SD2 不饱和的现象发生在南亚带, 而中 亚带和北亚带的岩石化学类型均为 SD_2 饱和型。与此相反, A LO 3 过饱和的情况发生在南亚带, A LO 3 不饱和的现象出 现在中亚带和北亚带。反映SD2和AlO3在空间分布上的反 消长关系。

4.3 岩浆演化规律

三个富碱岩浆岩亚带构成一个沿华北地块南缘分布的 富碱岩浆岩带,具有空间上的一致性,但是在形成时间上有 很大差异,从前寒武纪到中生代多期活动,根据掌握的同位 素年龄资料、活动最早的是位于中亚带的龙王幢碱性花岗 岩, 锆石U-Pb 年龄 2021 ± 34 M a (周玲棣, 1993), 这些数据 如果能可靠地代表岩石结晶年龄,则说明酸性岩浆活动较 早, 此外, 还有 1035 M a 和 212 M a 等成岩年龄数据(卢欣祥, 1989),特别是后两者明显与非造山期有关;其次是南亚带 的三合正长斑岩和草庙绢云母化正长岩类(660 ± 30M a, 张 正伟等,2000);再次是位于北亚带嵩县南部的乌烧沟霓辉 正长岩(223Ma,曾广策等,1990)和方城北部霞石正长岩类 (289.4±30 (Ma,张正伟等, 2000);最后是中亚带的舞阳南 部张士英角闪石英正长岩类(133.4±0.5 Ma,张正伟等, 2000), 以及位于中亚带的太山庙钾长花岗岩(132M a, 黑云 母 K-Ar法)。由此看出, 富碱岩浆岩北亚带和南亚带的岩石 形成时代由老到新, 酸度变小, 碱度增大; 而中亚带的岩石 形成时代由老到新,酸度增大,碱度变小。岩石化学组成的分 带性与岩浆活动的多期性表明,尽管富碱侵入岩带岩石具有 区域空间上的一致性和共同的富碱金属组分特点,但是,不 同地质时期形成的岩石类型反映在岩石化学方面均有明显

References

- Fitton J G and Upton B G J. 1987. A lkaline IgneousRrocks New York: Blackwell Scientific Publication 1~ 225
- Hu Shouxi and Lin Q ianlong 1988 The geology and metallogeny of the am algamation zone between ancient North China plate and South China plate (taking Q inling-Tongbai as an example). Nanjing: Press of Nanjing University. 1- 558 (in Chinese)
- Lu Xinxiang 1989. Geochemical characteristics of geanitoids in Longwangzhuang, Henan Province, China Acta Petrologica Sinica, 5(1): 67-77 (in Chinese with English abstract)
- Q iu Jiaxiang, Ceng Guangce, Xu Jifeng. 1990 Geological characteristics of alkaline rocks and mineralization in Q inling-Bashan area Beijing: Geological Publishing House 1- 167 (in Chinese)
- Tu Guangchi 1989. About the alkali-rich intrusive rocks Journal of M ineral and Geology (China), 3(3): 1-8(in Chinese with English abstract)
- Zeng Guangce 1990 Features of the syenitoid and tectonic environment in south of Songxian, Henan province Earth Science - Journal of China University of Geosciences, 15(6): 635- 641 (in Chinese with English abstract)
- Zhang Zhengwei, Lu Xinxiang. 1990 Geochem ical characteristics of m igmatic and granitization-type granitoids in Funiushan, Henan Province, China Geochim ica, 19(4): 358- 364 (in Chinese with English abstract)
- Zhang Zhengwei, Zhu Bingquan, Cai Keqin, Deng Jun 2000 The geochem ical boundary of continental blocks and m ineralization:
 An example from the m ineral deposits concentrated area in east Q inling, China Earth Science Frontiers, 7 (1): 87 95 (in Chinese with English abstract)
- Zhang zhengwei, Zhu Bingquan, Chang Xiangyang 2000 The Nd, Sr, Pb isotopic geochem istry of the alkali-rich intrusive rocks in the east Q in ling, central China Geochim ica, 29(5): 455-461 (in Chinese with English abstract)
- Zhang Zhengwei, Zhu Bingquan, Cai Keqin, Deng Jun 2000 The lead isotopic steep-dipping zone and mineralization: An example from the mineral deposits concentrated area in east Q inling, China Journal of China U niversity of Geosciences, 11(1): 64-73 (in Chinese with English abstract)
- Zhang Zhengwei 1991. The multielement statistics of the granitoids and its geological significance in east Q inling China M ath Geology, (3). Beijing: Geological Publishing House 199- 202 (in Chinese)
- Zhang Zhengwei 1989. Petrochem ical characteristics of the granitoids in east Q in ling Henan Geology (China), 7(3): 56-77 (in Chinese with English abstract)
- Zhou Lingdi, Liu Juying 1993 Studies of U-Pb isotopic age on early Proterozoic alkali granite Chinese Science Bulletin, 38

差异。

(15): 1407- 1410 (in Chinese)

Zhu BQ. 1995. The mapping of geochemical provinces in China based on Pb isotopes Journal of Geochemical Exploration, 55: 171- 181

附中文参考文献

7

- 胡受奚,林潜龙 1988 华北与华南古板块拼合带地质与成矿. 南京:南京大学出版社 1-558
- 卢欣祥 1989. 龙王幢花岗岩地质地球化学特征 岩石学报,5(1): 67-77
- 邱家骧,曾广策,许继锋等。1990 秦巴地区碱性岩地质特征及含矿 性 北京:地质出版社 1-167
- 涂光炽 1989 关于富碱侵入岩 矿产与地质, 3(3): 1-8
- 曾广策 1990 河南省嵩县南部碱性正长岩类的岩石特征及构造环

境 地球科学, 15(6):635-641

- 张正伟, 卢欣祥, 董有 1989 东秦岭花岗岩类岩石化学 河南地质, 7(3): 56-77
- 张正伟, 卢欣祥 1990 伏牛山花岗岩基地球化学特征 地球化学,(4): 358-364
- 张正伟,朱炳泉,常向阳 2000 东秦岭富碱侵入岩Nd, Sr, Pb 地球 化学及地质意义 地球化学, 29(5): 455-461
- 张正伟,朱炳泉 2000 大陆块体地球化学边界与成矿. 地学前缘,7 (1):87-95
- 张正伟 1991. 东秦岭花岗岩类主元素多元统计及地质意义 中国 数学地质(3). 北京: 地质出版社 199- 202
- 周玲棣, 刘菊英 1993 一个早元古代碱性花岗岩的U-Pb 同位素年 龄研究 科学通报, 38(15): 1407- 1410