天山托木尔峰花岗质岩石的同位素地球化学特征*

周泰禧¹ 陈江峰¹ 谢智¹ 张巽¹ 杨学昌² 陈福明²

1. 化学地球动力学研究实验室, 中国科学技术大学地球和空间科学系, 合肥 230026;

- 2 中国科学院广州地球化学研究所, 广州 510640
- 1. The Laboratory for Chemical Geodynamics, Department of Earth and Space Sciences, University of Science and Technology of China, H ef ei 230026, China;

2 Guangzhou Institute of Geochem istry, Chinese A cademy of Sciences, Guangzhou 510640, China. 1999-04-06 收稿, 2000-03-20 改回

Zhou Taixi, Chen Jiangfeng, Xie Zhi, Zhang Xun, Yang Xuechang and Chen Fuming 2000 Isotopic geochemistry of granitic rocks from Tuomuer Peak region, Tianshan, China Acta Petrologica Sinica, 16(2): 153~ 160

Abstract Rare earth and other trace elements as well as O, Pb, Sr and Nd isotopic compositions were analyzed for granitic and basement rock samplers from Tuomuer Peak region, west Tianshan, China Nd isotopic model ages of basement rocks suggested that the crustal age of Iliplate in the north (1.9Ga) is younger than that of the South Tianshan (STS) fold belt in the south (2.2Ga). Because of high 87 Sr/ 86 Sr(T) (0.706 to 0.733), granitic rocks occurring in the entire region are mostly products of melting of the crust. However, O, Pb, Sr and Nd isotopic compositions suggested that granitic rocks in the Ili plate and those in the STS fold belt were derived from the crust with Nd model age similar to that of the Ili crust. The geochemical characteristics of the two sources are slightly different. Granitic rocks in Iliplate were generated by crustal rocks with low δ^{8} O, low er μ and Th/U ratio, while those in the STS fold belt by rocks having higher δ^{8} O, highter μ and Th/U ratio. Granitic rocks in both Iliplate and STS fold belt formed 290M a ago show significantly low er Nd model ages (1.4~ 1.5 Ga), suggesting a mantle input event which was contemporaneous with emplacement of mafic-ultram afic igneous rocks in the region

Key words Grantic rocks, O, Pb, Sr and Nd isotopic compositions, Tectonic setting, Petrogenesis, Crustal evolution, Tuomuer Peak

摘 要 分析了西天山托木尔峰地区花岗质岩石和基底岩石的稀土元素, 微量元素以及O、Pb、Sr、Nd 同位素组成。本区 北部伊犁地块基底岩石的Nd 同位素模式年龄约为 1.9Ga, 南部南天山褶皱带的约为 2.2Ga。高的 Sr 同位素初始比值 (⁸⁷Sr/^{%6}Sr(T)约为 0.706到 0.733)表明本区花岗质岩石主要为地壳熔融产物。O、Pb、Sr、Nd 同位素组成指示位于伊犁地块和 南天山褶皱带的花岗岩源区岩石的Nd 模式年龄都相当于伊犁地壳, 但源区性质不同, 前者源区 δ⁸O 低, μ 值低, Th / U 比低, 后者相反。于 290M a 前后形成的岩体, 无论产出于伊犁地块或南天山褶皱带, 其Nd 模式年龄均很低(1.4~1.5Ga), 指示一次 幔源物质加入事件, 此事件与西天山地区基性和超基性岩侵位同时。

关键词 花岗质岩石; O、Pb、Sr、Nd 同位素组成; 构造环境; 岩石成因; 地壳演化; 天山托木尔峰 中图法分类号 P588 121; P591. 1; P597. 3

第一作者简介:周泰禧,男,1936 年出生,教授,岩石学专业

1 引言

自 1986 年开始实施国家三 0 五项目以来, 对北疆花岗 岩开展了大量研究, 积累了大量同位素地球化学资料。尤其 是近年来, 用花岗岩的 N d 同位素组成研究中亚造山带的显 生宙地壳生长, 正在成为固体地球科学研究的一个新热点 (如 Han *et al*, 1997; 胡霭琴等, 1997; 赵振华等, 1996; 周 泰禧等, 1996)。

托木尔峰地区位于中亚造山带-显生宙地壳增长带南 缘,该地区花岗岩发育,但缺乏系统的地质地球化学研究。本 文对该地区的花岗质岩石和基底变质岩进行了地球化学和 同位素研究,据此讨论了花岗质岩石的成因、产出的大地构 造环境以及地壳演化历史。

2 地质概况

托木尔峰地区位于新疆维吾尔自治区的西部,东经 79 \$0~80 \$0,北纬41 \$0~42 \$0,区内托木尔峰是天山的 最高峰,海拔 7435 3m (图 1)。本区北部的图拉苏达坂断裂 (图 1 中 F1)是那拉提断裂的西端(中国科学院登山科学考

图 1 天山托木尔峰地区地质简图 (据中国科学院登山科学考察队, 1985 简化)

Fig 1 Geological sketch of the Tuomuer Peak region, T ian shan (Sinplified after Expedition of Tuomuer Peak, Chinese A cadem y of Sciences, 1985) 察队, 1985)。断裂以北为伊犁地块, 以南属南天山褶皱带(新 疆维吾尔自治区地质矿产局, 1993; 曹荣龙, 1993)。

本区构造线的方向与山脉走向一致,呈东西向。除主干 断裂-那拉提断裂外,与之平行的还有多条东西向断裂。

地层以下古生界志留系变质岩为主,岩性为大理岩化灰 岩、硅灰岩、大理岩并夹云母片岩、绿泥片岩等,片岩有时还 有混合岩化现象,它们构成托木尔山、汗腾格里山等高山。上 古生界和中新生界沉积地层分布在高山南、北两坡,北坡主 要为火山岩建造,南坡主要为碎屑岩和碳酸盐岩建造。此外, 在山坡南麓还有下元古界变质地层出露,为一套石英片岩类 夹云母片岩类。沿那拉提断裂并有大小不等的许多基性-超 基性岩块体分布(陈江峰等,1995)。

花岗质岩石侵入在石炭系、志留系和下元古界地层中, 岩体的长轴方向与区域构造线方向及山脉走向一致,明显受 区域地质构造控制。岩石类型有碱长花岗岩、二长花岗岩、英 云闪长岩和闪长岩,前两者常构成大岩体,后两者出露面积 较小。

根据同位素地质年龄(锆石U-Pb, 榍石 Th-Pb 以及 K-A r法)测定,本区岩浆活动延续很长时间(中国科学院登 山科学考察队,1985),闪长岩(T53)的年龄为382M a。本区岩 浆活动主要发生在海西期,北部的二长花岗岩(T81)年龄为 344M a,北部的碱长花岗岩(T8)和南部的二长花岗岩(T3)大 体同时,年龄约为290M a,南部的碱长花岗岩(T13)和流纹 斑岩(T23)年龄约为260M a。此外北部尚有小规模的印支期 岩浆活动,形成碱长花岗岩(T75)和英云闪长岩(T104)小岩 体。

3 分析方法

中国科学院登山科学考察队于 1977~ 1978 年间对本区 进行了综合考察,系统采集了岩石标本(中国科学院登山科 学考察队,1985)。

我们分析了天山托木尔峰地区 8 个花岗质岩石和 2 个 基底变质岩的微量元素 稀土元素和O、Sr、Pb、Nd 同位素组 成。

主量元素用常规化学法、微量元素和稀土元素采用等离 子体光谱法和 X-射线荧光法在湖北省地质实验所分析。

O 同位素组成在中国地质科学院矿床地质研究所同位 素地质实验室用BrF₅法测定。采用的国际标准为 SMOW, 分析精度为±0 2‰。

Sr、N d. Pb 同位素组成在中国科技大学化学地球动力学 实验室用MAT-262 质谱计分析。Sm、N d, Rb, Sr 等采用同位 素稀释法分析,流程见文献(Foland and Allen, 1991)。 ¹⁴⁷Sm /¹⁴⁴N d和⁸⁷Rb /⁸⁶Sr 分析精度分别好于 0 2% 和 0 5%。 N d 同位素比值测定时采用¹⁴⁶N d /¹⁴⁴N d= 0 721900 为正常化 值。La Jolla 标准样的¹⁴³N d /¹⁴⁴N d 比值为 0 511866。用实测 N d 同位素比值、按样品年龄扣除放射成因 N d 的贡献求得 Nd 同位素初始比值¹⁴³Nd/⁴⁴Nd(T),初始比值用 ϵ 单位表示,采用参数为¹⁴⁷Sm /¹⁴⁴Nd_{CHUR} = 0 1966, ¹⁴³Nd/¹⁴⁴Nd_{CHUR} = 0 51263& 为了估计大陆地壳从地幔储库中的分离时间,计算了岩石的Nd 同位素模式年龄 T_{DM},计算基于亏损地幔线 性演化模式,参数为亏损地幔¹⁴⁷Sm /¹⁴⁴Nd = 0 21357, $\epsilon_{Nd}(0)$ = + 10,即¹⁴³Nd/¹⁴⁴Nd = 0 513151, $\epsilon_{Nd}(4 55Ga)$ = 0。考虑到花岗质岩石在其源岩的部分熔融过程中,Sm /Nd 比值有可能发生改变,本文采用两阶段方法计算Nd 模式年龄(T_{2M}) 0 Liew and Hofmann, 1988),计算时地壳平均¹⁴⁷Sm /¹⁴⁴Nd 取 0 118 (Jahn and Condie, 1995)。Sr 同位素比值质谱测定时对⁸⁶Sr /⁸⁸Sr = 0 119400 正常化,实测 Sr 同位素比值用样品年龄扣除放射成因⁸⁷Sr /⁸⁶Sr 贡献后得到 Sr 的初始比值 ⁸⁷Sr /⁸⁶Sr(T)。Rb, Sr, Sm, Nd 的流程空白分别为: < 1ng, 2ng, 0 25ng 和 0 25ng。长石铅的化学分离采用彭子成等(1986)的流程。

4 结果

4.1 稀土元素和微量元素

Nb. Ta. Rb. Ga 和稀土元素测定结果列在表 1。本区花 岗岩类稀土总量变化范围介于 350~114 μ g/g 之间。闪长岩 类稀土总量较小,为 58 μ g/g。两类岩石 Eu 亏损程度也明显 不同,花岗岩类均有不同程度 Eu 亏损,闪长岩基本不亏损 Eu 的负异常与岩石中斜长石含量有关,含斜长石多的闪长 岩亏损少, δ_u 为 0 92,依次为英云闪长岩 (0 84)、二长花岗 岩(0 69~0 39)、碱长花岗岩 (0 24~0 12),反映出岩浆的 分异特征,这一特征与分异指数 (D i) 的变化相一致。在模式 图上,花岗岩类为一组右倾斜的但很平缓的平行曲线,表明 它们具有相似的成因(图 2)。

图 2 托木尔峰地区花岗质岩石稀土元素分布模式图

Fig 2 REE patterns for granitic rocks from the Tuomuer Peak region

4.2 氧同位素组成

7

花岗质岩石是幔源熔体经长期分异的产物,还是沉积物

或片麻岩重熔的产物,稳定同位素组成可以提供有效的佐证,为此对本区岩石进行了系统的O 同位素组成测定。为避免后期蚀变影响,我们分析了石英单矿物,结果列于表 2。由表 2 得知,英云闪长岩(T104)和闪长岩(T53)的 δ^{8} O 值最小,分别为 9 0‰和 9 4‰,其他岩石均大于 9 7‰,其中以浅成脉岩-流纹斑岩(T23)最大,为 13 3‰。本区花岗质岩石的 δ^{8} O 还与其产出位置有关。所有产出于伊犁地块的花岗质岩石和基底变质岩的 δ^{8} O 均 11.6‰。而产于南天山褶皱带的花岗岩的 δ^{8} O 11.6‰(表 2)。显然这反映了源岩特征。O N eil and Chappell (1977)认为, δ^{8} O > + 10‰的花岗岩的 源岩物质多为富¹⁸O 的沉积岩,因此本区花岗质岩石的源岩物质中地壳组分占主导地位,而英云闪长岩和闪长岩 δ^{8} O 较低则因源区经历过较高级变质作用或有较多地幔源组分参与。

4.3 Sr 同位素组成

表3列出了本区岩石的Sr同位素数据。闪长岩(T53)和 英云闪长岩(T104)的Sr同位素初始值⁸⁷Sr/⁸⁶Sr(T)最低,分 别为0707和0706,其他花岗岩均在0710以上,最高为流 纹斑岩(T23),为0733。这一结果表明本区出露最多的碱长 花岗岩和二长花岗岩均来源于陆壳物质的深熔作用,而闪长 岩和英云闪长岩在岩石形成过程中涉及变质较深源区或混 入了较多幔源组分。

4.4 Nd 同位素组成

表 4 是本区岩石的 N d 同位素组成,除花岗质岩石外还 包括图拉苏达坂断裂北侧的基底岩石-长英质变粒岩(T 60) 和南侧的基底岩石-白云母石英片岩(T 17)。花岗质岩石的 ¹⁴³N d/¹⁴⁴N d测定值为 0 51197~ 0 51236,N d 同位素初始比 值(¹⁴³N d/¹⁴⁴N d)(T)为 0 51176~ 0 51207, &d(T)值为- 3 3 ~ - 11. 1,花岗质岩石给出两组 N d 模式年龄,一组为 1. 4~ 1. 5Ga,一组为 1. 8~ 1. 9Ga。图拉苏达坂断裂南侧的基底岩 石(T 17)的 N d 模式年龄为约 2. 2Ga,而图拉苏达坂断裂以 北地区围岩的 N d 模式年龄表明该地区地壳增长的主要阶段 在中元古代(约为 1. 9Ga)。

4.5 Pb 同位素组成

表 5 为本区岩石中长石的 Pb 同位素组成。伊犁地块的 花岗质岩石中长石的²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb 和²⁰⁸Pb/²⁰⁴Pb 分 别为 17. 62~ 19. 12, 15. 41~ 15. 63, 37. 53~ 38. 55。该区基 底变粒岩的相应比值为 18. 56, 15. 56 和 38. 43。南天山地区 花 岗 质 岩 石 和 基 底 片 岩 中²⁰⁶ Pb/²⁰⁴ Pb, ²⁰⁷ Pb/²⁰⁴ Pb 和 ²⁰⁸Pb/²⁰⁴Pb比值分别为 17. 36~ 18. 23, 15. 43~ 15. 61, 37. 69 ~ 38. 48以及 18. 02, 15. 44 和 38. 52。这些比值变化范围互相 重叠, 但在铅同位素演化图解(图 5)中,产于两构造单元的岩 石分别形成各自的演化趋势,表明两者的源区物质的 Pb 同 位素演化历史有区别。

表 1 托木尔峰地区花岗质岩石的微量元素和稀土元素组成(µg/g)

Table 1 Trace and rare earth elements concentrations ($\mu g/g$) of granitic rocks from Tuomuer Peak region

样号	T 8	T 104	T 81	T75	Т53	Т3	Т 23	T13
岩石类型	碱长花岗岩	英云闪长岩	二长花岗岩	碱长花岗岩	闪长岩	二长花岗岩	流纹斑岩	碱长花岗岩
N b	19.6	8 4	18 2	47.5	5.1	15.4	10 7	20.9
Та	5.4	3.3	4.9	8 2	0 4	66	0.9	2 5
Rb	2 4	0 4	2 6	4.8	31	1. 9	223	316
Ga	21.5	22 5	22 2	18 7	13. 1	32 4	19.3	25 0
La	12 88	28 68	29.72	14.60	6 64	58 89	14.57	29.34
Ce	35. 67	51.09	69.46	35. 39	16 16	133 50	35.78	68 82
Pr	4.57	5. 66	8 85	4.70	2 38	15.96	4.72	8 73
N d	17.30	18 90	30 96	16 73	7.53	52 73	15.79	30 53
Sm	4 43	3. 31	5.41	3. 91	1. 64	10 29	3.64	7.36
Eu	0 18	0 88	1. 11	0.30	0 49	1. 23	0 44	0 34
Gd	4 46	2 77	4 15	3. 49	1. 60	8 44	3.51	8 17
Тb	0 88	0 44	0 62	0.66	0 32	1. 45	0 68	1. 59
Dy	6 12	2 55	3. 27	3. 91	1.84	8 33	4.15	10 59
Но	1. 26	0 53	0 66	0.81	0 41	1. 63	0 88	2 23
Er	3 99	1. 50	1. 79	2 31	1. 07	4.22	2 37	6 52
Tm	0 69	0 26	0 29	0.44	0 21	0 73	0 42	1. 08
Yb	4 65	1. 58	1. 92	2 86	1. 29	4.27	2 59	6 69
Lu	0 69	0 26	0 31	0.46	0 22	0 65	0 40	1. 01
Y	37.92	14.43	18 59	23 20	11. 25	46 15	25. 68	68 66
Σ_{REE}	133. 65	132 83	177.11	113 74	58 05	349.46	115.62	251.64
LREE	74.99	108 52	145.51	75. 63	34.84	273.60	74.94	145.12
HREE	60 66	24.32	31. 60	38 11	18 21	75.86	40 68	106 52
L/H	1. 24	4.46	4.60	1. 98	1. 91	3 61	1.84	1. 36
$\delta_{\! ext{Eu}}$	0 12	0 84	0 69	0. 24	0 92	0.39	0 37	0 13

表 2 托木尔峰地区岩石中石英的 0 同位素组成

Table 2 Oxygen isotopic compositions of quartz in rocks from Tuomuer Peak region

	岩性	采样位置	矿物	δ^{8} O smow (‰)
Т8	碱长花岗岩	夏特西南	石英	9. 7
T 104	英云闪长岩	夏特正南	石英	9. 0
T 81	二长花岗岩	夏特东南	石英	11. 4
Т75	碱长花岗岩	阿拉散西北	石英	11. 6
Т 53	闪长岩	阿拉散东南	石英	9.4
T 60	长英质变粒岩	阿拉散	石英	11. 1
T 23	流纹斑岩	图拉苏达坂东南	石英	13.3
Т3	二长花岗岩	托木尔峰东南	石英	11. 6
T 13	碱长花岗岩	英满来	石英	12 2

表 3 托木尔峰地区岩石的 Sr 同位素数据

Table 3 Sr isotopic data for rocks from Tuomuer Peak region

样号	岩性	$Rb(\mu g/g)$	$Sr(\mu g/g)$	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	87 Sr/ 86 Sr(T)	<i>T</i> (M a)
Т8	碱长花岗岩	251.4	25. 79	28 58	0 843411 ± 15	0 7267*	287
T 104	英云闪长岩	50 70	690.0	0 213	0.706915 ± 12	0 7063	218
T 81	二长花岗岩	309. 3	318 9	2 813	0 734567 ± 12	0 7208	344
Т 53	闪长岩	33.97	308 6	0.319	0 708947 ± 14	0 7072	382
T 60	长英质变粒岩	295. 2	240 0	3. 568	0 736081 ± 14	0 7208**	(302)
T 23	流纹斑岩	228 8	53. 09	12 56	0 779608 ± 16	0 7332*	260
Т3	二长花岗岩	175. 3	118 9	4. 272	0 728047 ± 12	0 7104	290
T13	碱长花岗岩	314.7	30 63	30 07	$0\ 828372 \pm 20$	0 7171*	260
T 17	白云石英片岩	155. 3	57.86	7.820	0 0 777299 ± 11	0 7439**	300

* 由于⁸⁷R b /⁸⁶Sr 比值很大, 计算的初始比值有较大误差, 此值仅供参考 * * 计算到 300M a 时

表 4 托木尔峰地区岩石的_{Nd} 同位素数据

Table 4 Nd isotopic data for rocks from Tuomuer Peak region

样号	岩性	¹⁴⁷ Sm / ¹⁴⁴ N d	$^{143}N d/^{144}N d$	$(^{143}N d/^{144}N d) (T)$	$\epsilon_{Nd}(T)$	$T_{\rm DM}~({\rm Ga})$	T 2DM (Ga)
Т8	碱长花岗岩	0 1549	0.512363 ± 10	0 512072	- 3.84	2 04	1. 36
T104	英云闪长岩	0 1059	0.511966 ± 7	0 511815	- 10 59	1. 67	1. 85
T 81	二长花岗岩	0 1057	0.512000 ± 9	0 511762	- 8 45	1. 62	1. 78
Т75	碱长花岗岩	0 1414	0.511992 ± 12	0 511791	- 11.07	2 43	1. 89
Т53	闪长岩	0 1317	0.512308 ± 6	0 511978	- 3. 27	1.56	1. 40
T 60	长英质变粒岩	0 1209	0.511995±8	0 511758	- 9.65*	1.89	
Т23	流纹斑岩	0 1394	0 512077 ± 9	0 511840	- 9.05	2 20	1. 76
Т3	二长花岗岩	0 1180	0.512187 ± 10	0 511963	- 5.89	1. 53	1. 53
т13	碱长花岗岩	0 1458	0. 512072 ± 11	0 511825	- 9.36	2 41	1. 79
Т17	白云石英片岩	0 1070	0.511591 ± 9	0 511381	- 17.00*	2 22	

* 计算到 300M a 时

表 5 托木尔峰地区岩石中长石的 Pb 同位素组成

Table 5 Pb isotopic compositions of feldspars in rocks from Tuomuer Peak region

-			-	
样号	岩性	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb
Т8	碱长花岗岩	18 372 \pm 3	15. 500 ± 2	38 071 ± 6
T 104	英云闪长岩	17. 615 ± 2	15. 413 ± 2	37. 532 ± 5
T 81	二长花岗岩	18 285 ± 7	15. 545 ± 7	37. 935 ± 17
т75	碱长花岗岩	19. 115 ± 5	15. 629 ± 4	38 554 ± 9
Т 53	闪长岩	18 185 \pm 2	15. 537 ± 2	38 140 ± 7
T 60	长英质变粒岩	18 556 ± 2	15. 562 ± 2	38 430 ± 5
Т23	流纹斑岩	17. 358 ± 3	15. 443 ± 3	37. 804 ± 9
Т3	二长花岗岩	18. 230 \pm 3	15. 605 ± 2	38 475 ± 6
T13	碱长花岗岩	17. 645 ± 2	15. 432 ± 1	37. 893 ± 4
T 17	白云母石英片岩	18 018 \pm 3	15. 439 ± 2	38 515 ± 6

图 3 托木尔峰地区花岗岩多阳离子 (R:-R) 构造环境判 别图

(据Batchelor and Bow der. 1985)

 • 幔源花岗岩; 2 板块碰撞前消减地区花岗岩; 3 板块碰撞后隆 起期花岗岩; 4 造山晚期花岗岩; 5 非造山区 A 型花岗岩; 6 同 造山花岗岩; 7. 造山期后 A 型花岗岩

Fig 3 Multicational tectonic discrimination for granitic rocks of Tuomuer Peak region

(A fter Batchelor and Bow den, 1985)

5 讨论

5.1 花岗质岩石产出的构造环境

根据花岗岩主量元素 (6 个分析值引自中国科学院登山 考察队, 1985; 2 个为作者未发表数据) 的多阳离子 R_1 - R_2 判 别图 (B atche lor and Bow den, 1985) (图 3), 闪长岩 (T53) 属幔 源花岗岩, 英云闪长岩 (T104) 和早期二长花岗岩 (T81) 为板 块碰撞前消减地区花岗岩, 晚期的二长花岗岩 (T3) 为造山晚 期花岗岩, 其他碱长花岗岩和流纹斑岩 (T75, T8, T13, T23) 落在造山后花岗岩区附近。

采用 Pearce *et al* (1984)的微量元素构造环境判别图解 (图 4),结果表明 T& T75, T3 和 T13 投在板内花岗岩 (W PG)范围内,样品 T53 投在火山弧花岗岩(VAG)区域, T81 和 T104 落在同碰撞花岗岩(Syn-COLG)区域。

综上所述,本区花岗质岩石由加里东晚期到海西晚期经 历了碰撞前到碰撞后环境的变化。印支期则又有陆内环境的 小型侵入活动。

5.2 地壳演化历史

伊犁地块和南天山褶皱带基底的Nd同位素模式年龄不同,分别为约1.9Ga和22Ga,表明两地块平均地壳年龄不同。前者与北疆大部分地区的地壳形成年龄一致,后者因靠近具有太古代基底的塔里木地块(胡霭琴等,1997),所以有较老的平均地壳存留年龄。

图 4 Nb-Y和Ta-Yb构造判别图解 (据 Pearce *et al*, 1984) ORG: 洋脊花岗岩; VAG: 火山弧花岗岩; WPG: 板内花岗岩; syn-COLG: 同碰撞花岗岩 Fig 4 Nb-Y and Ta-Yb plots (A fter Pearce *et al*, 1984)

5.3 花岗岩源区

闪 长 岩 样 品 (T 53) 由 于 其 比 较 基 性, 其 T_{204} 较 低 (1.4Ga), 不具有地壳年龄意义, 只表明含有较多幔源物质。 J^{87} Sr/ 86 Sr(T)较低(0 707), 也指示较多幔源物质参加。 而 二长花岗岩和碱长花岗岩的 87 Sr/ 86 Sr(T)却很高, 为 0 710~ 0 733, 指示它们很可能由地壳物质熔融形成。伊犁地块和南 天山花岗岩的 N d 同位素模式年龄没有显著区别。但是伊犁 地块花岗质岩石的 δ^{8} O 低于南天山花岗岩, 由图 5 可见南天 山花岗岩长石在 207 Pb/ 204 Pb- 206 Pb/ 204 Pb 图中的趋势线高于 伊犁地块花岗岩, 在 208 Pb/ 204 Pb- 206 Pb/ 204 Pb 图中的趋势线 亦如此, 这表明伊犁地块和南天山花岗岩源区是不同的, 前 者的 δ^{8} O 低, μ 值低, Th/U 比低, 亦即地壳成熟度较低, 而 后者地壳成熟度较高。

T81, T13, T23, T75和T104样品分别出露于图拉苏达 坂断裂的北部和南部, 但它们的T_{3M}均为1.8~1.9Ga。如前 所述两构造单元地壳的年龄并不相同, 两区花岗岩的源区也 不同。两种可能性可以解释图拉苏达坂南北花岗岩一致的 T_{3M}。第一种可能是两地质单元花岗质岩石的源区不但成熟 度不同而且地壳平均年龄也不同。伊犁地块花岗岩完全由该 地块地壳岩石部分熔融形成, 几乎没有地幔物质参与, 南天 山褶皱带花岗岩是南天山地壳和少量幔源物质共同熔融的

7

图 6 托木尔峰地区不同年龄花岗类岩石 N d 模式年龄变 化趋势,指示 290M a 前的幔源物质加入事件

Fig 6 T_{DM} variation as a function of formation time for granitic rocks from Tuomuer Peak region, suggesting a mantle input event around 290M a

产物,高度分异的结果使其主量元素和微量元素特征与普通 花岗岩完全一样。第二种可能是两构造单元花岗岩源区岩石 的地壳平均年龄相似,只有成熟度上的区别。这意味着伊犁 地块向南俯冲,因此南天山褶皱带北部的下伏地壳物质仍为 伊犁地块岩石。

但是不同端元组分混合得出混合产物十分一致的Nd模 式年龄要求组分比恰好落在特定范围,似乎可能性不大,故 作者倾向于后一种解释。

5.4 幔源物质加入事件

本区花岗岩的 T_{3M} 有明显的随时间而变化的趋势 (图 6),在约 290M a 前后,花岗岩(T 3, T 8)的 T_{3M} 下降,从约 1.8~1.9Ga 减少到约 1.4~1.5Ga,表明其时有显著的幔源 物质混入。这一幔源物质加入事件正好发生在沿那拉提断裂 的基性岩-超基性岩侵位之后(314~324M a,陈江峰等, 1995),很可能这些基性超基性岩就是幔源组分的代表。

这次幔源物质加入事件同时影响到图拉苏达坂断裂南 北两侧的花岗岩 T8 和 T3, 可见当时南天山褶皱带和伊犁地 块已经拼合成一个整体。

由于强烈结晶分异,所以没有留下幔源组分的主量元素 和微量元素印记。幔源组分唯一显著表现就是低的*T*_{20M}。这 种记录在北疆广泛存在(Han *et al*, 1997;赵振华等, 1996; 周泰禧等, 1996)。因为本区位于中亚造山带最南部边缘,所 以本区虽然受到这种幔源物质加入事件的影响,*T*_{20M}下降, $\mathfrak{S}_{M}(T)$ 升高,但其值仍为负(-33~-38),远不如北疆其 他地区强烈,那些地区海西花岗岩的 $\mathfrak{S}_{M}(T)$ 可以远大于 Q。

由于伊犁地块和南天山两构造单元花岗岩Nd模式年龄 随时代变化的趋势完全一致(图 6),很难想象不同的地壳端 元与地幔组分混合得出如此一致的结果,所以倾向于两构造 单元花岗岩源区都是伊犁地块地壳的模型。

6 结论

那拉提断裂南北两侧的地壳生长主要发生在古-中元古 代,但南天山褶皱带基底的 T_{IM} (2 2Ga)显著比伊犁地块 (1.9Ga)老。

加里东晚期本区即发育大陆弧闪长岩,其形成有显著的 幔源物质贡献。从海西早期到晚期形成碰撞到造山后陆内环 境花岗岩,它们可能都是伊犁地块地壳部分熔融的产物。但 两地块源区岩石仍有一定区别,伊犁地块花岗岩源区岩石的 成熟度较低,南天山花岗岩源区岩石的成熟度较高。

290M a 前花岗岩的 T IM 显著下降指示一次幔源物质加入事件,此事件可能与 320M a 左右本区广泛的基性-超基性岩浆活动有关。幔源物质广泛参与中亚北疆古生代花岗岩的形成,本研究地区位于北疆南缘,这种幔源物质加入作用显著比北疆其他地区残。

致谢 本文在成文过程中与江博明,胡霭琴,吴福元教授 进行了有益的讨论,杨刚,王跃协助数据整理、作图和文字输 入,在此一并致谢。

References

- Batchelor R B and Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters Chem. Geol, 48: 43~ 55
- Bureau of Geology and Mineral Resources of Xingjiang Uygur Autonomous Region 1993 Regional Geology of Xinjiang Uygur Autonomous Region Beijing: Geol Pub House, 657~741 (in chinese)
- Cao R L, Zhu S H, Zhu X K and Guan Y B. 1993 Plate and terrain tectonics of Northern Xinjiang In: Tu G Z(ed). New improvement of solid geosiences in northern Xinjiang Beijing: Science Press, 11~ 26 (in Chinese)
- Chen J F, Man F S and N i S B. 1995. Neodym ium and Strontium isotopic geochem istry of mafic-ultramafic intrusions from Q inbulake rock belt, West Tianshan Mountain, Xinjiang Geochimica, 24 (2): 121 ~ 127 (in Chinese with English abstract)
- Expedition of Tuomeur peak, Chinese Academy of Sciences 1985. Geology and Paleontology of Tuomeur Peak region, Tianshan U rumgi: People's Press Xinjiang, 1~ 192 (in Chinese)
- Foland K A and Allen J C. 1991. Magma sources for Mesozoic anorogenic granites of the W tite Mountain magma series, New England, USA. Contrib. Mineral Petrol , 109: 195~ 211

Han B F, W ang S G, Jahn B M, Hong D W, Hirro Kagam i and Sun

Y L. 1997. Depleted mantle source for the Ulungur River Atype granites from North Xinjiang, China: geochemisrty and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal grow th Chem. Geol, 138: 135~159

- Hu A Q, W ang Z G, Tu G Z, et al 1997. Geological evolution and diagenic metallogenetic regular in northern Xinjiang Beijing: Science Press, 9~ 105 (in Chinese)
- Jahn B M and Condie K C. 1995. Evolution of the Kaapvaal craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites Geochin. Cosmochin. Acta, 59: 2239~ 2258
- Liew T C and Hofmann A W. 1988 Precambrian crustal components, plutonic assimilation, plate environment of the Hercynian fold belt of central Europe: indications from Nd and Sr isotopic study. Contrib. M ineral Petrol, 98: 129~ 138
- O'Neil J R and Chappell B W. 1977. Oxygen and hydrogen isotope relations in the Berridale batholith J. Geol Soc, 133: 559~ 571
- Pearce JA, HarrisNBW and TindleAG 1984 Trace element discrimination diagram for the tectonic interpretation of granitic rock J. Petrol, 25: 956~ 983
- Peng Z C and Kwark L. 1986, Determination of Pb isotopic ratios and trace U, Th, Pb concentration of basalts Analysis of rocks and minerals, 5(2): 121~ 125. (in Chinese with English abstract)
- Zhao Z H, W ang Z G, Zhou T R and M auda A. 1996 Study on petrogenesis of alkali-rich intrusive rocks of U lungur, Xinjiang Geochimica, 25 (3): 205 ~ 220 (in Chinese with English abstract)
- Zhou T X, Chen J F and L i XM. 1996 O rigin of high $\mathfrak{Sd}(T)$ granites from A latao M ountain, Xinjiang Sci Geol Sinica, 31(1): 71~79 (in Chinese with English abstract)

附中文参考文献

- 曹荣龙, 朱寿华, 朱祥坤, 管云彬 1993 新疆北部板块与地体构造格 局, 见涂光炽主编, 新疆北部固体地球科学新进展 北京: 科学 出版社, 11~26
- 陈江峰, 满发胜, 倪守斌 1995. 西天山菁布拉克岩带基性-超基性岩 的Nd, Sr 同位素地球化学, 地球化学, 24(2): 121~127
- 胡霭琴, 王中刚, 涂光炽等, 1997. 新疆北部地质演化及成岩成矿规 律 北京: 科学出版社, 9~105
- 彭子成, Kwark L. 1986 玄武岩中铅同位素和微量铀钍铅的测定 岩矿测试, 5(2): 121~125
- 新疆维吾尔自治区地质矿产局 1993. 新疆维吾尔自治区区域地质 志 北京: 地质出版社, 657~741
- 赵振华,王中刚,邹天人,增田彰正 1996 新疆乌伦古富碱侵入岩 成因探讨. 地球化学, 25(3): 201~ 220
- 中国科学院登山科学考察队 1985. 天山托木尔峰地区的地质和古 生物 乌鲁木齐:新疆人民出版社, 1~192
- 周泰禧,陈江峰,李学明 1996 新疆阿拉套山花岗岩类高 €ыd值的成 因探讨:地质科学,31(1):71~79