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Abstract

Spinel and garnet pyroxenite xenoliths in Cenozoic basalts from Hannuoba, North China show extremely heterogeneous
Ž .chemical and isotopic compositions ´ sy27 to q34 . Most of these pyroxenites are relatively young, probably lateNd

Ž .Mesozoic in age, although a few Al-pyroxenites could be very old ;2 Ga . While their texture and major element
compositions suggest an origin of high pressure cumulates, the trace element and isotopic compositions of the Hannuoba
pyroxenites require multiple segregation processes from different parental magmas. Strong LREE enrichment, ubiquitous
HFSE depletion and some Eu anomalies of the Al- and Cr-pyroxenites indicate the involvement of crust components in their
source. Their Sr–Nd isotopic ratios are negatively correlated and plot below the MORB–OIB–IAB–sediment trend,
suggesting that the parental melts of the Cr- and Al-pyroxenites may have been derived from a mixture of asthenospheric
melts and a long-term evolved continental crust. The garnet pyroxenites significantly deviate from the isotopic array defined
by the Al-pyroxenites, due to their relatively high 87Srr86Sr at given ´ . They thus more likely represent segregates fromNd

Ž .melts derived from partial melting of hydrothermally altered oceanic crust basaltsqmarine sediment . If the crustal
component involved in the Al-pyroxenites is subducted terrigenous sediments or other continental materials from the
Archean Sino-Korean Craton, the Al-pyroxenites and garnet pyroxenites may have formed contemporaneously at a
palaeo-convergent plate margin. This may be related to the subduction of the Mongol–Okhotsk plate beneath North China
during the late Jurassic. Alternatively, if the delaminated lower crust was involved, it implies that most of the Al-pyroxenites
are younger than the garnet pyroxenites, and their formation may be temporally correlated with lithospheric thinning during
the Cretaceous. This model is attractive because the inferred tectonic evolution from a convergent setting to an extensional
environment is consistent with the geologic record in the area. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is generally accepted that most pyroxenites are
derived by high pressure crystal-segregation from
melts flowing through conduits in the mantle, as a
result of temperature difference between ascending
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Žmelt and their peridotitic wall-rocks Irving, 1980;
.Bodinier et al., 1987; Suen and Frey, 1987 . As-

thenosphere, enriched continental lithospheric mantle
or subducted, metamorphosed oceanic lithosphere
and its deviates have been proposed as sources of

Žparental magmas to pyroxenites Griffin et al., 1988;
Medaris et al., 1995; Pearson et al., 1993; Becker,

.1996 . However, there is increasing evidence for
more complex genesis for some pyroxenites, involv-
ing direct solid-state recycling of subducted litho-

Ž .sphere Allegre and Turcotte, 1986 , partial melting
Ž .Loubet and Allegre, 1980 and melt-rock reactions
at decreasing melt mass along near-solidus isotherms
Ž .Garrido and Bodinier, 1999 . Pyroxenite xenoliths
are also the physical manifestation of mantle hetero-
geneity. The migration of their parental magmas and
derivative fluids in the lithospheric mantle is consid-
ered an important mechanism of mantle metasoma-

Žtism Menzies et al., 1985; Griffin et al., 1988;
.Bodinier et al., 1990 . On the other hand, because of

their lower solidus temperature compared with peri-
dotites, pyroxenites may significantly contribute to
partial melting during pressure release of the adia-
batic mantle or thermal erosion of the lithospheric
mantle. Accordingly, geochemical characterization
of pyroxenites is helpful for understanding of meta-
somatic processes, recycling of crustal components
in the mantle and the origin of intra-plate volcanism.

Recent petrologic and geochemical investigations
in China have been mainly conducted on peridotite

Žxenoliths Song and Frey, 1989; Tatsumoto et al.,
.1992; Qi et al., 1995; Xu et al., 1996b, 1998 .

Pyroxenites have also been examined but principally
Žfor geothermobarometric purposes Xu et al., 1996a,

. Ž1999 . Preliminary isotopic data Tatsumoto et al.,
.1992; Chen et al., 1997; Zhang et al., 1998b , how-

ever, show that pyroxenites from China have ex-
Ž87 86tremely variable isotopic compositions Srr Sr up

143 144 .to 0.710 and Ndr Nd down to 0.5114 , which
are significantly different from those of the host
basalts. They also contrast sharply with peridotites,
which reveal an overall depleted mantle signature for
the subcontinental mantle beneath eastern China.
Therefore, these pyroxenites provide direct evidence
for enriched components in the Chinese mantle. Al-
ternatively, they could be relicts of old metasoma-
tized lithospheric mantle, most of which was delami-

Žnated in the late Mesozoic Griffin et al., 1998; Xu,

.2001 . Despite their potential importance for the
understanding of mantle processes and regional geo-
dynamics, a systematic study of the Chinese pyrox-
enites is not available.

In this contribution, major elements, rare earth
Ž .REE and trace element and Sr–Nd isotopic data for
a suite of pyroxenite xenoliths from Hannuoba, North
China, are presented. These data are used to place
petrogenetic constraints on the origin of diverse py-
roxenites and to characterize recycled crustal compo-
nents in the mantle under the Sino-Korean Craton.
Furthermore, the mechanism by which crustal com-
ponents are recycled to the mantle and the role of
pyroxenites in intraplate basaltic genesis and in man-
tle metasomatism will be evaluated.

2. Geological setting and petrography of pyroxen-
ite xenoliths

Hannuoba is a classic xenolith locality in eastern
China. It lies within the Sino-Korean Craton which

Ž .underlies an area ca. 3000 km long E–W and up to
Ž .1500 km across Fig. 1a . The basement rocks of the

Sino-Korean Craton are Archean to early Proterozoic
gneisses of amphibolite to granulite facies, with ra-

Ždiometric ages ranging from 2500–3800 Ma Jahn et
.al., 1987 . Two large-scale major geological and

geophysical linear zones cut cross the Sino-Korean
Craton. To the east, the craton is cut by the Tan–Lu

Ž .Fault Zone TLFZ which is associated with signifi-
cant Cenozoic and Mesozoic volcanism. To the west,
the craton is traversed by the N–S trend Daxingan-

Ž .ling–Taihangshan gravity lineament DTGL . It is
recognized that this zone separated two fundamen-

Ž .tally different tectonic domains Ma, 1989 . The
region to the west of this gravity zone is character-

Ž .ized by thick crust )40 km , large negative Bouguer
Žgravity anomalies, low heat flow and a thick )150

. Ž .km lithosphere Fig. 1 . In contrast, to the east, the
Ž .crust is thin -35 km , the regional Bouguer gravity

anomaly is weakly negative to positive, heat flow is
Žhigh and lithosphere is inferred to be thin Chen et

.al., 1991 .
The Hannuoba basaltic plateau is located to the

Ž .western side of the DTGL Fig. 1 . It covers an area
of 1700 km2 with lava thickness varying from 100 to
over 500 m. The lower part of lava sequence is
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Ž . Ž .Fig. 1. a A sketch map showing the distribution of Hannuoba basalts and regional tectonic framework modified after Xu et al., 1998 .
Ž .Note that the Archean Sino-Korean Craton is cut by two major geological and geophysical linear zones—Tan–Lu fault zone TLFZ to the

Ž .east and Daxinganlin–Taihang gravity lineament DTGL to the west. Along the northern boundary of the Sino-Korean Craton, there is a
Ž .late Jurassic E–W-trending fold-and-thrust belt Yin and Nie, 1996 . The Hannuoba locality is situated at the western side of the DTGL and

Ž . Ž .not far from the fold-and-thrust belt. b Variation of thickness of the lithosphere across eastern China after Chen et al., 1991 .

mainly composed of alkali basalts of early Miocene
Ž .age Zhi et al., 1990 . In the middle and upper

Ž .sections middle Miocene , the rocks are interlayered
alkali basalt and tholeiite with tholeiites becoming

Ž .dominant Zhi et al., 1990 . Along the southern edge
of the Hannuoba basaltic field, there are more than
forty localities where extremely abundant xenoliths
have been found in alkali basalts. The dominant
xenoliths are spinel peridotites which have been the

Žsubject of a few geochemical studies Song and Frey,
.1989; Tatsumoto et al., 1992 . Subordinate pyroxen-

ites and granulites are also present. The xenoliths
investigated in this study were collected from

Damaping, Xiaomaping and Jieshaba. They are di-
vided into three groups following the classification

Ž . Ž .of Whilshire and Shervais 1975 : 1 Al-augite py-
roxenites, which are either spinel-bearing or spinel-

Ž . Ž .free Al-pyroxenites ; 2 Cr-diopside spinel pyrox-
Ž . Ž .enites Cr-pyroxenites ; and 3 garnet pyroxenites.

The Al-augite pyroxenite group includes clinopy-
roxenite and websterite. They occur either as veins in
composites or as discrete nodules. The cross-cutting
relationships between these pyroxenites and peri-
dotites observed in composite xenoliths suggest a
magmatic origin of the Al-pyroxenites. This is con-
sistent with the cumulate textures in some samples.
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However, most samples in this group are character-
ized by reequilibration microstructure with gra-
noblastic being the most common. They are fine- to

Ž .medium-grained 1–2 mm . Clinopyroxene is the
dominant phase, but orthopyroxene, spinel and in
some cases rare olivine are also present. Hydrous
minerals are generally absent, but rare phlogopite has

Ž .been documented by Tatsumoto et al. 1992 . Appli-
cation of the two-pyroxene thermometer of Bertand

Ž .and Mercier 1986 yields higher equilibration tem-
Ž .peratures 850–9508C for spinel pyroxenites than

Žfor the spinel-free pyroxenites -8508C, Xu et al.,
.in preparation .

The rock type of the Cr-pyroxenites includes
clinopyroxenite, opx-rich websterite and orthopyrox-
enites. The opx-rich pyroxenites have relatively

Ž .coarse grain size 6–8 mm , whereas Cr-
clinopyroxenites are fine to medium grained with
minor olivine. The later has cumulate or partially
re-equilibrated texture, with exsolution of orthopy-
roxene lamella in clinopyroxene. Composites of Cr-
pyroxenite and peridotite are abundant.

The garnet pyroxenites comprise websterite and
clinopyroxenite. They have a granoblastic texture

Ž .with a coarser grain size )4 mm than the Al-py-
roxenites. Pink garnet shows some retrograded fea-
ture. Composites of garnet pyroxenite–peridotite are
not found in our collection, but were documented by

Ž .Fan et al. 2001 . Some garnet pyroxenites show
clear modal layering. Most garnet pyroxenites equili-

Žbrated at 900–11068C and 14–21 kbar using the
two-pyroxene thermometer of Bertand and Mercier,
1986 and garnet-orthopyroxene barometer of Nickel

.and Green, 1985 .

3. Analytical methods

The pyroxenite xenoliths were sawn into slabs
and central parts of more than 200 g were cleaned
with distilled water in ultrasonic bath for 30 min.
The rocks were then crushed in a steel mortar and
grounded in a carbide mill. The bulk major element
compositions were obtained using conventional wet
chemistry at the Guangzhou Institute of Geochem-
istry. The rocks have also been analyzed for 35 trace

Ž .elements including REE abundances using an In-

Žductively Coupled Plasma-Mass spectrometer ICP-
.MS at the same institute. Analytical procedure was

Ž . Ždescribed by Liu et al. 1996 . The powders ;50
.mg were dissolved in distilled HF-HNO in Savillex3

screwtop Telfon breakers at 1508C for )4 days.
Precision for REE and HFSE is estimated to be 5%
from repeatedly analyzed USGS standards BHVO-1
Ž . Ž .basalt and W-2 diabase . The measured values of
international standards are in satisfactory agreement

Ž .with the recommended values Table 1 . Analyses of
Žthe internal standard RO-A1 pyroxenite, provided

.by Dr. J.-L. Bodinier, Montpellier at Guangzhou
Žand Montpellier yield generally similar results Table

.1 .
Isotopic ratios of Sr and Nd and elemental con-

centrations for Rb, Sr, Sm and Nd have been mea-
sured by isotope dilution on a subset of whole rock
powder. Sample preparation and column chemistry

Ž .are similar to those described by Jahn et al. 1980 .
The isotopic analyses were performed on a Finnigan
MAT-261 multi-collector mass spectrometer at the
Institute of Geology, Chinese Academy of Geologi-
cal Sciences, Beijing. Analyses of standards during
the period of analysis are as follows: NBS987 gave
87 86 Ž .Srr Srs0.71025"2 2 S.D. ; BCR-1 gave
143 144 Ž .Ndr Nds0.512643"12 2 S.D. . The blanks
of Nd and Sr are 0.05 and 0.1–1 ng, respectively.

4. Analytical results

4.1. Major and minor elements

Major element abundance for pyroxenites is given
in Table 2 and illustrated in Fig. 2. Published pyrox-
enite data in Chinese literature are also included for
completeness and peridotite data are shown for com-
parison. As shown in Fig. 2, each petrographic group
exhibits a wide range in composition that largely
reflects variation in modal abundance of minerals
and fractionation. For example, opx-rich pyroxenites
display lower CaO and Al O contents than cpx-rich2 3

samples. Despite some overlaps and exceptions, it
can be generalized that the Al-pyroxenites are com-
positionally transitional between the Cr-pyroxenites

Ž .and the garnet pyroxenites Fig. 2 . Cr-pyroxenites
Ž .commonly have higher Mga values 0.88–0.92 than
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Table 1
Ž . Ž . Ž .Measured data for minor and trace elements in international reference materials BHVO-1, W-2 and internal standard RO-A1 ppm

Ž .Reference data for BHVO-1 and W-2 are taken from Govindaraju 1989 .
Ž .Reference data for RO-A1 is the average of 28 analyses made at Montpellier compiled by Remaidi, 1993 .

BHVO-1 W-2 RO-A1

This work Reference This work Reference This work Reference
Ž . Ž . Ž .ns30 ns23 ns6

P 1166"51 1201 541"91 576
Cr 275"12 289 88.2"0.4 93 1758"266
Mn 1295"9 1293 1260"12 1255 1223"115
Co 44.7"0.4 45.0 44.3"0.2 44.0 65"4
Ni 121.2"1.8 120.0 74.2"0.9 70.0 1070"43
Cu 137.7"1.0 136.0 102.7"1.4 103.0 59"8
Ga 24.7"0.4 21.0 20.4"0.3 20.0 9.1"0.7
Zn 106.3"2.4 105.0 76.9"2.9 77.0 51"16
Sc 31.7"0.4 31.8 37.1"2.4 35.0 26.2"3.5
Ti 16787"598 16610 6116"306 6360 4444"166
V 317.5"3.4 317.0 259.7"3.4 262.0 183"10 195"5
Rb 9.8"0.5 11.0 30.3"0.3 20.0 0.63"0.11 0.68"0.06
Sr 395.3"11.9 403.0 201.6"5.4 194.0 37.6"2.0 36.3"1.9
Y 28.0"0.2 28.0 22.2"0.1 23.0 14.8"1.2
Zr 176.3"5.6 179.0 93.3"1.3 94.0 38.6"4.0 35.0"3.0
Nb 19.2"0.2 19.5 7.3"0.1 7.8 0.08"0.01 0.09"0.02
Ba 139.1"5.1 139.0 173.9"6.6 173.0 1.49"0.42 1.20"0.20
Hf 4.58"2.4 4.38 2.47"0.16 2.40 1.24"0.09 1.25"0.10
Ta 1.18"0.01 1.23 0.44"0.02 0.50 0.027"0.003 0.016"0.002
Th 1.27"0.04 1.25 2.18"0.07 2.20 0.014"0.006 0.009"0.002
U 0.43"0.02 0.42 0.50"0.01 0.53 0.007"0.007 0.0035"0.0014
La 15.16"0.38 15.80 10.15"0.20 10.00 1.09"0.16 1.12"0.10
Ce 37.13"0.84 39.00 22.54"0.33 23.50 4.25"0.15 4.25"0.19
Pr 5.64"0.16 5.45 3.03"0.11 3.20 0.82"0.05 0.83"0.04
Nd 25.90"0.81 25.20 13.39"0.30 14.00 4.66"0.26 4.65"0.18
Sm 6.26"0.16 6.17 3.23"0.09 3.25 1.63"0.09 1.59"0.08
Eu 2.04"0.05 2.06 1.06"0.02 1.01 0.60"0.03 0.60"0.03
Gd 6.35"0.30 6.22 3.60"0.14 3.60 2.21"0.15 2.16"0.09
Tb 0.99"0.03 0.95 0.61"0.02 0.63 0.40"0.02 0.38"0.02
Dy 5.25"0.13 5.25 3.67"0.19 3.80 2.49"0.15 2.48"0.11
Ho 0.96"0.02 1.00 0.75"0.03 0.76 0.53"0.04 0.52"0.03
Er 2.37"0.01 2.56 2.03"0.07 2.40 1.45"0.08 1.48"0.07
Tm 0.34"0.01 0.33 0.31"0.00 0.38 0.22"0.02 0.21"0.01
Yb 2.00"0.02 2.02 1.97"0.08 2.05 1.38"0.03 1.35"0.07
Lu 0.30"0.02 0.29 0.31"0.02 0.33 0.22"0.02 0.22"0.01

Ž .the Al-augite group 0.74–0.89 . The garnet pyrox-
enites overlap in composition with the Al-pyroxen-

Ž .ites but trend towards even lower Mga 0.63–0.86 .
The Hannuoba pyroxenites show considerable scat-
ters in major oxide variation diagrams and do not
plot along the inter-element correlation defined by

Ž .fertile and residual peridotites Fig. 2 . There is a
positive correlation between Cr and Ni and MgO in
pyroxenites. The overall range of Ni abundance is

Ž .very large 25–1773 ppm with the lowest Ni con-
tents in garnet pyroxenites. Similar to observations

Ž . Ž .by Suen and Frey 1987 and Pearson et al. 1993 ,
incompatible elements such as Zr, Sm and Sr show
no correlation with Mga.

4.2. Trace elements

In accordance with their lithological heterogene-
ity, the Hannuoba pyroxenites exhibit substantial
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Table 2
Whole rock major and trace element concentrations of pyroxenites from Hannuoba

Al-pyroxenites Cr-pyroxenites Garnet pyroxenites

H-1 H-2 H-3 H-4 H-8 H-9 H-12 H-13 H-5 H-7 H-11 H-14 97jsb-2 97jsb-6 97jsb-22 97xmp-1

SiO 48.80 49.63 50.18 49.37 46.55 50.04 50.64 51.50 50.15 47.37 52.37 54.68 47.24 47.87 48.05 45.62

TiO 0.42 0.21 0.40 0.21 0.13 0.30 0.20 0.32 0.20 0.18 0.30 0.11 0.66 0.40 0.67 0.552

Al O 6.08 7.86 5.40 7.80 4.03 6.69 7.02 6.93 6.83 5.71 6.37 3.72 10.28 9.43 9.37 8.792 3

Fe O 2.52 0.94 2.02 1.26 1.17 1.00 0.85 2.47 1.05 0.40 1.55 1.54 3.79 2.06 2.88 7.302 3

FeO 8.87 4.51 9.65 2.75 6.74 5.54 6.15 4.47 3.09 3.84 5.14 3.95 6.14 5.90 7.58 4.62
MnO 0.20 0.14 0.24 0.08 0.15 0.15 0.22 0.14 0.11 0.11 0.15 0.11 0.14 0.12 0.12 0.12
MgO 19.89 22.05 18.91 13.74 31.19 21.97 18.43 23.72 19.84 24.50 29.92 33.41 20.35 20.3 19.52 13.61
CaO 11.62 12.05 11.41 22.72 7.69 12.39 14.71 8.60 15.70 14.18 2.70 1.64 8.87 10.29 7.74 14.92
Na O 0.81 0.95 1.05 1.32 0.56 0.88 0.87 0.61 1.29 1.01 0.62 0.48 1.07 0.94 1.26 1.122

K O 0.02 0.31 0.03 0.03 0.03 0.03 0.13 0.19 0.03 0.15 0.04 0.02 0.37 0.32 0.40 0.292

P O 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.04 0.06 0.34 0.05 0.04 0.1 0.08 0.13 0.112 5

H Oq 0.88 1.38 0.80 0.43 1.23 0.90 0.89 0.81 1.17 1.81 0.58 0.66 1.35 2.10 1.96 2.592

Total 100.14 100.07 100.12 99.74 99.50 99.93 100.14 99.80 99.52 99.60 99.79 100.36 100.4 99.81 99.68 99.62
Mga 0.76 0.88 0.75 0.87 0.88 0.86 0.83 0.87 0.90 0.91 0.89 0.92 0.79 0.82 0.77 0.68

( )Trace elements contents ppm
P 45.4 111.6 68.5 38.2 18.2 74.6 31.5 96.4 126.1 1462 68.8 17.6 336 162 405 220
Cr 1085 2299 1451 15 2235 2693 1147 1467 8380 4749 2974 3928 2457 2598 1565 1687
Mn 1381 1058 1691 619 1077 1048 1530 1034 825 717 1065 882 1455 1279 1267 1322
Co 83.8 55.2 71.8 13.7 110.6 60.0 60.0 67.2 42.4 54.7 64.6 63.2 51.8 49.0 57.8 74.3
Ni 435 1153 411 25 1773 767 397 1409 589 1101 757 1239 735 640 650 620
Cu 105.3 142.2 32.0 2.3 222.4 157.0 86.6 221.2 49.1 74.7 17.0 8.2 78.1 41.7 51.9 116.4
Ga 9.6 7.8 11.5 11.9 3.7 7.0 8.6 9.0 5.6 3.5 6.5 3.5 9.44 7.97 10.47 9.77
Zn 80.5 26.1 144.0 61.5 50.0 32.7 27.2 41.9 28.2 27.2 37.5 32.9 33.57 25.59 48.91 38.36
Sc 34.5 30.1 46.2 3.7 30.0 35.4 56.5 21.9 30.8 31.3 15.2 11.6 27.70 40.64 26.07 48.81
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Ti 3632 2089 2847 1802 1071 2103 1538 3425 1039 1398 2309 596 1.98 1.79 1.78 2.28
V 199.9 219.0 231.3 47.5 106.8 191.2 305.7 162.2 145.2 181.1 123.2 66.0 3955 2250 3758 3380
Rb 0.34 9.72 0.51 0.08 0.58 0.34 5.27 5.06 0.42 4.73 0.82 0.24 192 206 179 285
Sr 106.5 71.5 43.3 196.6 23.3 56.1 86.5 45.0 123.7 207.9 17.3 6.5 9.09 11.64 5.66 11.62
Y 8.22 8.84 13.37 7.96 2.93 5.69 8.16 13.02 5.15 6.95 2.76 1.05 175 128 175 196
Zr 15.81 10.75 55.22 99.38 4.59 11.74 4.59 22.48 21.80 7.44 10.44 3.23 20.69 15.64 14.06 9.08
Nb 0.50 1.61 1.39 2.14 0.20 1.13 0.71 1.85 2.96 2.95 1.27 0.89 46.40 22.12 43.45 24.83
Ba 1.00 43.51 3.91 1.89 0.54 1.01 79.83 29.03 1.27 30.93 4.83 0.14 6.27 2.61 7.66 5.41
Hf 0.69 0.40 1.41 3.36 0.18 0.38 0.20 0.76 0.32 0.32 0.33 0.09 62.55 45.99 61.78 76.85
Ta 0.01 0.11 0.08 0.38 0.02 0.06 0.05 0.13 0.41 0.17 0.08 0.08 1.57 0.87 1.47 0.83
Th 0.04 0.14 0.09 0.68 0.02 0.10 0.08 0.16 0.46 1.25 0.08 0.13 0.74 0.34 1.03 1.09
U 0.11 0.08 0.09 0.18 0.02 0.08 0.06 0.08 0.16 0.39 0.06 0.05 0.23 0.14 0.24 0.27
La 1.47 1.16 9.08 5.94 0.32 1.02 0.58 1.14 5.75 13.04 0.87 0.63 4.29 1.80 5.40 4.50
Ce 5.60 2.69 32.33 19.73 1.07 2.98 1.19 2.75 14.15 24.61 2.10 1.04 9.66 4.07 11.16 9.36
Pr 1.13 0.41 5.10 3.14 0.20 0.54 0.18 0.45 1.85 2.58 0.30 0.11 1.30 0.59 1.47 1.22
Nd 6.29 2.15 21.69 13.46 1.18 2.94 1.00 2.51 7.16 8.97 1.44 0.35 6.42 3.14 6.96 5.79
Sm 1.90 0.78 4.47 2.68 0.41 0.92 0.54 1.05 1.18 1.45 0.39 0.08 1.90 1.13 1.88 1.44
Eu 0.66 0.33 0.99 0.73 0.16 0.37 0.29 0.42 0.39 0.50 0.14 0.03 0.65 0.42 0.62 0.59
Gd 2.08 1.27 3.83 2.16 0.55 1.12 1.15 1.83 0.99 1.51 0.49 0.11 2.39 1.55 2.05 1.51
Tb 0.31 0.24 0.53 0.31 0.09 0.18 0.21 0.35 0.16 0.24 0.08 0.02 0.47 0.32 0.37 0.25
Dy 1.79 1.62 2.82 1.57 0.57 1.13 1.55 2.41 0.98 1.38 0.52 0.15 3.29 2.38 2.31 1.51
Ho 0.35 0.36 0.54 0.30 0.13 0.23 0.34 0.53 0.20 0.29 0.11 0.04 0.80 0.61 0.54 0.30
Er 0.92 1.04 1.48 0.84 0.35 0.65 0.94 1.48 0.61 0.80 0.33 0.14 2.28 1.78 1.51 0.90
Tm 0.12 0.15 0.20 0.11 0.05 0.09 0.13 0.21 0.08 0.11 0.05 0.02 0.35 0.30 0.23 0.13
Yb 0.75 0.98 1.24 0.73 0.31 0.57 0.79 1.26 0.53 0.62 0.36 0.17 2.34 2.00 1.46 0.90
Lu 0.11 0.15 0.18 0.12 0.05 0.09 0.12 0.19 0.08 0.09 0.06 0.03 0.35 0.32 0.23 0.14
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Ž . Ž . Ž .Fig. 2. Variation of selected major oxides wt.% versus MgO for pyroxenites from Hannuoba. a Al O versus MgO; b CaO versus2 3
Ž . Ž . Ž . Ž .MgO; c SiO versus MgO; d Na O versus MgO. Pyroxenite data of Chen et al. 1997 and Zhang et al. 1998a are included too. The2 2

Ž .composition of the Hannuoba peridotites Song and Frey, 1989; Xu, unpublished data is also shown for comparison. Solid line represents
Ž .an AextractionB line between the Hannuoba peridotites as a residue and calculated equilibrium melt.

variation in both absolute concentration of trace ele-
ments and diversity of chondrite-normalized REE

Ž .pattern Table 2, Fig. 3 .
Ž .Most Al-pyroxenites H-1, H-3, H-4, H-8, H-9

show convex-upward REE pattern which is typical
Žof pyroxene-dominated cumulates McDonough and

.Frey, 1989 . A very wide range of REE concentra-
tion is observed with a total REE of 5.4–84.5 ppm.

Ž .The apex shifts from Ce to Sm or Eu with decreas-
Ž .ing REE concentration Fig. 3a . Sample H-3 is

distinct from other Al-pyroxenites by its high REE
abundance and the presence of significant negative
Eu anomaly. A weak positive Eu anomaly is ob-
served for H-9. In primitive mantle-normalized spi-

Ž .der diagram Fig. 4a , the samples with relatively
Ž .low REE abundance H-1, H-8, H-9 show negative

anomalies of Zr and Hf and positive U and Rb
anomalies. H-1 also displays negative Nb–Ta
anomalies, which are not observed for H-8 and H-9.

ŽH-3 has pronounced negative Sr and HFSE high
.field strength elements: Nb, Ta, Zr, Hf and Ti

anomalies. The clinopyroxenite H-4 has a negative
Nb anomaly and very low Rb and Ba contents.

Ž .Three Al-pyroxenites H-2, H-12 and H-13 , how-
Žever, show low LREErHREE ratios LarYbs0.1–

.0.7 and REE patterns somewhat similar to those of
Ž .LREE-depleted lherzolites Fig. 3b . These samples

also show selective enrichment of highly incompati-
Ž .ble elements Fig. 4b . The negative Zr and Hf

anomalies are also present but are much less pro-
nounced than those in the Al-pyroxenites with a
convex upward pattern.

REE patterns of the Cr-pyroxenites vary depend-
ing on their petrographic characteristics. Two Cr-

Ž .clinopyroxenites H-5 and H-7 display LREE-en-
riched pattern with pronounced HFSE depletion
compared to the adjacent REE and low Ba contents
Ž .Figs. 3c and 4c . This type of pattern differs from
the convex-upward ones in much stronger LREEr
HREE fractionation. Opx-rich Cr-websterite and or-

Ž .thopyroxenite H-11, H-14 have considerably low
REE concentration consistent with the low abun-
dance of clinopyroxene in these rocks. H-14 has a
U-shape REE pattern showing depletion of MREE

Ž .relative to LREE and HREE Fig. 3d . H-11 shows a
slight LREE-enriched pattern but with HREEr
MREE)1. The particularity of these samples is
confirmed in the spider diagram where no HFSE
depletion or only weak positive anomalies of HFSE
is observed. This may reflect the compensation effect
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Ž . Ž .Fig. 3. Chondrite-normalized REE patterns of pyroxenites from Hannuoba. C1 chondrite values from Sun and McDonough 1989 . a
Ž . Ž . Ž .Al-pyroxenites with convex upward pattern; b Al-pyroxenites with low LarYb; c Cr-pyroxenites; d Garnet pyroxenites.

of orthopyroxene in the bulk rock HFSE budget
Ž .Rampone et al., 1991 because of the high OpxrCpx
ratio in the samples.

Both LREE-depleted, LREE-enriched and essen-
tially flat patterns are observed for garnet pyroxen-

Ž .ites Fig. 3d . Sample 97xmp-1 displays an enriched
REE pattern with a positive Eu anomaly. The flat
pattern of 97jsb-2 is simply a consequence of abun-
dant modal garnet. All garnet pyroxenites are charac-
terized by positive Sr and weak positive Hf anoma-

Ž .lies Fig. 4d .

4.3. Sr–Nd isotopic composition

The analyses in this study were mainly concen-
trated on whole rocks rather than mineral separates
favored by many researchers. However, the Hann-

uoba xenoliths are generally fresh and a careful
selection has been performed to ensure no visible
grain-boundary alteration and basaltic veins in the
samples. The contribution of grain boundary compo-
nents to the whole rock compositions is considered
to be not important because most samples have very
high concentrations of trace elements and some anal-
yses of minerals and bulk rocks from the same

Žsamples generally show consistent results Tatsumoto
.et al., 1992 . The confidence of this inference is

encouraged by the fact that the feature presented
below such as extremely enriched isotopic composi-
tions and Sr–Nd isotopic decoupling have already

Ž .been documented Tatsumoto et al., 1992 .
Sr and Nd isotope data of the Hannuoba pyroxen-
Ž .ites Table 3 , together with the published data of

Ž . Ž .Chen et al. 1997 and Zhang et al. 1998b are
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Fig. 4. Primitive mantle normalized element concentration diagram of the pyroxenites from Hannuoba. Normalizing data from Sun and
Ž .McDonough 1989 . Note the strong depletion of HFSE relative to the adjacent REE in some samples.

Ž .plotted in Sr–Nd isotopic space Fig. 5 . The data of
Žperidotite xenoliths Song and Frey, 1989; Tat-

.sumoto et al., 1992; Xu, unpublished data and iso-
Žtopic range of basalts Song et al., 1990; Basu et al.,

.1991 are also shown for comparison. The Sr and Nd
isotope ratios have been corrected for radioactive
decay to 135 Ma, which is the approximate age of

Ž .most pyroxenites see Section 5.3 . The Hannuoba
pyroxenites exhibit an extremely wide variation in Sr

Ž .and Nd isotope composition Fig. 5 ranging from
Ž .typical depleted mantle DM to crust-like enriched

Ž .end member close to EMII . This contrasts with the
data of peridotites and Cenozoic basalts that mostly

Žcluster within the depleted mantle domain ´ )0,Nd
87 86 .Srr Sr-0.7045 . Among the pyroxenites from
worldwide occurrences, only some pyroxenite xeno-

Ž .liths from SE Australia Griffin et al., 1988 , oro-

Žgenic pyroxenites of Beni Bousera Pearson et al.,
. Ž .1993 , Bohemian Massif Medaris et al., 1995 and

Ž .Lower Austria Becker, 1996 show similar wide
composition range and enriched mantle components
Ž .Fig. 6 .

Although the Al-pyroxenites have a wide varia-
tion in isotope composition with ´ of y25 to q9Nd

and 87Srr86Sr of 0.7025–0.7113, the majority of
them is confined to the field of enriched mantle
Ž .Table 2; Fig. 5 . Similar extremely enriched mantle
composition was documented by Tatsumoto et al.
Ž .1992 for a phlogopite pyroxenite from the same
locality. The Sr–Nd isotopic data of most Al-pyrox-
enites are negatively correlated and fall along a trend
different from that of MORB–OIB–IAB–sediment
Ž .Fig. 5 . H-12 has ´ )34 which may be the mostNd

radiogenic among the published Nd isotopic data for
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Table 3
Whole rock Rb–Sr and Sm–Nd isotopic and concentration data for the Hannuoba pyroxenites

87 87 87 147 143Sample Rb Sr Rbr Srr Srr Sm Nd Smr Ndr ´ ´Nd Nd
86 86 86 144 144Ž . Ž . Ž . Ž . Ž . Ž .no. ppm ppm Sr Sr Srr ppm ppm Nd Nd 0 Ma 135 Ma
Ž . Ž . Ž . Ž . Ž .0 Ma 0 Ma 135 Ma 0 Ma 0 Ma

Al-pyroxenites
H-1 0.913 86.27 0.03064 0.707806"16 0.707747 1.674 5.607 0.1806 0.511778"5 y16.8 y16.5
H-3 0.433 33.52 0.03737 0.710714"13 0.710642 3.943 39.580 0.0603 0.511235"10 y27.4 y25.0
H-4 0.134 160.5 0.00241 0.711305"18 0.711300 2.362 12.000 0.1191 0.511392"8 y24.3 y23.0
H-8 0.524 18.17 0.08358 0.705618"10 0.705458 0.349 1.016 0.2080 0.512609"6 y0.6 y0.8
H-9 1.580 45.40 0.1008 0.705997"14 0.705804 0.825 2.631 0.1896 0.512300"9 y6.6 y6.5
H-12 4.822 70.23 0.1988 0.708734"20 0.708353 0.487 0.923 0.3189 0.514390"7 34.2 32.1
H-12 5.179 69.35 0.2162 0.708700"20 0.708319 0.473 0.927 0.3088 0.514601"7 38.3 36.4
Ž .duplicate
H-13 5.463 39.42 0.4013 0.705637"12 0.704867 0.895 2.280 0.2376 0.512981"6 6.7 6.0

Cr-pyroxenites
H-5 0.550 99.77 0.01595 0.703823"18 0.703792
H-11 3.991 13.43 0.8604 0.704321"14 0.702670 0.427 1.290 0.2001 0.512720"8 1.6 1.5
H-14 0.244 5.30 0.1333 0.704371"15 0.704115 0.075 0.332 0.1369 0.512733"19 1.9 2.9

Garnet pyroxenites
97jsb-2 8.872 157.8 0.1628 0.706548"15 0.706236 1.563 5.104 0.1852 0.512996"8 7.0 7.2
97jsb-6 11.010 120.6 0.2644 0.706580"14 0.706073 0.853 2.388 0.2160 0.513032"8 7.7 7.4
97jsb-22 5.491 157.7 0.1008 0.706167"19 0.705974 1.631 5.860 0.1684 0.512892"10 5.0 5.4
97xmp-1 12.770 163.0 0.2270 0.706104"14 0.705668 1.132 4.418 0.1550 0.512543"6 y1.9 y1.1

the mantle xenoliths from eastern China. Replicate
analyses on this sample yield virtually identical Sr

isotopic ratio, variable but consistently high ´Nd
Ž .Table 3 .

87 86 Ž .Fig. 5. ´ versus Srr Sr calculated at 135 Ma of pyroxenites from the Hannuoba pyroxenites. The isotopic composition of H-12 isNd
Ž . Ž .calculated back to 1.8 Ga. Also shown are the published data of Chen et al. 1997 and Zhang et al. 1998b . Isotope data of the spinel
Ž . Ž . Ž .peridotites, granulite xenoliths and Miocene basalts are after Song and Frey 1989 , Tatsumoto et al. 1992 , Song et al. 1990 and Xu

Ž . Ž .unpublished data . The fields of eclogites from Dabie ultrahigh pressure metamorphic terran and granulite terrain are from Li et al. 1993
Ž . Ž . Ž .and Chavagnac and Jahn 1996 . Marine sediment data are after Ben Othman et al. 1989 and McLennan et al. 1990 . MORB and OIB

Ž .domains are from Zindler and Hart 1986 . The fields of different reservoirs are estimated at 135 Ma.
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Fig. 6. Comparison of initial Sr and Nd siotopic composition between the Hannuoba pyroxenites and selected orogenic pyroxenite layers and
Ž . Ž . Ž . Ž .pyroxenite xenoliths. Data are after Becker 1996 , Griffin et al. 1988 , Medaris et al. 1995 and Pearson et al. 1993 . The shaded area

stands for the compositional range for the majority of pyroxenites from worldwide occurrence.

Ž .In a ´ versus SmrNd plot Fig. 7a , the Al-py-Nd

roxenites form a broadly positive correlation. If this
positive correlation is an isochron, the slope corre-
sponds to an age of 1.9 Ga. Alternatively, this
positive correlation may represent a two-component
mixing line. Lack of correlation between RbrSr and
Sr may be related to the disruption of RbrSr due to
the mobility of both elements during post-formation
processes.

The Cr-pyroxenites have a relatively limited range
of ´ and 87Srr86Sr despite a significant range ofNd

Ž . ŽRbrSr Table 3 . Two opx-rich pyroxenites H-11,
.H-14 have indistinguishable isotopic composition

Ž .Table 3 .
The garnet pyroxenites do not show a simple

correlation in the Sr–Nd isotopic diagram despite
their relatively wide variation range. They have rela-
tively high 87Srr86Sr ratios at given ´ relative toNd

the general trend defined by other two groups of
Ž .samples Fig. 5 . Three out of four garnet pyroxen-

ites analysed in this study have ´ within the rangeNd

of MORB. The garnet pyroxenites show large scatter
Žin a ´ –SmrNd plot without any correlation Fig.Nd

.7a .

5. Discussion

5.1. High-pressure cumulates and the nature of
parental melts

An important question in the petrogenetic study of
pyroxenites is whether they represent frozen melts
Že.g., Bodinier et al., 1987; Suen and Frey, 1987;

.Pearson et al., 1993 . This hypothesis can be evalu-
ated by comparing the pyroxenites with melts gener-
ated by peridotite melting experiments at high pres-

Ž .sures e.g., Hirose and Kushiro, 1993 . In general,
the Hannuoba pyroxenites are compositionally dif-
ferent from the melts generated by melting peridotite

Ž .KLB-1 e.g., Hirose and Kushiro, 1993 , whose
composition is similar to the fertile peridotites from

Ž .Hannuoba Song and Frey, 1989 . Specifically, the
pyroxenites have higher MgO contents, either lower
or higher SiO and CaO contents than experimental2

Žmelts. The extremely variable Ni contents 25–1773
.ppm are out of the compositional range predicted by

theoretical modeling for the products of partial melt-
ing. When plotted against a fractionation index such

Ž .as MgO Fig. 2 , major element data do not plot
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Ž . Ž .Fig. 7. a Sm–Nd isochron diagram and b correlation between
143Ndr144 Nd and Nd for pyroxenites from Hannuoba.

along the AextractionB line between residual and
Žfertile peridotites Suen and Frey, 1987; Pearson et

.al., 1993 but show considerable scatter. Therefore,
the Hannuoba pyroxenites are neither crystallized
melts nor melts extracted from the peridotites.

Other popular ideas on the petrogenesis of pyrox-
enites vary between two extremes: solid-state recy-

Žcling oceanic lithosphere Allegre and Turcotte,
.1986 and magmatic segregates precipitated in vein

Ž .conduits Irving, 1980 . The extreme isotopic varia-
tion such as observed in the Hannuoba pyroxenites

Žhas led some authors e.g., Allegre and Turcotte,
.1986 to suggest that they represent fragments of

recycled oceanic lithosphere of varying ages, thinned
by diffusion and convection. However, this model is
not suitable for the Hannuoba case where abundant
Al-pyroxeniterperidotite and Cr-pyroxeniterperi-
dotite composites and rare composites of garnet

clinopyroxenite-lherzolite are found. This and the
Ž .preserved cumulate texture modal layering in some

pyroxenites are consistent with a magmatic origin
rather than a solid-state recycling of subducted litho-
sphere. The strong correlation between elemental
geochemistry and modal mineralogy, high Al O2 3

and positive correlation between Mga and compati-
ble elements such as Ni and Sc are consistent with
fractional crystallization model. It is thus concluded
that the Hannuoba pyroxenites represent fractionally
segregated products from melts at high pressures.

While the very low abundances of incompatible
elements in most Al-pyroxenites are consistent with
this argument, other samples, particularly garnet py-
roxenites, show relatively high contents of Rb, Ba
and Th, indicating the presence of small amount of
trapped melts. For this reason, composition of melts
parental to pyroxenites can only be estimated from
the samples with low highly incompatible elements.
For the samples that may have trapped melts, the
calculation is limited to REE. The calculation was
done by applying mineral partition coefficients and
mineral modes. The mineral modes are estimated
from bulk major element and mineral chemistry us-
ing an inversion method. The partition coefficients
used in these calculations are taken from the compi-

Ž .lation of Becker 1996 except for U, Th, Rb and Ba,
Ž .which are from Hart and Dunn 1993 and Hauri et

Ž .al. 1994 .
The parental melts of the Al-pyroxenites are highly

Ž .variable in LREE abundances with LarYb rang-N
Ž .ing from 30 to 400 Fig. 8 . Some of melts have low

REE concentrations and display a flat distribution
Žpattern, similar to the host basalts Basu et al., 1991;

.Zhi et al., 1990 . However, the majority of estimated
Žmelts show very high LREE enrichment La sN

.180–400 that exceeds the range of the Cenozoic
basalts. Some of melts are also characterized by
negative HFSE anomalies and in some cases Eu
anomalies and high Sr isotope and low Nd isotope
ratios. These features contrast sharply with the Hann-

Žuoba basalts Song et al., 1990; Zhi et al., 1990;
.Basu et al., 1991 , implying that there is no direct

genetic relationship between the majority of pyrox-
enites and the Cenozoic volcanism. Mantle-derived
magmas with similar trace element and isotopic
compositions include, island arc basalts, potassic and
ultrapotassic magmas, kimberlites, lamproites and
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Fig. 8. Normalized REE patterns and spiderdiagrams for melts in equilibrium with pyroxenites from Hannuoba. The patterns are calculated
Ž . Ž .using bulk rock composition and mineral–liquid partition coefficients listed by Becker 1996 , Hart and Dunn 1993 and Hauri et al.

Ž . Ž . Ž .1994 . The data of host basalts are after Liu et al. 1994 and Zhi et al. 1990 .

Ž .carbonatites Becker, 1996 . But the assessment of
these candidates is not straightforward.

The parental magma in equilibrium with the Cr-
pyroxenites has a very steep LREE distribution but

Ž .an almost flat HREE Fig. 8b . Such a pattern is

different from those of the alkaline basalts. In con-
trast to the compositional diversity of parental melts
for the Al-pyroxenites, the calculated melt composi-
tions for the garnet pyroxenites show relatively co-

Ž .herent trace element distribution patterns Fig. 8c .
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Specifically, the steep REE patterns, low Yb con-
tents, positive Sr anomalies and absence of HFSE
anomalies for the melts of garnet pyroxenites are
different from those for Al-pyroxenites.

The highly variable REE concentrations of the
parental melts of the Hannuoba pyroxenites suggest
that they cannot have been formed through crystal-
lization from a single progressively fractionating
mafic liquid. In other words, they likely represent
crystallization products of different magmatic series.
Additional support for this argument is provided by
the absence of any correlation between degree of
LREE enrichment and Mga. For instance, some
pyroxenites with low Mga have lower REE concen-
trations than the samples with high Mga. The most
convincing evidence for non-cogenetic origin of py-
roxenites is perhaps from the Sr–Nd isotopic compo-
sition which indicates that melts derived from dis-
tinct sources were involved in pyroxenite genesis
Ž .see Sections 5.4 and 5.5 .

5.2. EÕidence for metasomatic enrichment in pyrox-
enites

Melts parental to pyroxenites are frequently con-
sidered as important agent of mantle metasomatism
Ž .Menzies et al., 1985; Bodinier et al., 1990 . How-
ever, pyroxenites themselves may be metasomatized

Ž .too Garrido and Bodinier, 1999 . This is evidenced
by an inflection at Ce in the MREE-depleted pattern
Ž .Fig. 3b and selective enrichment of highly incom-
patible elements over moderately incompatible ele-

Ž .ments in some Hannuoba pyroxenites Fig. 4b . Such
a distribution pattern is similar to those frequently

Žobserved in lherzolite peridotites McDonough and
.Frey, 1989; Bedini et al., 1997; Xu et al., 1998 and

can be attributed to chromatographic effect of melt
Ž .percolation Navon and Stolper, 1987 . However,

chromatographic effect cannot explain the absolute
enrichment of highly incompatible elements in other

Ž .Hannuoba pyroxenites Fig. 4d . This requires the
combination of chromatographic effects with frac-
tional solidification of melts during their migration

Ždown lithospheric thermal gradients Bedini et al.,
.1997 . The metasomatic agent for the Hannuoba

pyroxenites could be either extraneous or the same
melt that crystallized the pyroxenites, if the remain-

ing melt fraction is small and if it percolates through
the rock while reacting.

5.3. Constraints on the ages of pyroxenites

The extremely high ´ in H-12 must reflectNd

time-integrated radiogenic growth in the lithospheric
Ž .mantle given its high SmrNd ratio Table 3 . A

single-stage Nd model age of 1.79 Ga relative to the
depleted mantle or 2.1 Ga relative to CHUR. This
age is comparable with the model age estimated for

Žlherzolites from the same locality Song and Frey,
.1989 . The ´ of H-12 at 1.8 Ga is q6, suggestingNd

a deviation from slightly depleted mantle source. If
this model age is accepted as the age of intrusion, a
question arises as to whether this age is applicable to
other pyroxenites from Hannuoba. The following
considerations lead us to propose that the Hannuoba
pyroxenites may have formed at different time and
most pyroxenites are relatively young.

Ž .a The positive correlation between ´ andNd
Ž .SmrNd for the Al-pyroxenite Fig. 7a yields an

apparent isochron age of 1.9 Ga. If this age is
meaningful, it implies that all Al-pyroxenites formed
simultaneously, and measured isotopic ratios reflect
the long-term radiogenic decay in the lithosphere.
However, if the isotopic ratios of the Al-pyroxenites
are calculated back to this age, the negative Sr–Nd
isotopic correlation and positive correlation between
´ and SmrNd break down. It is very improbableNd

that the pyroxenites, which originally scattered in the
Sr–Nd space form a negative correlation after the
radioactive decay with time. Moreover, the most
radiogenic Sr isotopic compositions are noted in the

Žsamples with very low RbrSr ratios H-1, H-3 and
.H-4 . Therefore, not all isotopic composition can be

interpreted as a result of in-situ radioactive decay.
The positive correlation in Fig. 7a more likely repre-
sents a two-component mixing line. This is sup-
ported by the hyperbolic correlation between ´Nd

Ž .and Nd for the Al-pyroxenites Fig. 7b . The good
correlation further suggests that radiogenic growth
since mixing has not significantly affected the mix-
ing relationship, given the wide range of RbrSr and
SmrNd. It is likely that mixing is relatively recent

Žand most Al-pyroxenites except for H-12, probably
.H-13 as well have a relatively young intrusion age.
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This argument is consistent with the isotopic disequi-
librium between Al-pyroxenite vein and host peri-

Ž .dotites Tatsumoto et al., 1992 .
Ž .b A young age can also be inferred for the

Cr-pyroxenites because they have very limited varia-
tion in 87Srr86Sr despite a wide range of RbrSr.
This inference is consistent with the igneous appear-
ing texture in these samples, and the isotopic disequi-
librium between Cr-pyroxenite vein and host peri-

Ž .dotites Song and Frey, 1989 . A similar conclusion
is reached for the garnet pyroxenites by Zhang et al.
Ž .1998a,b on the basis of Pb isotopic data.

Ž .c The marked contrast in isotopes between py-
roxenite xenoliths and host basalts suggest they are
not cogenetic. The pyroxenites may have formed

Ž .prior to the eruption of lavas Miocene . The nega-
tive Sr–Nd isotopic correlation breaks down when
the correction age is greater than 200 Ma. It is
possible that the intrusion age of pyroxenites is less
than 200 Ma. For the convenience of presentation,
we arbitrarily choose 135 Ma for the age correction
of isotopic ratios. This age corresponds to the period

Žof the dramatic lithospheric thinning Menzies et al.,
.1993; Griffin et al., 1998 and basaltic underplating

Ž .Fan et al., 1998 beneath the Sino-Korean Craton.
Such a late Mesozoic age is also confirmed by the
recent dating on zircons from the Hannuoba Al-py-
roxenites and garnet pyroxenites using SHRIMP at

ŽCurtin University, Australia X.H. Zhou, personal
.communication . Preliminary results show a rather

wide age spectrum ranging from 4.3 Ga to 80 Ma but
with peaks at the late Mesozoic.

5.4. Garnet-pyroxenites: an altered oceanic crust
model

If the melts parental to the pyroxenites were
subduction-related, the pyroxenites should plot in or
above the MORB–OIB–IAB–sediment trend. As
shown in Fig. 5, some garnet pyroxenites show
relatively high 87Srr86Sr at given ´ compared toNd

the mantle array and the MORB–OIB–IAB–sedi-
Ž .ment trend Fig. 5 . Such a Sr–Nd isotopic decou-

pling is consistent with their respective elemental
concentrations. While Sr occurs as a spike in spider
diagram, Nd and other moderately incompatible ele-
ments form a smooth depletion trend. This suggests
that a component rich in Sr but containing little Nd

may have been involved in the source of garnet
pyroxenites. Similar Sr–Nd isotopic decoupling and
trace element characteristics are observed for pyrox-

Ž .enites from Beni-Bousera Pearson et al., 1993 and
Ž .the Bohemian Massif Medaris et al., 1995 which

has been attributed to the involvement of subducted
oceanic lithosphere in the pyroxenite source. A simi-
lar model is thus envisaged for the garnet pyroxen-
ites from Hannuoba. It has been demonstrated that
altered oceanic basalt displays a relatively constant

87 86 Ž´ and a wide Srr Sr ratio McCulloch et al.,Nd
.1980 because sea water is extremely low in Nd

Ž .concentration O’Nions et al., 1978 . The low ´Nd

values in some samples further suggest that sedimen-
tary components may have been involved in the
source. Fig. 9 shows a pattern of mixture between
seawater altered oceanic crust and trench sediment.
Such a mixture would define a roughly triangular
area that can enclose the irregular distribution of
Sr–Nd isotope data of most garnet pyroxenites.

In this sense, there is a two-stage process by
which the observed Sr–Nd isotope composition of
garnet pyroxenites formed. First, seafloor hydrother-
mal alteration of oceanic basalts resulted in a wide
variation in 87Srr86Sr but left their ´ nearly unaf-Nd

fected. Second, mixing of altered basalts and cover
sediment may have occurred during subduction. The
addition of sediment lowered ´ in the system. TheNd

melting of such a mixture was probably triggered by
the presence of fluid dehydrated from the subducting
slab. This mechanism requires that the part of the
lithosphere beneath Hannuoba may represent a pa-
leo-convergent plate margin, and is consistent with
the geological history of the region. Hannuoba is
located to the northern boundary of the Sino-Korean
Craton. Along this boundary, the late Jurassic E–W-
trending fold-and-thrust belt can be traced from

Ž .Liaoning province east to the eastern Tian Shan
Ž . Ž .west Yin and Nie, 1996 . This contractional defor-
mation was both spatially and temporally associated
with emplacement of plutons and was followed by
early Cretaceous extension. The fold-and-thrust belt
may have been generated by southward subduction
of the Mongol–Okhotsk plate beneath the Sino-
Korean Craton andror collision between the Sino-

ŽKorean Craton and the Yangtze Craton Yin and Nie,
.1996 . Most of the garnet pyroxenites could have

formed at such a convergent setting.
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Fig. 9. Diagram showing mixing models for the genesis of the Hannuoba pyroxenites. Note that the most variability of the Al-pyroxenites
and Cr-pyroxenites can be accounted for by a mixing between an asthenospheric mantle and a crustal component from the Sino-Korean

Ž .Craton terrigenous sediment or delaminated lower crust . An altered oceanic crust, however, may be involved in the source for the garnet
Ž .pyroxenites. The field of altered MORB is after McCulloch et al. 1980 . Tick marks show the effect of sediment addition.

The Sr–Nd isotopic data of two garnet pyroxen-
ites are plotted out of the triangular mixing area and
instead plotted along the distribution trend defined

Ž .by the Al-pyroxenites Fig. 9 . A continental crustal
component is required in the source of these pyrox-
enites. The involvement of continental crustal com-
ponents is more evident in the petrogenesis of the
Al-pyroxenites.

5.5. Al- and Cr-pyroxenites: inÕolÕement of conti-
nental crustal components in the source

A few Al- and Cr-pyroxenites show Sr–Nd iso-
topic compositions similar to MORB and host basalts
and they may have been derived from an astheno-
spheric melt. However, the majority of the pyroxen-
ites display higher 87Srr86Sr and lower ´ relativeNd

Ž .to the host basalts Fig. 5 . This suggests that the
parental magmas of most Hannuoba pyroxenites were
derived from a source significantly different from the
asthenosphere from which alkali basalts were gener-

Ž .ated Song et al., 1990 . Negative Zr and Hf anoma-
lies in some Al- and Cr-pyroxenites from Hannuoba
Ž .Fig. 4 could be related to tiny zircons, which were
not dissolved in Savillex breakers. However, only a
limited number of pyroxenite samples contain zircon

Ž .X.H. Zhou, personal communication . Moreover,
HFSE depletion is also present in the samples which

Žcontain no zircon Zhang et al., 1998a; X.H. Zhou,
.personal communication . Thus, HFSE anomalies in

the Hannuoba pyroxenites are real and not analytical
artifacts. It is interesting to note that HFSE anoma-
lies are lacking in the peridotite xenoliths from Han-

Ž .nuoba Xu et al., unpublished data and in modally
Žmetasomatized peridotites in general McKenzie,

.1989 . Therefore, peridotites cannot be the only
source of parental magmas of the Al-pyroxenites.

As discussed previously, the isotopic composition
of the Al-pyroxenites can be accounted for by mix-
ing of a depleted mantle component and a crust-like
component. Most Al-pyroxenites plot below the
MORB–OIB–IAB–sediment trend falling in the

Ž .granulite area Fig. 5 . This suggests that the en-
riched component may have had a long residence
time in the crust with relative lower SmrNd and
RbrSr ratios. However, both pyroxenite-peridotite
composite and geothermometric calculations suggest
that most of pyroxenites originated in the mantle.
This requires the recycling of crustal materials to the
mantle. In the following, possible origin of this
continental component and its implication for the
crustal recycling mechanism will be discussed.



( )Y. XurChemical Geology 182 2002 301–322318

Isotopic studies show that sedimentary rocks from
the Sino-Korean Craton are old with T varyingDM

Ž . 143 144between 2.5–3.6 Ga Wu, 1998 . Their Ndr Nd
ratio at 135 Ma varies between 0.5110 and 0.5115.
The mixing between the asthenosphere and terrige-
nous sediments from the Sino-Korean Craton could
account for the entire range of isotopic compositions
of the Al-pyroxenites. In this sense, the isotopic data
of the Al-pyroxenites are consistent with a subduc-
tion or a collision model presented for the garnet
pyroxenites. The implication of this model is that the
Al-pyroxenites and garnet pyroxenites formed con-
temporaneously at a convergent setting.

Alternatively, the enriched component may repre-
sent the lower crust of the Sino-Korean Craton.
Hannuoba is situated within an Archean crust whose
basement experienced a long-term evolution. It is
thus possible that the Hannuoba pyroxenites repre-
sent products of a contaminated asthenospheric melt
when it underplated at the crust–mantle boundary.
However, the granulite xenoliths in the Miocene
basalts that formed essentially in this way show a
rather limit range in Sr–Nd isotopic composition
Ž .Fig. 9; Fan et al., 1998; Zhang et al., 1998b . This
contrasts with the extremely wide isotopic range of
the Hannuoba pyroxenites. In other words, the cur-
rent lower crust beneath Hannuoba does not have
sufficient Sr–Nd isotopic variation to account for the

Ž .entire isotopic variation in the pyroxenites Fig. 5 .
Moreover, such a mechanism is at variance with the
location of these pyroxenites within the upper mantle
as revealed by numerous peridotite-pyroxenite com-
posites. U–Pb zircon dating suggests that these gran-

Žulite xenoliths are relatively young about 135 Ma;
.Fan et al., 1998 . It is likely that the present lower

crust is significantly different from the previously
existed one which may be compositionally repre-

Ž .sented by the exhumed granulite terrain e.g., TTG
and was delaminated during the late rejuvenation of
lithospheric mantle.

Considerably different thermal gradient and com-
position have been inferred for the Palaeozoic and
Cenozoic lithosphere beneath the Sino-Korean Cra-

Ž .ton Griffin et al., 1998; Menzies and Xu, 1998 .
This has led to the suggestion that the Palaeozoic,

Ž .cold and thick lithospheric keel )150 km has been
gradually eroded as a result of passive upwelling of
the lower convective asthenosphere since the late

Mesozoic. Delamination has also been proposed as
an important mechanism to account for the interme-

Ždiate composition of the continental crust Arndt and
.Goldstein, 1989; Rudnick and Fountain, 1995 . This

model has recently been adopted by Gao et al.
Ž .1998 to account for the crustal evolution in the
Sino-Korean Craton. Based on a regional geochemi-
cal study of fine-grained clastic sediment, these au-
thors concluded that the delaminated crust is compo-
sitionally similar to the exhumed eclogites in Dabie
ultrahigh pressure metamorphic zone.

The enriched components in the Al-pyroxenites
Ž .fall within the granulite terrain area Fig. 5 . It is

also noted that the Dabieshan eclogites encompass
enriched components of the Hannuoba pyroxenites
Ž .Chavagnac and Jahn, 1996 , and in particular the
Type II eclogites display a Sr–Nd isotopic trend very
similar to that defined by the Al-pyroxenites from

Ž .Hannuoba Li et al., 1993 . It is thus likely that the
Al- and Cr-pyroxenites resulted from interaction be-
tween asthenosphere-derived melts and delaminated
lower crust. The formation of the Al-pyroxenites

Ž .may comprise two stages: 1 foundering of the
eclogite root to the peridotite mantle took place
probably during lithospheric thinning that started

Žsince the Mesozoic Griffin et al., 1998; Menzies and
. Ž .Xu, 1998 ; 2 as a response of initial lithospheric

thinning, asthenosphere containing blobs of delami-
nated lower crust melted adiabatically. Fractionation
of melting products within the lithospheric mantle
gave rise to the formation of the Al-pyroxenites.

ŽThe above alternatives i.e., subduction of conti-
.nental upper crust versus delamination of lower crust

are not mutually exclusive. However, given the close
association between mineralogy and isotopic compo-
sitions of the pyroxenites, we favor the second alter-
native. With this interpretation, the Al-pyroxenites
may have formed at an extensional setting, probably
coeval with the lithospheric thinning beneath the
Sino-Korean Craton. If it is the case, the Al-pyroxen-
ites may be young relative to the garnet pyroxenites.

5.6. Implications for mantle enrichment and in-
traplate magmatic generation

Peridotite xenoliths from eastern China commonly
Žshow sign of metasomatism Song and Frey, 1989;

.Xu et al., 1998 . Compared with unmetasomatised
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peridotites, metasomatised xenoliths generally have
higher 87Srr86Sr and lower ´ , trending toward theNd

bulk earth values. The peridotites adjacent to pyrox-
enite veins show conspicuously higher Sr and lower
Nd isotope ratios compared to the discrete peridotite
xenoliths, strongly suggesting the possible role of
pyroxenites and its deviates in mantle metasomatism
Ž .Song and Frey, 1989 . Nevertheless, given the rela-
tively small volume represented by pyroxenites, the
corresponding modification of lherzolite would be
relatively small and the significant modification is
generally confined to the vicinity of the veins. Geo-

Žchemical studies Song and Frey, 1989; Tatsumoto et
.al., 1992 on the spinel peridotites from Hannuoba

have revealed that the lithosphere at this area had a
very depleted feature since the Archean. This litho-
sphere has subsequently been modified by the muti-
ple metasomatism, notably at 1 Ga by fluid associ-
ated with continental accretional processes, and more
recently by metasomatism associated with subducted

Žslab-derived fluids at -500 Ma Song and Frey,
.1989; Tatsumoto et al., 1992 . The data presented in

this study imply that metasomatic agent could be
either subducted-related fluids or delaminated lower
crust derived.

The pyroxenite-veined mantle has been invoked
Žas the source of certain continental magmas Leeman

.and Harry, 1993 . The pyroxenite solidus is at lower
Žtemperature than peridotite solidi Hirschmann and

.Stolper, 1996 . It is expected that in upwelling man-
tle comprising mixed pyroxenite and peridotite, the
pyroxenites will begin melting deeper than the peri-

Ž .dotite Hirschmann and Stolper, 1996 . The depth
interval over which pyroxenite is partially melting
but peridotites is subsolidus is estimated to be about
15 km by taking account into the solidus slope and

Žadiabatic upwelling path Hirschmann and Stolper,
.1996 . This difference thus can sufficiently cause

different melting episodes, as exemplified in western
USA. It is documented that in North China, the late
Cretaceous and early Tertiary basalts and lam-
porhyres have enriched Sr–Nd isotopic composition
Ž .´ sy22 to y5 but are depleted in HFSE,Nd

whereas the late Tertiary and Quaternary basalts
display isotopic composition typical of depleted
mantle and no HFSE anomalies in spiderdiagram
ŽXu et al., 1995; W.M. Fan, personal communica-

.tion . The enriched lithospheric mantle has been

invoked as source of the early phases of extension-
related magmatism, but such a component is not
evidenced until recently because most mantle peri-
dotite xenoliths display a depleted isotope signature.
The presence of HFSE-depleted and isotopically en-
riched pyroxenites, as shown in this study, thus
provides direct evidence for enriched components in
the lithospheric mantle and affirms their participation
in early phase of intraplate magmatism. The rela-
tively uniform Sr–Nd isotopic composition of the

Ž .Hannuoba basalts Fig. 5 suggests that the source
region of these magmas is different from that of
pyroxenites.

6. Conclusions

The pyroxenite xenoliths from Hannuoba are het-
erogeneous in mineralogy, chemistry and isotopic
composition. They are neither frozen melts nor
solid-state recycled oceanic lithosphere, but are likely
high-pressure crystal segregates from parental melts
in the lithosphere. Contrary to pyroxenite xenoliths
that are usually assumed to de derived from alkali
basaltic magmas, the Hannuoba pyroxenites require
crustal components in their magmatic source. The
Al- and Cr-pyroxenites were generated by mixing an
asthenospheric melt with variable amount of conti-
nental crust component. This crustal component could
be subducted terrigenous sediments from the Sino-
Korean Craton or the delaminated long-term evolved
lower continental crust. In contrast, a subducted

Žoceanic crust i.e., hydrothermally altered basalts and
.sedimentary materials was involved in the source of

melts from which garnet pyroxenites crystallized.
Although the age of the Hannuoba pyroxenites is
largely unknown, they probably represent products
of magmatic events at different time. Except for a

Ž . Žfew Al-pyroxenites e.g., H-12 that may be old ;2
.Ga , most pyroxenites are relatively young, probably

of late Mesozoic in age. Taking into account the
regional geology and tectonic evolution, we tenta-
tively propose that the garnet pyroxenites were ge-
netically related to the southward subduction of the
Mongol–Okhotsk plate beneath North China,
whereas the formation of the Al-pyroxenites was
coeval with the lithospheric thinning beneath the
Sino-Korean Craton during the late Mesozoic. Fur-
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ther research is needed to constrain the timing of
these petrogenetic processes, which is of critical
importance in the verification of the proposed mod-
els.
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